1
|
Hammond EM, Baumgarth N. CD4 T cell responses in persistent Borrelia burgdorferi infection. Curr Opin Immunol 2022; 77:102187. [PMID: 35550259 DOI: 10.1016/j.coi.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022]
Abstract
Infection of mice with Borrelia burgdorferi (Bb), a tick-transmitted spirochete and the pathogen that causes Lyme disease in humans, triggers CD4 T cell activation in secondary lymphoid tissues, from which they disseminate into various infected tissues. Despite their activation and the appearance of CD4 T cell-dependent antibody responses, Bb establishes persistent infection in natural Bb reservoir hosts in the absence of overt disease, raising the question of the effectiveness of the anti-Bb T cell responses. Reviewing the existing literature, we propose that CD4 T cells might constitute a host cell target of Bb-mediated immune evasion, rendering these cells ineffective in orchestrating effective inflammatory responses and in supporting highly functional Bb-specific antibody induction. Supporting the induction of more effective CD4 T cell responses may help overcome Bb persistence.
Collapse
Affiliation(s)
- Elizabeth M Hammond
- Graduate Group in Immunology, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Center for Immunology and Infectious Diseases, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Center for Immunology and Infectious Diseases, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Regulatory T Cells Contribute to Resistance against Lyme Arthritis. Infect Immun 2020; 88:IAI.00160-20. [PMID: 32778610 DOI: 10.1128/iai.00160-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 "depletion of regulatory T cell" mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.
Collapse
|
3
|
Ding Z, Ma M, Tao L, Peng Y, Han Y, Sun L, Dai X, Ji Z, Bai R, Jian M, Chen T, Luo L, Wang F, Bi Y, Liu A, Bao F. Rhesus Brain Transcriptomic Landscape in an ex vivo Model of the Interaction of Live Borrelia Burgdorferi With Frontal Cortex Tissue Explants. Front Neurosci 2019; 13:651. [PMID: 31316336 PMCID: PMC6610209 DOI: 10.3389/fnins.2019.00651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease caused by the spirochete Borrelia burgdorferi which can reach the central nervous system most commonly presenting with lymphocytic meningitis; however, the molecular basis for neuroborreliosis is still poorly understood. We incubated explants from the frontal cortex of three rhesus brains with medium alone or medium with added live Borrelia burgdorferi for 6, 12, and 24 h and isolated RNA from each group was used for RNA sequencing with further bioinformatic analysis. Transcriptomic differences between the ex vivo model of live Borrelia burgdorferi with rhesus frontal cortex tissue explants and the controls during the progression of the infection were identified. A total of 2249, 1064, and 420 genes were significantly altered, of which 80.7, 52.9, and 19.8% were upregulated and 19.3, 47.1, 80.2% were downregulated at 6, 12, and 24 h, respectively. Gene ontology and KEGG pathway analyses revealed various pathways related to immune and inflammatory responses during the spirochete infection were enriched which is suggested to have a causal role in the pathogenesis of neurological Lyme disease. Moreover, we propose that the overexpressed FOLR2 which was demonstrated by the real-time PCR and western blotting could play a key role in neuroinflammation of the neuroborreliosis based on PPI analysis for the first time. To our knowledge, this is the first study to provide comprehensive information regarding the transcriptomic signatures that occur in the frontal cortex of the brain upon exposure to Borrelia burgdorferi, and suggest that FOLR2 is a promising target that is associated with neuroinflammation and may represent a new diagnostic or therapeutic marker in LNB.
Collapse
Affiliation(s)
- Zhe Ding
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Mingbiao Ma
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lvyan Tao
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Yun Peng
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Luyun Sun
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China
| | - Xiting Dai
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Zhenhua Ji
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Ruolan Bai
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Miaomiao Jian
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Taigui Chen
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lisha Luo
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Feng Wang
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China
| | - Yunfeng Bi
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.,Yunnan Province Integrative Innovation Center for Public Health, Diseases Prevention and Control, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| | - Fukai Bao
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,Yunnan Province Integrative Innovation Center for Public Health, Diseases Prevention and Control, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| |
Collapse
|
4
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|