1
|
Van Wyk R, Serem JC, Oosthuizen CB, Semenya D, Serian M, Lorenz CD, Mason AJ, Bester MJ, Gaspar ARM. Carboxy-Amidated AamAP1-Lys has Superior Conformational Flexibility and Accelerated Killing of Gram-Negative Bacteria. Biochemistry 2025; 64:841-859. [PMID: 39873636 PMCID: PMC11840929 DOI: 10.1021/acs.biochem.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
C-terminal amidation of antimicrobial peptides (AMPs) is a frequent minor modification used to improve antibacterial potency, commonly ascribed to increased positive charge, protection from proteases, and a stabilized secondary structure. Although the activity of AMPs is primarily associated with the ability to penetrate bacterial membranes, hitherto the effect of amidation on this interaction has not been understood in detail. Here, we show that amidation of the scorpion-derived membranolytic peptide AamAP1-Lys produces a potent analog with faster bactericidal activity, increased membrane permeabilization, and greater Gram-negative membrane penetration associated with greater conformational flexibility. AamAP1-lys-NH2 has improved antibiofilm activity against Acinetobacter baumannii and Escherichia coli, benefits from a two- to 3-fold selectivity improvement, and provides protection against A. baumannii infection in a Galleria mellonella burn wound model. Circular dichroism spectroscopy shows both peptides adopt α-helix conformations in the steady state. However, molecular dynamics (MD) simulations reveal that, during initial binding, AamAP1-Lys-NH2 has greater conformation heterogeneity, with substantial polyproline-II conformation detected alongside α-helix, and penetrates the bilayer more readily than AamAP1-Lys. AamAP1-Lys-NH2 induced membrane permeabilization of A. baumannii occurs only above a critical concentration with slow and weak permeabilization and slow killing occurring at its lower MIC but causes greater and faster permeabilization than AamAP1-Lys, and kills more rapidly, when applied at equal concentrations. Therefore, while the increased potency of AamAP1-Lys-NH2 is associated with slow bactericidal killing, amidation, and the conformational flexibility it induces, affords an improvement in the AMP pharmacodynamic profile and may need to be considered to achieve improved therapeutic performance.
Collapse
Affiliation(s)
- Rosalind
J. Van Wyk
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - June C. Serem
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Carel B. Oosthuizen
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Dorothy Semenya
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Miruna Serian
- Department
of Physics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London WC2R 2LS, United Kingdom.
| | - Christian D. Lorenz
- Department
of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London WC2R 2LS, United Kingdom
| | - A. James Mason
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Megan J. Bester
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anabella R. M. Gaspar
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
2
|
Ashraf D, Shaaban MI, Hassan R, El-Aziz AMA. Polidocanol inhibits Enterococcus faecalis virulence factors by targeting fsr quorum sensing system. BMC Microbiol 2024; 24:411. [PMID: 39415105 PMCID: PMC11481293 DOI: 10.1186/s12866-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The wide spread of antimicrobial resistance in Enterococcus faecalis is a critical global concern, leading to increasingly limited treatment options. The fsr quorum sensing (QS) plays a critical role in the pathogenicity of E. faecalis, allowing bacteria to coordinate gene expression and regulate many virulence factors. Therefore, fsr QS of E. faecalis represents a potential therapeutic target that provides an effective strategy to treat antibiotic-resistant infections induced by E. faecalis. METHODS In this study, distribution of different virulence factors including, gelatinase, protease, cell surface hydrophobicity and biofilm formation in sixty clinical isolates of Enterococcus faecalis was investigated. Sixty-six compounds were tested for their activity against fsr QS. The minimal inhibitory concentration of the tested compounds was evaluated using the microbroth dilution method. The effect of sub-inhibitory concentrations of the tested compounds on fsr QS was investigated using the gelatinase assay method. Additionally, the effect of potential QS inhibitor on the virulence factors was estimated. Quantitative real-time PCR was used to investigate the effect of the potential inhibitor on fsr QS related genes (fsrB-fsrC) and (gelE-sprE) and virulence associated genes including, asa1 and epbA. RESULTS The assessment of polidocanol activity against the fsr QS system was demonstrated by studying its effect on gelatinase production in E. faecalis clinical isolates. Sub-lethal concentrations of polidocanol showed a significant reduction in gelatinase and protease production by 54% to 70% and 64% to 85%, respectively. Additionally, it significantly reduced biofilm formation (P < 0.01) and interrupted mature biofilm at concentrations of ½, 1 × and 2 × MIC. Furthermore, polidocanol significantly decreased cell surface hydrophobicity (P < 0.01). Polidocanol at ½ MIC showed a significant reduction in the expression of QS genes including fsrB, fsrC, gelE and sprE by 57% to 97% without affecting bacterial viability. Moreover, it reduced the expression of virulence associated genes (asa1 and epbA) (P < 0.01). CONCLUSION Polidocanol appears to be a promising option for treating of E. faecalis infections by targeting the fsr QS system and exhibiting anti-biofilm activity.
Collapse
Affiliation(s)
- Dina Ashraf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 2024; 50:859-878. [PMID: 38102871 DOI: 10.1080/1040841x.2023.2293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Sarfraz Anwar
- Department of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
4
|
Jakob MO, Spari D, Sànchez Taltavull D, Salm L, Yilmaz B, Doucet Ladevèze R, Mooser C, Pereyra D, Ouyang Y, Schmidt T, Mattiola I, Starlinger P, Stroka D, Tschan F, Candinas D, Gasteiger G, Klose CSN, Diefenbach A, Gomez de Agüero M, Beldi G. ILC3s restrict the dissemination of intestinal bacteria to safeguard liver regeneration after surgery. Cell Rep 2023; 42:112269. [PMID: 36933213 PMCID: PMC10066576 DOI: 10.1016/j.celrep.2023.112269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Daniel Spari
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Sànchez Taltavull
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lilian Salm
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Rémi Doucet Ladevèze
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Catherine Mooser
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - David Pereyra
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Ye Ouyang
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Theresa Schmidt
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Franziska Tschan
- Institute for Work and Organizational Psychology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Gasteiger
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Christoph S N Klose
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland; Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Ozma MA, Khodadadi E, Rezaee MA, Kamounah FS, Asgharzadeh M, Ganbarov K, Aghazadeh M, Yousefi M, Pirzadeh T, Kafil HS. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin. Microb Pathog 2021; 157:105003. [PMID: 34087388 DOI: 10.1016/j.micpath.2021.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Enterococcus faecalis is a significant cause of nosocomial infections and other diseases, including endocarditis, bacteremia, and urinary tract infections. This microorganism forms biofilms to overcome difficult environmental conditions, such as lack of oxygen, lack of water, and the presence of antimicrobials. These biofilms make diseases difficult by changing their proteome contents, protecting the bacterium, and increasing their pathogenicity. This study aimed to evaluate gentamicin's effect on proteome changes and biofilm formation in E. faecalis. METHOD Twenty-five clinical isolates and one standard isolate were selected for the experiments. A label-free/gel-free proteomic and microtiter plate techniques were used to study proteome changes and biofilm formation, respectively. RESULTS Gentamicin significantly increased the biofilm formation in 62% of isolates and the rest of the isolates; no significant change was observed. The abundance of lactate utilization protein C, ribosomal RNA small subunit methyltransferase H, and protein translocase subunit SecA were increased. However, the abundances of proteins effective in cell division and metabolism, such as replication initiation protein and segregation and condensation protein A, were decreased. CONCLUSION The present study's findings exhibited that antibiotics might have adverse effects on treatment and increase microorganisms' pathogenicity. It was observed in gentamicin as induction of biofilm formation through different mechanisms, particularly changes in the expression of specific proteins in E. faecalis.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK- 2100, Copenhagen, Denmark
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Aghazadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Liscano Y, Medina L, Oñate-Garzón J, Gúzman F, Pickholz M, Delgado JP. In Silico Selection and Evaluation of Pugnins with Antibacterial and Anticancer Activity Using Skin Transcriptome of Treefrog ( Boana pugnax). Pharmaceutics 2021; 13:578. [PMID: 33919639 PMCID: PMC8074116 DOI: 10.3390/pharmaceutics13040578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
In order to combat bacterial and cancer resistance, we identified peptides (pugnins) with dual antibacterial l-anticancer activity from the Boana pugnax (B. pugnax) skin transcriptome through in silico analysis. Pugnins A and B were selected owing to their high similarity to the DS4.3 peptide, which served as a template for their alignment to the B. pugnax transcriptome, as well as their function as part of a voltage-dependent potassium channel protein. The secondary peptide structure stability in aqueous medium was evaluated as well, and after interaction with the Escherichia coli (E. coli) membrane model using molecular dynamics. These pugnins were synthesized via solid-phase synthesis strategy and verified by Reverse phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry. Subsequently, their alpha-helix structure was determined by circular dichroism, after which antibacterial tests were then performed to evaluate their antimicrobial activity. Cytotoxicity tests against cancer cells also showed selectivity of pugnin A toward breast cancer (MFC7) cells, and pugnin B toward prostate cancer (PC3) cells. Alternatively, flow cytometry revealed necrotic cell damage with a major cytotoxic effect on human keratinocytes (HaCaT) control cells. Therefore, the pugnins found in the transcriptome of B. pugnax present dual antibacterial-anticancer activity with reduced selectivity to normal eukaryotic cells.
Collapse
Affiliation(s)
- Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
| | - Fanny Gúzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, 2374631 Av. Universidad, Curauma 330, Chile;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina;
| | - Jean Paul Delgado
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
7
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
8
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Ehlinger C, Dartevelle P, Zaet A, Kurashige Y, Haïkel Y, Metz-Boutigue MH, Marban C. A New Combination with D-Cateslytin to Eradicate Root Canal Pathogens. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Effects of Bromelain and Trypsin Hydrolysis on the Phytochemical Content, Antioxidant Activity, and Antibacterial Activity of Roasted Butterfly Pea Seeds. Processes (Basel) 2019. [DOI: 10.3390/pr7080534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Butterfly pea (Clitoria ternatea L.) is a traditional medicinal and edible herb, whose health-promoting benefits have been attributed to its phenolic constituents. In this study, the effects of enzymatic hydrolysis on total phenolic content (TPC) and total flavonoid content (TFC), antioxidant (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP)) and antibacterial activities of raw and roasted (200 °C, 10–20 min) butterfly pea seeds were investigated. Roasting reduced the yield of seed aqueous extracts, but it increased the TPC and FRAP values, hence the reducing ability, of the extracts. Bromelain hydrolysis enhanced the TPC and TFC of the roasted seeds up to 2- and 18-fold higher, respectively. Trypsin hydrolysis drastically increased the TPC, but not TFC, of roasted seeds; trypsin-hydrolyzed, 20 min roasted sample had the highest TPC (54.07 μg gallic acid equivalent (GAE)/mg) among all samples. Bromelain hydrolysis significantly improved the antioxidant activity of the roasted seed samples, where the antioxidant activity of bromelain-hydrolyzed, 20 min roasted sample was about 50% greater than the non-hydrolyzed 20 min roasted sample. Trypsin hydrolysis raised the FRAP values of the 20 min roasted sample to 70.28 mg Fe(II) equivalent/g, the highest among all samples. Nevertheless, trypsin only weakly elevated the ABTS scavenging activity of the roasted samples, showing no enhancement of the DPPH scavenging activity. On the other hand, only bromelain hydrolysates of raw and 10 min roasted seeds were active against Staphylococcus aureus. Taken together, bromelain hydrolysis can be used to enhance the extractable phytochemical contents and antioxidant activity of roasted butterfly pea seeds.
Collapse
|
11
|
Volejníková A, Melicherčík P, Nešuta O, Vaňková E, Bednárová L, Rybáček J, Čeřovský V. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J Med Microbiol 2019; 68:961-972. [PMID: 31107198 DOI: 10.1099/jmm.0.001000] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Antibiotic-loaded polymethylmethacrylate-based bone cement has been implemented in orthopaedics to cope with implant-related infections associated with the formation of bacterial biofilms. In the context of emerging bacterial resistance to current antibiotics, we examined the efficacy of short antimicrobial peptide-loaded bone cement in inhibiting bacterial adhesion and consequent biofilm formation on its surface. METHODOLOGY The ability of α-helical antimicrobial peptides composed of 12 amino acid residues to prevent bacterial biofilm [methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli] formation on the surface of model implants made from polymethylmethacrylate-based bone cement was evaluated by colony-forming unit (c.f.u.) counting of bacteria released by sonication from the biofilms formed on their surfaces. The biofilms on model implant surfaces were also visualized by light microscopy after staining with tetrazolium dye (MTT) and by scanning electron microscopy. RESULTS When incorporated in the implants, these peptides caused a mean reduction in the number of bacterial cells attached to implants' surfaces (by five orders of magnitude), and 88 % of these implants showed no bacterial adhesion after being exposed to growth media containing various bacteria. CONCLUSION The results showed that the antibiofilm activity of these peptides was comparable to that of the antibiotics, but the peptides exhibited broader specificity than the antibiotics. Given the rapid development of antibiotic resistance, antimicrobial peptides show promise as a substitute for antibiotics for loading into bone cements.
Collapse
Affiliation(s)
- Andrea Volejníková
- 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Melicherčík
- 2 Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Ondřej Nešuta
- 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Vaňková
- 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lucie Bednárová
- 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Rybáček
- 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Passarini I, Rossiter S, Malkinson J, Zloh M. In Silico Structural Evaluation of Short Cationic Antimicrobial Peptides. Pharmaceutics 2018; 10:E72. [PMID: 29933540 PMCID: PMC6160961 DOI: 10.3390/pharmaceutics10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Cationic peptides with antimicrobial properties are ubiquitous in nature and have been studied for many years in an attempt to design novel antibiotics. However, very few molecules are used in the clinic so far, sometimes due to their complexity but, mostly, as a consequence of the unfavorable pharmacokinetic profile associated with peptides. The aim of this work is to investigate cationic peptides in order to identify common structural features which could be useful for the design of small peptides or peptido-mimetics with improved drug-like properties and activity against Gram negative bacteria. Two sets of cationic peptides (AMPs) with known antimicrobial activity have been investigated. The first reference set comprised molecules with experimentally-known conformations available in the protein databank (PDB), and the second one was composed of short peptides active against Gram negative bacteria but with no significant structural information available. The predicted structures of the peptides from the first set were in excellent agreement with those experimentally-observed, which allowed analysis of the structural features of the second group using computationally-derived conformations. The peptide conformations, either experimentally available or predicted, were clustered in an “all vs. all” fashion and the most populated clusters were then analyzed. It was confirmed that these peptides tend to assume an amphipathic conformation regardless of the environment. It was also observed that positively-charged amino acid residues can often be found next to aromatic residues. Finally, a protocol was evaluated for the investigation of the behavior of short cationic peptides in the presence of a membrane-like environment such as dodecylphosphocholine (DPC) micelles. The results presented herein introduce a promising approach to inform the design of novel short peptides with a potential antimicrobial activity.
Collapse
Affiliation(s)
- Ilaria Passarini
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - Sharon Rossiter
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - John Malkinson
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | - Mire Zloh
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
- Faculty of Pharmacy, University Business Academy, Trg mladenaca 5, 21000 Novi Sad, Serbia.
- NanoPuzzle Medicines Design, Business & Technology Centre, Bessemer Drive, Stevenage SG1 2DX, UK.
| |
Collapse
|
13
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
14
|
Hirt H, Hall JW, Larson E, Gorr SU. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS One 2018; 13:e0194900. [PMID: 29566082 PMCID: PMC5864073 DOI: 10.1371/journal.pone.0194900] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides represent an alternative to traditional antibiotics that may be less susceptible to bacterial resistance mechanisms by directly attacking the bacterial cell membrane. However, bacteria have a variety of defense mechanisms that can prevent cationic antimicrobial peptides from reaching the cell membrane. The L- and D-enantiomers of the antimicrobial peptide GL13K were tested against the Gram-positive bacteria Enterococcus faecalis and Streptococcus gordonii to understand the role of bacterial proteases and cell wall modifications in bacterial resistance. GL13K was derived from the human salivary protein BPIFA2. Minimal inhibitory concentrations were determined by broth dilution and a serial assay used to determine bacterial resistance. Peptide degradation was determined in a bioassay utilizing a luminescent strain of Pseudomonas aeruginosa to detect peptide activity. Autolysis and D-alanylation-deficient strains of E. faecalis and S. gordonii were tested in autolysis assays and peptide activity assays. E. faecalis protease inactivated L-GL13K but not D-GL13K, whereas autolysis did not affect peptide activity. Indeed, the D-enantiomer appeared to kill the bacteria prior to initiation of autolysis. D-alanylation mutants were killed by L-GL13K whereas this modification did not affect killing by D-GL13K. The mutants regained resistance to L-GL13K whereas bacteria did not gain resistance to D-GL13K after repeated treatment with the peptides. D-alanylation affected the hydrophobicity of bacterial cells but hydrophobicity alone did not affect GL13K activity. D-GL13K evades two resistance mechanisms in Gram-positive bacteria without giving rise to substantial new resistance. D-GL13K exhibits attractive properties for further antibiotic development.
Collapse
Affiliation(s)
- Helmut Hirt
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Jeffrey W. Hall
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Elliot Larson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Antimicrobial Peptides for Topical Treatment of Osteomyelitis and Implant-Related Infections: Study in the Spongy Bone. Pharmaceuticals (Basel) 2018; 11:ph11010020. [PMID: 29462909 PMCID: PMC5874716 DOI: 10.3390/ph11010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022] Open
Abstract
We examined the benefits of short linear α-helical antimicrobial peptides (AMPs) invented in our laboratory for treating bone infection and preventing microbial biofilm formation on model implants due to causative microorganisms of osteomyelitis. For this purpose, we introduced a model of induced osteomyelitis that utilizes human femur heads obtained from the hospital after their replacement with artificial prostheses. We found that the focus of the infection set up in the spongy part of this bone treated with AMP-loaded calcium phosphate cement was eradicated much more effectively than was the focus treated with antibiotics such as vancomycin or gentamicin loaded into the same cement. This contradicts the minimum inhibitory concentrations (MIC) values of AMPs and antibiotics against some bacterial strains obtained in standard in vitro assays. The formation of microbial biofilm on implants made from poly(methylmethacrylate)-based bone cement loaded with AMP was evaluated after the implants’ removal from the infected bone sample. AMPs loaded in such model implants prevented microbial adhesion and subsequent formation of bacterial biofilm on their surface. Biofilms did form, on the other hand, on control implants made from the plain cement when these were implanted into the same infected bone sample. These results of the experiments performed in human bone tissue highlight the clinical potential of antimicrobial peptides for use in treating and preventing osteomyelitis caused by resistant pathogens.
Collapse
|
16
|
Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9650-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|