1
|
Luo Y, Li J, Wu S, Jia W, Zhou Z, Liu M, Jiang F, Huang T, Shen X, Li Y, He F, Cheng R. Oral supplementation with Bifidobacterium longum ssp. infantis and 2'-fucosyllactose revives gut microbiota perturbation and intestinal and immune developmental delay following early-life antibiotic challenge in BALB/c mice. J Dairy Sci 2025; 108:101-118. [PMID: 39477061 DOI: 10.3168/jds.2024-24912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
Probiotics and synbiotics can mitigate the negative health consequences of early-life antibiotic exposure. This study aimed to determine whether supplementation with Bifidobacterium longum ssp. infantis 79 (B79) or synbiotics composed of B79 and 2'-fucosyllactose (2'-FL) could mitigate the negative impact of ceftriaxone exposure in early life. We found that antibiotic-treated mice exhibited lower BW, crypt depth, short-chain fatty acid content, and α-diversity indices at weaning, whereas they had increased relative abundance of opportunistic pathogens (such as Enterococcus and Staphylococcus) and decreased relative abundance of intestinal commensal bacteria. Supplementation with B79 and 2'-FL revived these antibiotic-induced negative effects and reduced the mRNA expression of IL-6, IL-12p40, and TNF-α in the spleen at weaning. Moreover, B79 and 2'-FL supplementation persistently improved crypt depth, propionic acid synthesis, and IgG and secretory IgA production, as well as revived the gut microbiota structure and composition in adulthood. Overall, our study suggests that early-life supplementation with B79 alone or in combination with 2'-FL can mitigate ceftriaxone-induced negative effects on the gut microbiota and intestinal and immune development of mice, and these improvements can partially last into adulthood.
Collapse
Affiliation(s)
- Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhimo Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meixun Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengling Jiang
- Department of Maternal and Child Health, Sichuan Tianfu New Area Public Health Center, Chengdu 610213, Sichuan, China
| | - Ting Huang
- Department of Maternal and Child Health, Sichuan Tianfu New Area Public Health Center, Chengdu 610213, Sichuan, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Yan Q, Li X, Zhou X, Chen W, Tian X, Wittayakun S, Paengkoum P, Tan Z. Macleaya cordata extract exhibits some potential as a surrogate antibiotic by improving gastrointestinal epithelial status and humoral response in goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:356-366. [PMID: 39290854 PMCID: PMC11406069 DOI: 10.1016/j.aninu.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 09/19/2024]
Abstract
Macleaya cordata extract (MCE) is a potential replacement for antibiotics. In the current study, effects of MCE on the gastrointestinal health and humoral responses of host animals were explored. A total of 30 weanling goats with similar body weight of 9.15 ± 1.36 kg were randomly allocated into three groups (n = 10 per group): control group (CON group, fed with a basal diet), antibiotic group (Abx group, fed with the basal diet supplemented with 0.18 g/d vancomycin and 0.36 g/d neomycin), and MCE group (fed with the basal diet supplemented with 5 g/d MCE), for three weeks. Results showed that antibiotic addition decreased the height and area of rumen papillae, ruminal mucosa Toll-like receptor 8 (TLR8), interleukin-8 (IL-8) and interleukin-1β (IL-1β) gene relative expression levels and microbial diversity, altered the volatile fatty acid (VFA) profile in the rumen, and increased monocytes amount and CD4+ T cells percentage in the peripheral blood (P < 0.05) compared to CON group. MCE addition increased the average daily gain, ileal villus height, villus height/crypt depth, and immunoglobulin M (IgM) content in the peripheral blood (P < 0.05) compared to the CON. Additionally, MCE addition decreased the proportion of isobutyric acid in the chyme of the ileum (P = 0.005) compared to the CON group. These results suggest that antibiotic supplementation may suppress the epithelial state and microbial diversity and fermentation in goats, but stimulate cellular response to maintain the growth performance of goats. MCE administration improved the epithelial state and humoral response to promote the growth performance in goats.
Collapse
Affiliation(s)
- Qiongxian Yan
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xilin Li
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaoling Zhou
- College of Animal Science, Tarim University, Alaer 843300, China
| | - Wenxun Chen
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Suntorn Wittayakun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Lampang 52000, Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zhiliang Tan
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
3
|
Zhu Z, Chen Q, Jiang G, Liang Y, Shen J, Wu J. The impact of gut microbial dysbiosis on the atrophy of the hippocampus and abnormal metabolism of N-acetyl aspartate in type 2 diabetic rats. Heliyon 2024; 10:e33152. [PMID: 38994099 PMCID: PMC11238125 DOI: 10.1016/j.heliyon.2024.e33152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale and objectives This study aimed to investigate the effect of intestinal dysbiosis on the hippocampal volume using proton magnetic resonance spectroscopy (1H-MRS) in a type 2 diabetes mellitus (T2DM) rat model. Materials and methods We established a T2DM animal model with high-fat diet and streptozotocin (HFD/STZ) administration to Sprague-Dawley rats. Short-term ceftriaxone sodium administration was used to establish a T2DM intestinal dysbiosis (T2DM-ID) model. After establishing the model, fecal microbiota were detected using 16S rRNA sequencing. The models were then subjected to magnetic resonance imaging (MRI). Associations between MRI findings and fecal microbiota were evaluated. Results Magnetic resonance imaging (MRI) showed that the bilateral hippocampal voxel value and N-acetylaspartate (NAA) level were lower in the experimental group than in the normal control (NC) group (p < 0.05) and that NAA/creatine in the left hippocampus was lower in the T2DM-ID group than in the NC group (p < 0.05). α and β diversities differed significantly among the three groups (p < 0.05). In the T2DM and T2DM-ID groups, the abundance of bacteria in the phylum Proteobacteria increased significantly, whereas that of bacteria in the phylum Firmicutes decreased. The relative abundance of Actinobacteria was significantly increased in the T2DM-ID group. The Chao1 index (r = 0.33, p < 0.05) and relative abundance of Firmicutes (r = 0.48, p < 0.05) were positively correlated with the left hippocampal voxel, while the relative abundance of Proteobacteria was negatively correlated with the left hippocampal voxel (r = -0.44, p < 0.05). NAA levels, bilateral hippocampal voxels, and the relative abundance of Lactobacillus, Clostridia_UCG_014, and other genera were correlated positively (r = 0.34-0.70, p < 0.05). NAA levels and the relative abundances of Blautia and Enterococcus were correlated negatively (r = -0.32-0.44, p < 0.05). Conclusion The T2DM-ID rat model showed hippocampal volume atrophy and decreased levels of neuronal markers (such as NAA). The abnormal content of specific gut microorganisms may be a key biomarker of T2DM-associated brain damage.
Collapse
Affiliation(s)
- Zhenyang Zhu
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, China
| | - Qingqing Chen
- Department of Radiology, Yiwu Central Hospital, Yiwu, China
| | - Gege Jiang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yuan Liang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqin, China
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
4
|
Xiao Q, Chen B, Zhu Z, Yang T, Tao E, Hu C, Zheng W, Tang W, Shu X, Jiang M. Alterations in the Fecal Microbiota Composition in Pediatric Acute Diarrhea: A Cross-Sectional and Comparative Study of Viral and Bacterial Enteritis. Infect Drug Resist 2023; 16:5473-5483. [PMID: 37638073 PMCID: PMC10456034 DOI: 10.2147/idr.s410720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/12/2023] [Indexed: 08/29/2023] Open
Abstract
Objective To examine the association between the fecal microbiota of acute diarrhea in children and provide gut microbiota information related the acute diarrhea with rotavirus. Patients and Methods Children with acute diarrhea aged 3-60 months were selected for the study. Routine stool examination was performed, and stool samples were collected and stored at -80 °C until further analysis. Fecal microbial DNA was extracted, and DNA concentration and quality were detected. PCR amplification and 16S rDNA high-throughput sequencing analysis using the Illumina MiSeq platform were performed, and intestinal flora was statistically analyzed. Results Children with acute diarrhea exhibited gut microbial dysbiosis. Lower microbial diversity and richness were observed in the viral enteritis and bacterial enteritis groups than in the control group. Composition of the microbiota in acute diarrhea differed from that in the control group. The Bacteroidetes/Firmicutes dramatically decreased in the viral enteritis and bacterial enteritis groups. However, the relative abundance of Proteobacteria and Fusobacteria increased, especially in the bacterial enteritis group. In addition, the relative abundance of Actinobacteria had dramatically increased in the viral enteritis group. According to the Kyoto Encyclopedia of Genes and Genomes map analysis, the membrane transport dysfunction was caused by rotavirus infection, while the membrane transport dysfunction was more evident in bacterial infection. Conclusion Acute diarrhea infections cause fecal microbiota dysbiosis in children. Changes in fecal microflora in children suggest that the regulation of intestinal flora in children with acute diarrhea should be strengthened.
Collapse
Affiliation(s)
- Qiulin Xiao
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
- Department of Gastroenterology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Bo Chen
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Zhenya Zhu
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Ting Yang
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Enfu Tao
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Chenmin Hu
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Wei Zheng
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Weihong Tang
- Department of Gastroenterology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xiaoli Shu
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Mizu Jiang
- Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| |
Collapse
|
5
|
DiPalma MP, Blattman JN. The impact of microbiome dysbiosis on T cell function within the tumor microenvironment (TME). Front Cell Dev Biol 2023; 11:1141215. [PMID: 37009485 PMCID: PMC10063789 DOI: 10.3389/fcell.2023.1141215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Insights into the effect of the microbiome’s composition on immune cell function have recently been discerned and further characterized. Microbiome dysbiosis can result in functional alterations across immune cells, including those required for innate and adaptive immune responses to malignancies and immunotherapy treatment. Dysbiosis can yield changes in or elimination of metabolite secretions, such as short-chain fatty acids (SCFAs), from certain bacterial species that are believed to impact proper immune cell function. Such alterations within the tumor microenvironment (TME) can significantly affect T cell function and survival necessary for eliminating cancerous cells. Understanding these effects is essential to improve the immune system’s ability to fight malignancies and the subsequent efficacy of immunotherapies that rely on T cells. In this review, we assess typical T cell response to malignancies, classify the known impact of the microbiome and particular metabolites on T cells, discuss how dysbiosis can affect their function in the TME then further describe the impact of the microbiome on T cell-based immunotherapy treatment, with an emphasis on recent developments in the field. Understanding the impact of dysbiosis on T cell function within the TME can carry substantial implications for the design of immunotherapy treatments and further our understanding of factors that could impact how the immune system combats malignancies.
Collapse
Affiliation(s)
- Michelle P. DiPalma
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
| | - Joseph N. Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
- *Correspondence: Joseph N. Blattman,
| |
Collapse
|
6
|
Cheng R, Zhang Y, Yang Y, Ren L, Li J, Wang Y, Shen X, He F. Maternal gestational Bifidobacterium bifidum TMC3115 treatment shapes construction of offspring gut microbiota and development of immune system and induces immune tolerance to food allergen. Front Cell Infect Microbiol 2022; 12:1045109. [PMID: 36452299 PMCID: PMC9701730 DOI: 10.3389/fcimb.2022.1045109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2024] Open
Abstract
In this study we aimed to determine whether treatment with maternal Bifidobacterium bifidum TMC3115 could affect the composition of the gut microbiota and the development of the immune system and intestinal tract of offspring, and protect the offspring from IgE-mediated allergic disease. Pregnant BALB/c mice were gavaged with TMC3115 until delivery. Offspring were sensitized with ovalbumin from postnatal days 21 to 49. After maternal treatment with TMC3115, the microbiota of the offspring's feces, intestinal contents, and stomach contents (a proxy for breast milk) at the newborn and weaning stages exhibited the most change, and levels of immunoglobulin in the sera and stomach contents and of splenic cytokines, as well as the mRNA levels of colonic intestinal development indicators were all significantly altered in offspring at different stages. After sensitization with ovalbumin, there were no significant changes in the levels of serum IgE or ovalbumin-specific IgE/IgG1 in the TMC3115 group; however, IgM, the expression of intestinal development indicators, and the production of fecal short chain fatty acid (SCFA) were significantly increased, as were the relative abundances of Lactobacillus and the Lachnospiraceae NK4A136 group. Our results suggested that maternal treatment with TMC3115 could have a profound modulatory effect on the composition of the gut microbiota and the development of the immune system and intestinal tissue in offspring at different stages of development, and may induce immune tolerance to allergens in ovalbumin-stimulated offspring by modulating the gut microbiota and SCFA production.
Collapse
Affiliation(s)
- Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Ren
- Department of Research and Development, Hebei Inatural Bio-tech Co., Ltd, Shijiazhuang, Hebei, China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimei Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Mumu M, Das A, Emran TB, Mitra S, Islam F, Roy A, Karim MM, Das R, Park MN, Chandran D, Sharma R, Khandaker MU, Idris AM, Kim B. Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022; 13:929442. [PMID: 35983376 PMCID: PMC9379326 DOI: 10.3389/fphar.2022.929442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (FX) is a special carotenoid having an allenic bond in its structure. FX is extracted from a variety of algae and edible seaweeds. It has been proved to contain numerous health benefits and preventive effects against diseases like diabetes, obesity, liver cirrhosis, malignant cancer, etc. Thus, FX can be used as a potent source of both pharmacological and nutritional ingredient to prevent infectious diseases. In this review, we gathered the information regarding the current findings on antimicrobial, antioxidant, anti-inflammatory, skin protective, anti-obesity, antidiabetic, hepatoprotective, and other properties of FX including its bioavailability and stability characteristics. This review aims to assist further biochemical studies in order to develop further pharmaceutical assets and nutritional products in combination with FX and its various metabolites.
Collapse
Affiliation(s)
- Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Md. Mobarak Karim
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rajib Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Bonglee Kim
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
8
|
Doroftei B, Ilie OD, Diaconu R, Hutanu D, Stoian I, Ilea C. An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression. Diagnostics (Basel) 2022; 12:diagnostics12071576. [PMID: 35885482 PMCID: PMC9315700 DOI: 10.3390/diagnostics12071576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Antenatal depression (AND) and post-partum depression (PPD) are long-term debilitating psychiatric disorders that significantly influence the composition of the gut flora of mothers and infants that starts from the intrauterine life. Not only does bacterial ratio shift impact the immune system, but it also increases the risk of potentially life-threatening disorders. Material and Methods: Therefore, we conducted a narrative mini-review aiming to gather all evidence published between 2018–2022 regarding microflora changes in all three stages of pregnancy. Results: We initially identified 47 potentially eligible studies, from which only 7 strictly report translocations; 3 were conducted on rodent models and 4 on human patients. The remaining studies were divided based on their topic, precisely focused on how probiotics, breastfeeding, diet, antidepressants, exogenous stressors, and plant-derived compounds modulate in a bidirectional way upon behavior and microbiota. Almost imperatively, dysbacteriosis cause cognitive impairments, reflected by abnormal temperament and personality traits that last up until 2 years old. Thankfully, a distinct technique that involves fecal matter transfer between individuals has been perfected over the years and was successfully translated into clinical practice. It proved to be a reliable approach in diminishing functional non- and gastrointestinal deficiencies, but a clear link between depressive women’s gastrointestinal/vaginal microbiota and clinical outcomes following reproductive procedures is yet to be established. Another gut-dysbiosis-driving factor is antibiotics, known for their potential to trigger inflammation. Fortunately, the studies conducted on mice that lack microbiota offer, without a shadow of a doubt, insight. Conclusions: It can be concluded that the microbiota is a powerful organ, and its optimum functionality is crucial, likely being the missing puzzle piece in the etiopathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence:
| | - Roxana Diaconu
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Pârvan Avenue, No. 4, 300115 Timisoara, Romania;
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
| |
Collapse
|
9
|
Li J, Pu F, Peng C, Wang Y, Zhang Y, Wu S, Wang S, Shen X, Cheng R, He F. Antibiotic cocktail-induced gut microbiota depletion in different stages could cause host cognitive impairment and emotional disorders in adulthood in different manners. Neurobiol Dis 2022; 170:105757. [PMID: 35588989 DOI: 10.1016/j.nbd.2022.105757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/23/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota depletion may result in cognitive impairment and emotional disorder. This study aimed to determine the possible association between host gut microbiota, cognitive function, and emotion in various life stages and its related underlying mechanisms. Seventy-five neonatal mice were randomly divided into five groups (n = 15 per group). Mice in the vehicle group were administered distilled water from birth to death, and those in the last four groups were administered antibiotic cocktail from birth to death, from birth to postnatal day (PND) 21 (infancy), from PND 21 to 56 (adolescence), and from PND 57 to 84 (adulthood), respectively. Antibiotic exposure consistently altered the gut microbiota composition and decreased the diversity of gut microbiota. Proteobacteria were the predominant bacteria instead of Firmicutes and Bacteroidetes after antibiotic exposure in different life stages. Long-term and infant gut microbiota depletion resulted in anxiety- and depression-like behaviors, memory impairments, and increased expression of γ-aminobutyric acid type A receptor α1 of adult mice. Long-term antibiotic exposure also significantly decreased serum interleukin (IL)-1β, IL-10, and corticosterone of adult mice. Gut microbiota depletion in adolescence resulted in anxiety-like behaviors, short-term memory decline, decreased serum interferon-γ (IFN-γ), mRNA expression of 5-hydroxytryptamine receptor 1A, and neuropeptide Y receptor Y2 in the prefrontal cortex of adult mice. Antibiotic exposure in adulthood damaged short-term memory and decreased serum IL-10, IFN-γ, and increased γ-aminobutyric acid type B receptor 1 mRNA expression of adult mice. These results suggest that antibiotic-induced gut microbiota depletion in the long term and infancy resulted in the most severe cognitive and emotional disorders followed by depletion in adolescence and adulthood. These results also suggest that gut microbes could influence host cognitive function and emotion in a life stage-dependent manner by affecting the function of the immune system, hypothalamic-pituitary-adrenal axis, and the expression of neurochemicals in the brain.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Fangfang Pu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chenrui Peng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Yimei Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Silu Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China.
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, PR China.
| |
Collapse
|
10
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1218-1227. [DOI: 10.1093/jac/dkac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 11/14/2022] Open
|
11
|
Li JT, Wei YW, Wang MY, Yan CX, Ren X, Fu XJ. Antibacterial Activity Prediction Model of Traditional Chinese Medicine Based on Combined Data-Driven Approach and Machine Learning Algorithm: Constructed and Validated. Front Microbiol 2021; 12:763498. [PMID: 34880839 PMCID: PMC8645695 DOI: 10.3389/fmicb.2021.763498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicines (TCMs), as a unique natural medicine resource, were used to prevent and treat bacterial diseases in China with a long history. To provide a prediction model of screening antibacterial TCMs for the design and discovery of novel antibacterial agents, the literature about antibacterial TCMs in the China National Knowledge Infrastructure (CNKI) and Web of Science database was retrieved. The data were extracted and standardized. A total of 28,786 pieces of data from 904 antibacterial TCMs were collected. The data of plant medicine were the most numerous. The result of association rules mining showed a high correlation between antibacterial activity with cold nature, bitter and sour tastes, hemostatic, and purging fire efficacies. Moreover, TCMs with antibacterial activity showed a specific aggregation in the phylogenetic tree; 92% of them came from Tracheophyta, of which 74% were mainly concentrated in rosids, asterids, Liliopsida, and Ranunculales. The prediction models of anti-Escherichia coli and anti-Staphylococcus aureus activity, with AUC values (the area under the ROC curve) of 77.5 and 80.0%, respectively, were constructed by the Neural Networks (NN) algorithm after Bagged Classification and Regression Tree (Bagged CART) and Linear Discriminant Analysis (LDA) selection. The in vitro experimental results showed the prediction accuracy of these two models was 75 and 60%, respectively. Four TCMs (Cirsii Japonici Herba Carbonisata, Changii Radix, Swertiae Herba, Callicarpae Formosanae Folium) were proposed for the first time to show antibacterial activity against E. coli and/or S. aureus. The results implied that the prediction model of antibacterial activity of TCMs based on properties and families showed certain prediction ability, which was of great significance to the screening of antibacterial TCMs and can be used to discover novel antibacterial agents.
Collapse
Affiliation(s)
- Jin-Tong Li
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China.,Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medical Science, Qingdao, China
| | - Ya-Wen Wei
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medical Science, Qingdao, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng-Yu Wang
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China.,Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medical Science, Qingdao, China
| | - Chun-Xiao Yan
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medical Science, Qingdao, China
| | - Xia Ren
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medical Science, Qingdao, China.,Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, China
| | - Xian-Jun Fu
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China.,Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medical Science, Qingdao, China.,Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Yang C, Qiao Z, Xu Z, Wang X, Deng Q, Chen W, Huang F. Algal Oil Rich in Docosahexaenoic Acid Alleviates Intestinal Inflammation Induced by Antibiotics Associated with the Modulation of the Gut Microbiome and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9124-9136. [PMID: 33900083 DOI: 10.1021/acs.jafc.0c07323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the effect of algal oil rich in docosahexaenoic acid on the mucosal injury with gut microbiota disorders caused by ceftriaxone sodium (CS) was evaluated. The results showed that algal oil treatment (500 mg kg-1 day-1) significantly reduced the levels of pro-inflammatory cytokines, including interleukin 6 , interleukin 1β, and tumor necrosis factor α, in the colon. Algal oil restored the CS-induced gut microbiota dysbiosis by elevating some short-chain-fatty-acid-producing bacteria, e.g., Ruminococcus and Blautia. The CS-induced metabolic disorder was also regulated by algal oil, which was characterized by the modulations of tryptophan metabolism, phospholipid metabolism, and bile acid metabolism. Our results suggested that supplementation of algal oil could alleviate inflammation and promote mucosal healing, which could be a functional food ingredient to protect aganist antibiotic-induced alteration of gut microbiota and metabolic dysbiosis.
Collapse
Affiliation(s)
- Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430060, People's Republic of China
| | - Zhenxia Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Xu Wang
- Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
13
|
Miao ZH, Zhou WX, Cheng RY, Liang HJ, Jiang FL, Shen X, Lu JH, Li M, He F. Dysbiosis of intestinal microbiota in early life aggravates high-fat diet induced dysmetabolism in adult mice. BMC Microbiol 2021; 21:209. [PMID: 34238228 PMCID: PMC8268513 DOI: 10.1186/s12866-021-02263-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Accumulating evidence have shown that the intestinal microbiota plays an important role in prevention of host obesity and metabolism disorders. Recent studies also demonstrate that early life is the key time for the colonization of intestinal microbes in host. However, there are few studies focusing on possible association between intestinal microbiota in the early life and metabolism in adulthood. Therefore the present study was conducted to examine whether the short term antibiotic and/or probiotic exposure in early life could affect intestinal microbes and their possible long term effects on host metabolism. RESULTS A high-fat diet resulted in glucose and lipid metabolism disorders with higher levels of visceral fat rate, insulin-resistance indices, and leptin. Exposure to ceftriaxone in early life aggravated the negative influences of a high-fat diet on mouse physiology. Orally fed TMC3115 protected mice, especially those who had received treatment throughout the whole study, from damage due to a high-fat diet, such as increases in levels of fasting blood glucose and serum levels of insulin, leptin, and IR indices. Exposure to ceftriaxone during the first 2 weeks of life was linked to dysbiosis of the fecal microbiota with a significant decrease in the species richness and diversity. However, the influence of orally fed ceftriaxone on the fecal microbiota was limited to 12 weeks after the termination of treatment. Of note, at week 12 there were still some differences in the composition of intestinal microbiota between mice provided with high fat diet and antibiotic exposure and those only fed a high fat diet. CONCLUSIONS These results indicated that exposure to antibiotics, such as ceftriaxone, in early life may aggravate the negative influences of a high-fat diet on the physiology of the host animal. These results also suggest that the crosstalk between the host and their intestinal microbiota in early life may be more important than that in adulthood, even though the same intestinal microbes are present in adulthood.
Collapse
Affiliation(s)
- Z H Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - W X Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - R Y Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - H J Liang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - F L Jiang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - X Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China.
| | - J H Lu
- Basic Research and Development Center, Hebei Inatrual Bio-tech Co., Ltd, Shijiazhuang, Hebei, P. R. China
| | - M Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - F He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
14
|
Almugadam BS, Yang P, Tang L. Analysis of jejunum microbiota of HFD/STZ diabetic rats. Biomed Pharmacother 2021; 138:111094. [PMID: 34311521 DOI: 10.1016/j.biopha.2020.111094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Abstract
Currently, several studies propose that the dominant intestinal bacteria are core flora. Besides keeping the homeostasis of the intestinal environment, the intestinal microflora also plays a role in body metabolism, production of some vitamins, and control of barrier function. The study aimed to investigate the jejunum microbiota in diabetic rats as well as it's the relationship with Ceftriaxone sodium-mediated gut dysbiosis, diabetic parameters, and intestinal permeability. Thirty-two Wistar rats (Male) were enrolled and divided into four groups (A, B, C, and D; N = 8). Subsequently, T2DM was induced in C and D groups by HFD/STZ model and then gut dysbiosis in B and D groups via intragastric administration of Ceftriaxone sodium for two weeks. The food-water intake, body weight, fasting blood glucose, plasma insulin, HOMA-IR, intestinal permeability, and jejunum microbiota and it's histology were investigated. In this study, T2DM was associated with a significant decrease in the richness and diversity of jejunum microbiota, elevation in the intestinal permeability, and higher abundance of some opportunistic pathogens. Ceftriaxone sodium-induced gut dysbiosis declined food-water intake, damagedthe villi of jejunum tissue, increased intestinal permeability, and affected the diversity of jejunum microbiota. In diabetic rats, Ceftriaxone sodium-mediated gut dysbiosis also declined the abundance of someSCFAs bacteria and raised the abundant of some opportunistic bacteria such as Staphylococcus_sciuri. Interestingly, we found that several bacteria were negatively correlated with HOMA-IR, fasting blood glucose, body weight, and intestinal permeability. Overall, the study highlighted the jejunum microflora alterations in HFD/STZ diabetic rats and assessed the effect of Ceftriaxone sodium-induced gut dysbiosis on diabetic parameters, jejunum microbiota and histology, and intestinal permeability, which are of potential for further studies.
Collapse
Affiliation(s)
- Babiker Saad Almugadam
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; Department of Microbiology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, White Nile State, Sudan.
| | - Peng Yang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
15
|
Cheng R, Guo J, Zhang Y, Cheng G, Qian W, Wan C, Li M, Marotta F, Shen X, He F. Impacts of ceftriaxone exposure during pregnancy on maternal gut and placental microbiota and its influence on maternal and offspring immunity in mice. Exp Anim 2021; 70:203-217. [PMID: 33268669 PMCID: PMC8150239 DOI: 10.1538/expanim.20-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the association between microbiota found in the maternal gut and placenta, and whether ceftriaxone exposure during pregnancy could alter these microbiota, and consequently affect the immunity of the mothers and their offspring. The microbiota in the feces and placenta of the dams were comprehensively analyzed using16S rRNA sequencing. Furthermore, viable bacteria in the placentas and blood of pups were also isolated by plate cultivation then taxonomically identified in detail by clone sequencing. Serum cytokines collected from dams and pups were quantitatively profiled using Luminex. The spleen organ index of dams was significantly lower and the offspring serum interleukin-6 levels were significantly higher in ceftriaxone-treated mice compared with the control group. The maternal fecal microbiota community was drastically altered in ceftriaxone-treated mice with significantly decreased diversity, depletion of Bacteroidetes and the blooming of Tenericutes. However, the placenta microbiota was dominated by Proteobacteria especially characteristically by Ralstonia, which was distinct from the maternal gut microbiota, regardless of whether ceftriaxone treatment or not. Viable bacteria have been found in placenta and blood cultures. These results indicated that ceftriaxone exposure in pregnancy could dramatically alter maternal intestinal microbiota, which affected the immunity of the mothers and their offspring at least partly, characteristically by enhanced pro-inflammatory responses. This study also indicated that the placenta might harbor its own microbes and the microbes were distinct from maternal gut microbiota, which may not be affected by oral administration of ceftriaxone during pregnancy.
Collapse
Affiliation(s)
- Ruyue Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Jiawen Guo
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Yujie Zhang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Guo Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Wei Qian
- By-health Co. Ltd., No. 3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663 Guangzhou, P.R. China
| | - ChaoMin Wan
- Department of Pediatrics of Western China Second Hospital of Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, 610041, Chengdu, Sichuan, P.R. China
| | - Ming Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Francesco Marotta
- ReGenera Research Group for and Gender Healthy Aging Unit, Montenapoleone Medical Center, Aging Intervention Corso Matteotti, 1/A, 20121 Milan, Italy
| | - Xi Shen
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
16
|
Antibiotics Modulate Intestinal Regeneration. BIOLOGY 2021; 10:biology10030236. [PMID: 33808600 PMCID: PMC8003396 DOI: 10.3390/biology10030236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Simple Summary The impact of the microbial community on host’s biological functions has uncovered the potential outcomes of antibiotics on host physiology, introducing the caveats of the antibiotic usage. Within animals, the digestive function is closely related to the microorganisms that inhabit this organ. The proper maintenance of the digestive system requires constant regeneration. These processes vary from self-renewal of some cells or tissues in some species to the complete regeneration of the organ in others. Whether antibiotics influence digestive organ regeneration remains unknown. We employ the sea cucumber, Holothuria glaberrima, for its capacity to regenerate the whole intestine after ejection from its internal cavity. We explored the antibiotics’ effects on several intestinal regeneration processes. In parallel, we studied the effect of antibiotics on the animals’ survival, toxicity, and gut bacteria growth. Our results show that tested antibiotics perturbed key cellular processes that occur during intestinal regeneration. Moreover, this happens at doses that inhibited bacteria growth but did not alter holothurian’s metabolic activity. We propose that antibiotics can perturb the cellular events of intestinal regeneration via their impact on the microbiota. These results highlight H. glaberrima as a promising model to study the importance of the microbiota during organ regeneration. Abstract The increased antibiotics usage in biomedical and agricultural settings has been well documented. Antibiotics have now been shown to exert effects outside their purposive use, including effects on physiological and developmental processes. We explored the effect of various antibiotics on intestinal regeneration in the sea cucumber Holothuria glaberrima. For this, holothurians were eviscerated and left to regenerate for 10 days in seawater with different penicillin/streptomycin-based cocktails (100 µg/mL PS) including: 100 µg/mL kanamycin (KPS), 5 µg/mL vancomycin (VPS), and 4 µg/mL (E4PS) or 20 µg/mL (E20PS) erythromycin. Immunohistological and histochemical analyses were performed to analyze regenerative processes, including rudiment size, extracellular matrix (ECM) remodeling, cell proliferation, and muscle dedifferentiation. A reduction in muscle dedifferentiation was observed in all antibiotic-treated animals. ECM remodeling was decreased by VPS, E4PS, and E20PS treatments. In addition, organisms subjected to E20PS displayed a significant reduction in the size of their regenerating rudiments while VPS exposure altered cell proliferation. MTT assays were used to discard the possibility that the antibiotics directly affect holothurian metabolic activity while bacterial cultures were used to test antibiotic effects on holothurian enteric microbiota. Our results demonstrate a negative effect on intestinal regeneration and strongly suggest that these effects are due to alterations in the microbial community.
Collapse
|
17
|
Effects of Antibiotic Treatment with Piperacillin/Tazobactam versus Ceftriaxone on the Composition of the Murine Gut Microbiota. Antimicrob Agents Chemother 2021; 65:AAC.01504-20. [PMID: 33168609 DOI: 10.1128/aac.01504-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Effective antimicrobial stewardship requires a better understanding of the impact of different antibiotics on the gut microflora. Studies with humans are confounded by large interindividual variability and difficulty in identifying control cohorts. However, controlled murine models can provide valuable information. In this study, we examined the impact of a penicillin-like antibiotic (piperacillin-tazobactam [TZP]) or a third-generation cephalosporin (ceftriaxone [CRO]) on the murine gut microbiota by analysis of changes in fecal microbiome composition by 16S rRNA amplicon sequencing and standard microbiology. Resistance to colonization by multidrug-resistant Escherichia coli sequence type 131 (ST131) and Klebsiella pneumoniae ST258 was also tested. Changes in microbiome composition and a significant (P < 0.05) decrease in diversity occurred in all treated mice, but dysbiosis was more marked and prolonged after CRO exposure, with a persistent rise in Proteobacteria Enterobacteriaceae blooms occurred in all antibiotic-treated mice, but for TZP, unlike CRO, these were significant only under direct antibiotic pressure. At the height of dysbiosis after antibiotic termination, the murine gut was highly susceptible to colonization with both multidrug-resistant enterobacterial pathogens. Cohabitation of treated mice with untreated individuals had a notable mitigating effect on dysbiosis of treated guts. The administration of a third-generation cephalosporin caused a more severe imbalance in the murine fecal microflora than that caused by a penicillin/β-lactam inhibitor combination with comparable activity against medically important virulent bacteria. At the height of dysbiosis, both antibiotic treatments equally led to microbial instability associated with loss of resistance to gut colonization by antibiotic-resistant pathogens.
Collapse
|
18
|
Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y, Yang H, Li M, Zhou L, Tao C. Long-Term Exposure to Ceftriaxone Sodium Induces Alteration of Gut Microbiota Accompanied by Abnormal Behaviors in Mice. Front Cell Infect Microbiol 2020; 10:258. [PMID: 32714875 PMCID: PMC7344183 DOI: 10.3389/fcimb.2020.00258] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Growing evidence points out that a disturbance of gut microbiota may also disturb the gut–brain communication. However, it is not clear to what extent the alteration of microbiota composition can modulate brain function, affecting host behaviors. Here, we investigated the effects of gut microbiota depletion on emotional behaviors. Methods: Mice in the experimental group were orally administered ceftriaxone sodium solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test were employed for the neurobehavioral assessment of the mice. Fecal samples were collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry method was used for the detection of brain-derived neurotrophic factor (BDNF) and c-Fos protein. Results: The gut microbiota for antibiotic-treated mice showed lower richness and diversity compared with normal controls. This effect was accompanied by increased anxiety-like, depression-like, and aggressive behaviors. We found these changes to be possibly associated with a dysregulation of the immune system, abnormal activity of the hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry. Conclusions: The findings demonstrate the indispensable role of microbiota in the gut–brain communication and suggest that the absence of conventional gut microbiota could affect the nervous system, influencing brain function.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Mu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingjing Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Zhou
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Ojima MN, Gotoh A, Takada H, Odamaki T, Xiao JZ, Katoh T, Katayama T. Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance Without Recovering Gut Microbiome Diversity in Mice. Front Microbiol 2020; 11:1349. [PMID: 32625197 PMCID: PMC7314955 DOI: 10.3389/fmicb.2020.01349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a dynamic community that significantly affects host health; it is frequently disturbed by medications such as antibiotics. Recently, probiotics have been proposed as a remedy for antibiotic-induced dysbiosis, but the efficacy of such treatments remains uncertain. Thus, the effect of specific antibiotic-probiotic combinations on the gut microbiome and host health warrants further research. We tested the effect vancomycin, amoxicillin, and ciprofloxacin on mice. Antibiotic administration was followed by one of the following recovery treatments: Bifidobacterium bifidum JCM 1254 as a probiotic (PR); fecal transplant (FT); or natural recovery (NR). Each antibiotic administration and recovery treatment was repeated three times over 9 weeks. We used the Shannon Index and Chao1 Index to determine gut microbiome diversity and assessed recovery by quantifying the magnitude of microbial shift using the Bray-Curtis Index of Dissimilarity. We determined the community composition by sequencing the V3-V4 regions of the 16S ribosomal RNA gene. To assess host health, we measured body weight and cecum weight, as well as mRNA expression of inflammation-related genes by reverse-transcription quantitative PCR. Our results show that community response varied by the type of antibiotic used, with vancomycin having the most significant effects. As a result, the effect of probiotics and fecal transplants also varied by antibiotic type. For vancomycin, the first antibiotic disturbance substantially increased the relative abundance of inflammatory species in the phylum Proteobacteria, such as Proteus, but the effect of subsequent disturbances was less pronounced, suggesting that the gut microbiome is affected by past disturbance events. Furthermore, although gut microbiome diversity did not recover, probiotic supplementation was effective in limiting cecum size enlargement and colonic inflammation caused by vancomycin. However, for amoxicillin and ciprofloxacin, the relative abundances of proinflammatory species were not greatly affected, and consequently, the effect of probiotic supplementation on community structure, cecum weight, and expression of inflammation-related genes was comparatively negligible. These results indicate that probiotic supplementation is effective, but only when antibiotics cause proinflammatory species-induced gut inflammation, suggesting that the necessity of probiotic supplementation is strongly influenced by the type of disturbance introduced to the community.
Collapse
Affiliation(s)
- Miriam N. Ojima
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aina Gotoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiromi Takada
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Zhang Y, Pu F, Cheng R, Guo J, Shen X, Wang S, Zhu H, Zhang X, Cheng G, Li M, He F. Effect of heat-inactivated Lactobacillus paracasei N1115 on microbiota and gut-brain axis related molecules. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:89-99. [PMID: 32775126 PMCID: PMC7392912 DOI: 10.12938/bmfh.2019-025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/31/2020] [Indexed: 02/05/2023]
Abstract
This study was conducted to evaluate the possibility of using heated-inactivated lactobacilli to protect neonates from harmful effects of antibiotics. Thirty neonate mice were randomly divided into three groups of ten and treated with either sterilized water, an antibiotics cocktail, or the same antibiotics plus heat-inactivated Lactobacillus paracasei N1115. The administration of antibiotics significantly increased the serum interleukin-6 (IL-6) levels of the tested mice (p<0.01, p<0.001, respectively) and decreased their serum corticosterone levels (p<0.01, p<0.01, respectively). The colonic crypts were significantly less deep in mice treated with antibiotics and with antibiotics plus N1115 (p<0.05). Antibiotics caused significantly abnormal expression of brain-derived neurotrophic factor (BDNF), γ-aminobutyric acid type A receptor α1 (GABAAα1), γ-aminobutyric acid type B receptor1 (GABAb1), and 5-hydroxytryptamine receptor1A (5-HT1A) in the hippocampus (p<0.05, p<0.01, p<0.01, respectively) and of GABAAα1 in the prefrontal cortex (p<0.01). Heat-inactivated lactobacilli alleviated these abnormal changes. Antibiotics greatly decreased the Shannon index of the fecal microbiota and significantly increased the number of Proteobacteria (p<0.001), with fewer Bacteroidetes and Firmicutes (p<0.05). Antibiotics not only cause microbiota dysbiosis, but also cause abnormal changes in important molecules in the gut-brain axis. All these abnormal changes are alleviated by heat-inactivated L. paracasei N1115. This indicates that heat-inactivated L. paracasei N1115 has a certain improvement effect on changes caused by antibiotics.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Fangfang Pu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China.,West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ruyue Cheng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jiawen Guo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xi Shen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shijie Wang
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, P. R. China
| | - Hong Zhu
- Shijiazhuang Junlebao Dairy Co. Ltd., Shijiazhuang, Hebei, P. R. China
| | - Xiao Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ming Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Fang He
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
21
|
Miao Z, Cheng R, Zhang Y, Liang H, Jiang F, Shen X, Chen G, Zhang Q, He F, Li M. Antibiotics can cause weight loss by impairing gut microbiota in mice and the potent benefits of lactobacilli. Biosci Biotechnol Biochem 2020; 84:411-420. [PMID: 31661358 DOI: 10.1080/09168451.2019.1676696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT
This study assessed whether antibiotics could alter gut microbiota to affect host growth and the possibility of alleviation by lactobacilli. We divided four-week-old BABL/c mice into control (Ctrl), antibiotic exposure (Abx), Lactobacillus plantarum PC-170 (PC), and Lactobacillus rhamnosus GG (LGG) group and the Abx, LGG, and PC group received an one-week antibiotic/antibiotic + probiotic treatment. The fecal microbiota and the expression of splenic cytokines were determined. Following the ceftriaxone treatment, the body weight gain of Abx was delayed compared with others. The ceftriaxone treatment significantly decreased the alpha-diversity of the fecal microbiota and altered the fecal microbiota but LGG and PC can partly alleviate the effect. At the end of the study, the microbial community of LGG and PC group were more similar to Ctrl compared with Abx group. The results indicated that ceftriaxone could significantly alter intestinal microbiota. Lactobacilli might alleviate the side effects of antibiotics by stabilizing the intestinal microbiota.
Collapse
Affiliation(s)
- Zhonghua Miao
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Ruyue Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Yujie Zhang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Huijing Liang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Fengling Jiang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Shen
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Gong Chen
- Sichuan Acadmey of Food and Fermentation Industries, Chengdu, Sichuan, PR China
| | - Qisheng Zhang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Chengdu, Sichuan, PR China
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Ming Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
22
|
Guo JW, Wu XN, Cheng RY, Shen X, Cheng G, Yu LX, Li M, He F. Oral administration of vancomycin to neonatal mice could alter their immunity and allergic sensibility late in adulthood. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2019; 38:129-139. [PMID: 31763116 PMCID: PMC6856516 DOI: 10.12938/bmfh.19-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 11/28/2022]
Abstract
The prevalence of allergy has increased over the past decades, and this may be attributed in part to the intestinal microbiota dysfunction caused by antibiotics during early life. In this
study, we evaluated how vancomycin could impair the intestinal microbiota during early life and then, consequently, alter susceptibilities to allergic diseases and related immunity in late
adulthood. BALB/c (n=54) neonatal mice were used in this study. Mice in the vancomycin group were orally administered vancomycin for 21 days, while those in the allergy and control groups
were perfused with the same volume of saline solution. Then, mice in the allergy and vancomycin groups were immunized with intraperitoneal ovalbumin with alum. At postnatal day 21,
vancomycin significantly alter the fecal microbiota, with lower Bacteroidetes and Firmicutes counts and higher Proteobacteria counts. At
postnatal day 56, the Bacteroidetes count was still significantly lower in vancomycin-treated mice. The serum IgE level in the control group was significantly lower than
that in the vancomycin and allergy groups. The serum interleukin (IL)-6 level and the IL-4/interferon (IFN)-γ values were significantly higher in the vancomycin-treated mice, but the serum
IL-17A level was lower than that in the control group. These results indicate that modifications of the intestinal microbiota composition during early life may be, at least in part, the key
mechanism underlying the effect of vancomycin that influences the immune function of host animals in the adult stages.
Collapse
Affiliation(s)
- Jia Wen Guo
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xiao Na Wu
- West China Second Hospital, Sichuan University/West China Women's and Children's Hospital, 610041 Chengdu, Sichuan, China
| | - Ru Yue Cheng
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xi Shen
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Guo Cheng
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Lan Xiu Yu
- Green's Bioengineering (Shenzhen) Co., Ltd., 518105 Shenzhen, Guangdong, China
| | - Ming Li
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
23
|
Rosa CP, Pereira JA, Cristina de Melo Santos N, Brancaglion GA, Silva EN, Tagliati CA, Novaes RD, Corsetti PP, de Almeida LA. Vancomycin-induced gut dysbiosis during Pseudomonas aeruginosa pulmonary infection in a mice model. J Leukoc Biol 2019; 107:95-104. [PMID: 31682032 DOI: 10.1002/jlb.4ab0919-432r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common opportunistic pathogens causing respiratory infections in hospitals. Vancomycin, the antimicrobial agent usually used to treat bacterial nosocomial infections, is associated with gut dysbiosis. As a lung-gut immunologic axis has been described, this study aimed to evaluate both the immunologic and histopathologic effects on the lungs and the large intestine resulting from vancomycin-induced gut dysbiosis in the P. aeruginosa pneumonia murine model. Metagenomic analysis demonstrated that vancomycin-induced gut dysbiosis resulted in higher Proteobacteria and lower Bacteroidetes populations in feces. Given that gut dysbiosis could augment the proinflammatory status of the intestines leading to a variety of acute inflammatory diseases, bone marrow-derived macrophages were stimulated with cecal content from dysbiotic mice showing a higher expression of proinflammatory cytokines and lower expression of IL-10. Dysbiotic mice showed higher levels of viable bacteria in the lungs and spleen when acutely infected with P. aeruginosa, with more lung and cecal damage and increased IL-10 expression in bronchoalveolar lavage. The susceptible and tissue damage phenotype was reversed when dysbiotic mice received fecal microbiota transplantation. In spite of higher recruitment of CD11b+ cells in the lungs, there was no higher CD80+ expression, DC+ cell amounts or proinflammatory cytokine expression. Taken together, our results indicate that the bacterial community found in vancomycin-induced dysbiosis dysregulates the gut inflammatory status, influencing the lung-gut immunologic axis to favor increased opportunistic infections, for example, by P. aeruginosa.
Collapse
Affiliation(s)
- Caio Pupin Rosa
- Department of Microbiology and Immunology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Jéssica Assis Pereira
- Department of Microbiology and Immunology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Evandro Neves Silva
- Laboratory of Infectious and Chronic Diseases (LIDIC), José do Rosário Vellano University, Alfenas, Minas Gerais, Brazil
| | - Carlos Alberto Tagliati
- Laboratory of Toxicology (LabTox), Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Infectious and Chronic Diseases (LIDIC), José do Rosário Vellano University, Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
24
|
Alteration of GLP-1/GPR43 expression and gastrointestinal motility in dysbiotic mice treated with vancomycin. Sci Rep 2019; 9:4381. [PMID: 30867532 PMCID: PMC6416360 DOI: 10.1038/s41598-019-40978-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
Gut microbiota plays a pivotal role in various aspects of host physiology, including metabolism, gastrointestinal (GI) motility and hormonal secretion. In the present study, we investigated the effect of antibiotic-associated dysbiosis on metabolism and GI motility in relation to colonic expression of glucagon-like peptide-1 (GLP-1) and G protein coupled receptor (GPR)43. Specific pathogen-free (SPF) mice (ICR, 6 weeks old, female) were orally administered vancomycin (0.2 mg/ml) in drinking water for 7 days. In another experiment, germ-free (GF) mice (ICR, 6 weeks old, female) were subjected to oral fecal transplantation (FT) using a fecal bacterial suspension prepared from SPF mice that had received vancomycin treatment (FT-V) or one from untreated control SPF mice (FT-C). The gastrointestinal transit time (GITT) was measured by administration of carmine red (6% w/v) solution. The expression of GLP-1 and GPR43 was examined by immunohistochemistry and realtime RT-PCR, and the plasma GLP-1 level was measured by ELISA. In vancomycin-treated SPF mice, the diversity of the gut microbiota was significantly reduced and the abundance of Lactobacillus was markedly increased. Significant increases in body weight, cecum weight, plasma GLP-1 level and colonic GLP-1/GPR43 expression were also noted relative to the controls. These alterations were reproducible in GF mice with FT-V. Moreover, FT-V GF mice showed a significantly increased food intake and a significantly prolonged GITT in comparison with FT-C GF mice. Vancomycin-induced dysbiosis promotes body weight gain and prolongs GITT, accompanied by an increase of colonic GLP-1/GPR43 expression.
Collapse
|
25
|
Cheng R, Guo J, Pu F, Wan C, Shi L, Li H, Yang Y, Huang C, Li M, He F. Loading ceftriaxone, vancomycin, and Bifidobacteria bifidum TMC3115 to neonatal mice could differently and consequently affect intestinal microbiota and immunity in adulthood. Sci Rep 2019; 9:3254. [PMID: 30824845 PMCID: PMC6397183 DOI: 10.1038/s41598-018-35737-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated that antibiotics/or probiotics administration in early life play key roles on modulating intestinal microbiota and the alterations might cause long-lasting consequences both physiologically and immunologically. We investigated the effects of early life ceftriaxone, vancomycin and Bifidobacterium bifidum TMC3115 (TMC3115) treatment on intestinal microbiota and immunity both in neonates and adults even after termination of antibiotics exposure. We found that ceftriaxone and vancomycin, but not TMC3115, significantly altered the intestinal microbiota, serum total IgE level, and the morphology and function of the intestinal epithelium in the neonatal mice. In the adult stages, the diversity and composition of the intestinal microbiota were significantly different in the antibiotic-treated mice, and ceftriaxone-treated mice exhibited significantly higher serum total IgE and OVA-specific IgE levels. TMC3115 significantly mitigated the alteration of intestinal microbiota caused by ceftriaxone not vancomycin. Antibiotics and TMC3115 can differently modulate intestinal microbiota and SCFAs metabolism, affecting the development and function of the immunity and intestinal epithelium to different degrees in neonatal mice. Neonatal ceftriaxone-induced abnormal intestinal microbiota, immunity and epithelium could last to adulthood partly, which might be associated with the enhancement of host susceptibility to IgE-mediated allergies and related immune responses, TMC3115 may protect against the side effects of antibiotic treatment, at least partly.
Collapse
Affiliation(s)
- RuYue Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - JiaWen Guo
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - FangFang Pu
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - ChaoMin Wan
- Department of Pediatrics of Western China Second Hospital of Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, 610041, Chengdu, Sichuan, PR China
| | - Lei Shi
- Department of Clinical Nutrition, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - HuaWen Li
- Hebei Inatural Biotech Co., Ltd, 050000, Shijiazhuang, Hebei, PR China
| | - YuHong Yang
- Hebei Inatural Biotech Co., Ltd, 050000, Shijiazhuang, Hebei, PR China
| | - ChengYu Huang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Ming Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, 610041, Chengdu, Sichuan, PR China.
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
26
|
Khan TJ, Hasan MN, Azhar EI, Yasir M. Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.humic.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Inoue Y, Fukui H, Xu X, Ran Y, Tomita T, Oshima T, Watari J, Miwa H. Colonic M1 macrophage is associated with the prolongation of gastrointestinal motility and obesity in mice treated with vancomycin. Mol Med Rep 2019; 19:2591-2598. [PMID: 30720127 PMCID: PMC6423659 DOI: 10.3892/mmr.2019.9920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/28/2019] [Indexed: 11/07/2022] Open
Abstract
Gut microbiota plays a pivotal role in not only the gastrointestinal (GI) immune system but also GI motility and metabolism. Antibiotic treatments are likely to affect the gut flora and GI immune system, subsequently disturbing GI motility and body metabolism. In the present study, we investigated antibiotic-induced alterations of body metabolism and GI motility in association with the macrophage profile in the colon. Specific pathogen-free (SPF) mice (ICR; 6 weeks old; female) were orally administered vancomycin (0.2 mg/ml) in drinking water for 5 weeks, and subsequent changes in pathophysiology were observed. The expression of CD80 and CD163 was examined by immunohistochemistry and the expression of cytokines in colonic tissues was evaluated by reverse transcription-quantitative polymerase chain reaction. The gastrointestinal transit time (GITT) was measured by administration of carmine red (6% w/v) solution. In the vancomycin-treated SPF mice, significant increases in body weight, cecum weight and GITT were observed compared with the controls. The number of CD80-positive M1 macrophages and the expression of interferon-γ and interleukin-12 were significantly increased, whereas, the numbers of CD163-positive M2 macrophages in the mucosal and muscular layers were decreased in the colon of vancomycin-treated mice. GITT was positively correlated with the number of CD80-positive M1 macrophages in the colonic mucosa; however, was negatively correlated with the number of CD163-positive M2 macrophages in the mucosal and muscular layers. Therefore, it was suggested that antibiotic treatment affects body metabolism and GI motility, accompanied by alterations in macrophage polarization and cytokine profiles in the colon.
Collapse
Affiliation(s)
- Yoshihito Inoue
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Xin Xu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Ying Ran
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
28
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|