1
|
He X, He C, Hong W, Yang J, Wei X. Research progress in spike mutations of SARS-CoV-2 variants and vaccine development. Med Res Rev 2023. [PMID: 36929527 DOI: 10.1002/med.21941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 09/27/2022] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic can hardly end with the emergence of different variants over time. In the past 2 years, several variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), such as the Delta and Omicron variants, have emerged with higher transmissibility, immune evasion and drug resistance, leading to higher morbidity and mortality in the population. The prevalent variants of concern (VOCs) share several mutations on the spike that can affect virus characteristics, including transmissibility, antigenicity, and immune evasion. Increasing evidence has demonstrated that the neutralization capacity of sera from COVID-19 convalescent or vaccinated individuals is decreased against SARS-CoV-2 variants. Moreover, the vaccine effectiveness of current COVID-19 vaccines against SARS-CoV-2 VOCs is not as high as that against wild-type SARS-CoV-2. Therefore, more attention might be paid to how the mutations impact vaccine effectiveness. In this review, we summarized the current studies on the mutations of the SARS-CoV-2 spike, particularly of the receptor binding domain, to elaborate on how the mutations impact the infectivity, transmissibility and immune evasion of the virus. The effects of mutations in the SARS-CoV-2 spike on the current therapeutics were highlighted, and potential strategies for future vaccine development were suggested.
Collapse
Affiliation(s)
- Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Stancheva SG, Frömbling J, Sassu EL, Hennig-Pauka I, Ladinig A, Gerner W, Grunert T, Ehling-Schulz M. Proteomic and immunoproteomic insights into the exoproteome of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Microb Pathog 2022; 172:105759. [PMID: 36087692 DOI: 10.1016/j.micpath.2022.105759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae affects pig health status and the swine industry worldwide. Despite the extensive number of studies focused on A. pleuropneumoniae infection and vaccine development, a thorough analysis of the A. pleuropneumoniae exoproteome is still missing. Using a complementary approach of quantitative proteomics and immunoproteomics we gained an in-depth insight into the A. pleuropneumoniae serotype 2 exoproteome, which provides the basis for future functional studies. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 593 exoproteins, of which 104 were predicted to be virulence factors. The RTX toxins ApxIIA and ApxIIIA -were found to be the most abundant proteins in the A. pleuropneumoniae serotype 2 exoproteome. Furthermore, the ApxIVA toxin was one of the proteins showing the highest abundance, although ApxIVA is commonly assumed to be expressed exclusively in vivo. Our study revealed several antigens, including proteins with moonlight functions, such as the elongation factor (EF)-Tu, and proteins linked to specific metabolic traits, such as the maltodextrin-binding protein MalE, that warrant future functional characterization and might present potential targets for novel therapeutics and vaccines. Our Ig-classes specific serological proteome analysis (SERPA) approach allowed us to explore the development of the host humoral immune response over the course of the infection. These SERPAs pinpointed proteins that might play a key role in virulence and persistence and showed that the immune response to the different Apx toxins is distinct. For instance, our results indicate that the ApxIIIA toxin has properties of a thymus-independent antigen, which should be studied in more detail.
Collapse
Affiliation(s)
- Stelli G Stancheva
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Janna Frömbling
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Bakum, Germany
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tom Grunert
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
3
|
He C, Yang J, He X, Hong W, Lei H, Chen Z, Shen G, Yang L, Li J, Wang Z, Song X, Wang W, Lu G, Wei X. A bivalent recombinant vaccine targeting the S1 protein induces neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus. MedComm (Beijing) 2021; 2:430-441. [PMID: 34226895 PMCID: PMC8242662 DOI: 10.1002/mco2.72] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
The emerging variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in pandemic call for the urgent development of universal corona virus disease 2019 (COVID-19) vaccines which could be effective for both wild-type SARS-CoV-2 and mutant strains. In the current study, we formulated protein subunit vaccines with AS03 adjuvant and recombinant proteins of S1 subunit of SARS-CoV-2 (S1-WT) and S1 variant (K417N, E484K, N501Y, and D614G) subunit (S1-Mut), and immunized transgenic mice that express human angiotensin-converting enzyme 2 (hACE2). The S1 protein-specific antibody production and the neutralization capability for SARS-CoV-2 and B.1.351 variant were measured after immunization in mice. The results revealed that the S1-Mut antigens were more effective in inhibiting the receptor-binding domain and ACE2 binding in B.1.351 variant than in wild-type SARS-CoV-2. Furthermore, the development of a bivalent vaccine exhibited the ideal neutralization properties against wild-type and B.1.351 variant, as well as other variants. Our findings may provide a rationale for the development of a bivalent recombinant vaccine targeting the S1 protein that can induce the neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus and may be of importance to explore the potential clinical use of bivalent recombinant vaccine in the future.
Collapse
Affiliation(s)
- Cai He
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- WestVac Biopharma Co. Ltd.ChengduChina
| |
Collapse
|
4
|
Bao C, Jiang H, Zhu R, Liu B, Xiao J, Li Z, Chen P, Langford PR, Zhang F, Lei L. Differences in pig respiratory tract and peripheral blood immune responses to Actinobacillus pleuropneumoniae. Vet Microbiol 2020; 247:108755. [PMID: 32686648 DOI: 10.1016/j.vetmic.2020.108755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/25/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Excessive cytokine production is an important component of the acute respiratory distress syndrome and multiple organ failure. Pneumonia can lead to an overexpression of cytokines, although comparatively little is known about the relevance and differences in cytokines between blood and lung. In this study, piglets were experimentally infected intranasally with Actinobacillus pleuropneumoniae (APP), and transcriptomes of lung tissue and peripheral blood mononuclear cells determined. In addition, the levels of 30 cytokines in broncheoalveolar lavage fluid (BALF) and sera were determined by ELISA. Post infection, there was an early increase in lung monocytes, and a later rise in inflammatory cytokines in BALF. Blood lymphocytes increased early in infection and there was a rise in inflammatory cytokines in the peripheral blood of infected piglets. Genes involved in cytokine production, leukocyte migration and differentiation, lymphocyte activation, and cytokine-mediated signaling pathways in the transcriptomes of lung tissue were significantly down-regulated early in infection. At this early phase of APP infection (0-6 h), the cytokines IL-1β, MCP-1, and IL-5 in sera increased rapidly and significantly, while many cytokines in BALF decreased. At 48 h post-infection, cytokines in sera were no longer significantly increased, although some were up-regulated in BALF, and there was aggravated pathological damage in the lungs at this time. The data indicate there are substantial differences between immune cells and cytokines in the lung and peripheral blood of APP infected piglets at equivalent time points. The results increase our understanding of pig-APP host interactive biology, and will be important in formulating future therapeutic and preventative strategies to prevent disease caused by APP.
Collapse
Affiliation(s)
- Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Rining Zhu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jiameng Xiao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Ziheng Li
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Peiru Chen
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, London, UK
| | - Fuxian Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, PR China; College of Animal Science, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| |
Collapse
|