1
|
Lo JO, Easley CA. Paternal microbiome perturbations affect offspring outcomes. Nat Rev Urol 2025; 22:6-7. [PMID: 39060488 PMCID: PMC11711000 DOI: 10.1038/s41585-024-00921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- Jamie O Lo
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Wang X, Li H, Yang Y, Wu Z, Wang Z, Li D, Xia W, Zou S, Liu Y, Wang F. Geographic and environmental impacts on gut microbiome in Himalayan langurs ( Semnopithecus schistaceus) and Xizang macaques ( Macaca mulatta vestita). Front Microbiol 2024; 15:1452101. [PMID: 39296299 PMCID: PMC11408304 DOI: 10.3389/fmicb.2024.1452101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Gut microbiome plays a crucial role in the health of wild animals. Their structural and functional properties not only reflect the host's dietary habits and habitat conditions but also provide essential support for ecological adaptation in various environments. Methods This study investigated the gut microbiome of Himalayan langurs (Semnopithecus schistaceus) and Xizang macaques (Macaca mulatta vestita) across different geographic regions using 16S rRNA gene and metagenomic sequencing. Results Results showed distinct clustering patterns in gut microbiota based on geographic location. Soil had an insignificant impact on host gut microbiome. Himalayan langurs from mid-altitude regions exhibited higher levels of antibiotic resistance genes associated with multidrug resistance, while Xizang macaques from high-altitude regions showed a broader range of resistance genes. Variations in carbohydrate-active enzymes and KEGG pathways indicated unique metabolic adaptations to different environments. Discussion These findings provide valuable insights into the health and conservation of these primates and the broader implications of microbial ecology and functional adaptations in extreme conditions.
Collapse
Affiliation(s)
- Xueyu Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Hong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhijiu Wu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhixiang Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Dayong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Wancai Xia
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Shuzhen Zou
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yujia Liu
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Fan Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| |
Collapse
|
3
|
Gu H, Tao E, Fan Y, Long G, Jia X, Yuan T, Chen L, Shu X, Zheng W, Jiang M. Effect of β-lactam antibiotics on the gut microbiota of term neonates. Ann Clin Microbiol Antimicrob 2024; 23:69. [PMID: 39113137 PMCID: PMC11308410 DOI: 10.1186/s12941-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
β-Lactam antibiotics are a class of antibiotics commonly used to treat bacterial infections. However, the effects of β-lactam antibiotics on term neonatal intestinal flora have not been fully elucidated. Hospitalized full-term newborns receiving β-lactam antibiotics formed the antibiotic group (n = 67), while those without antibiotic treatment comprised the non-antibiotic group (n = 47). A healthy group included healthy full-term newborns (n = 16). Stool samples were collected for 16 S rDNA sequencing to analyze gut microbiota variations. Further investigation was carried out within the β-lactam antibiotic group, exploring the effects of antibiotic use on the newborns' gut microbiota in relation to the duration and type of antibiotic administration, delivery method, and feeding practices. The antibiotic group exhibited significant difference of microbial community composition compared to the other groups. Genera like Klebsiella, Enterococcus, Streptococcus, Alistipes, and Aeromonas were enriched, while Escherichia-Shigella, Clostridium sensu stricto 1, Bifidobacterium, and Parabacteroides were reduced. Klebsiella negatively correlated with Escherichia-Shigella, positively with Enterobacter, while Escherichia-Shigella negatively correlated with Enterococcus and Streptococcus. Regardless of neonatal age, β-lactam antibiotics induced an elevated abundance of Klebsiella and Enterococcus. The impact on gut microbiota varied with the duration and type of antibiotic (cefotaxime or ampicillin/sulbactam). Compared to vaginal delivery, cesarean delivery after β-lactam treatment heightened the abundance of Klebsiella, Enterobacteriaceae_Unclassified, Lactobacillales_Unclassified, and Pectobacterium. Feeding patterns minimally influenced β-lactam-induced alterations. In conclusion, β-lactam antibiotic treatment for neonatal pneumonia and sepsis markedly disrupted intestinal microbiota, favoring Klebsiella, Enterococcus, Streptococcus, Alistipes, and Aeromonas. The impact of β-lactam varied by duration, type, and delivery method, emphasizing heightened disruptions post-cesarean delivery.
Collapse
Affiliation(s)
- Hongdan Gu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, 317500, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, 317500, China
| | - Yijia Fan
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Gao Long
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xinyi Jia
- Department of Gastroenterology and Pediatric Endoscopy Center, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, Zhejiang, 310052, China
| | - Tianming Yuan
- Department of Neonatology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China
| | - Lihua Chen
- Department of Neonatology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Wei Zheng
- Department of Gastroenterology and Pediatric Endoscopy Center, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, Zhejiang, 310052, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Gastroenterology and Pediatric Endoscopy Center, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
4
|
Rosenfeld CS. Should Pregnant Women Consume Probiotics to Combat Endocrine-Disrupting Chemical-Induced Health Risks to Their Unborn Offspring? Biomedicines 2024; 12:1628. [PMID: 39200093 PMCID: PMC11351870 DOI: 10.3390/biomedicines12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have become so pervasive in our environment and daily lives that it is impossible to avoid contact with such compounds, including pregnant women seeking to minimize exposures to themselves and their unborn children. Developmental exposure of humans and rodent models to bisphenol A (BPA) and other EDCs is linked to increased anxiogenic behaviors, learning and memory deficits, and decreased socio-sexual behaviors. Prenatal exposure to BPA and other EDCs leads to longstanding and harmful effects on gut microbiota with reductions in beneficial bacteria, i.e., gut dysbiosis, and such microbial changes are linked to host changes in fecal metabolites, including those involved in carbohydrate metabolism and synthesis, and neurobehavioral alterations in adulthood, in particular, social and cognitive deficits. Gut dysbiosis is increasingly being recognized as a key driver of a myriad of diseases, ranging from metabolic, cardiovascular, reproductive, and neurobehavioral disorders via the gut-microbiome-brain axis. Thus, EDCs might induce indirect effects on physical and mental health by acting as microbiome-disrupting chemicals. Findings raise the important question as to whether pregnant women should consume a probiotic supplement to mitigate pernicious effects of EDCs, especially BPA, on themselves and their unborn offspring. Current studies investigating the effects of maternal probiotic supplementation on pregnant women's health and that of their unborn offspring will be reviewed. Data will inform on the potential application of probiotic supplementation to reverse harmful effects of EDCs, especially BPA, in pregnant women unwittingly exposed to these compounds and striving to give their offspring the best start in life.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Vray M, Tondeur L, Hedible BG, Randremanana RV, Manirakiza A, Lazoumar RH, Platen CV, Vargas A, Briend A, Jambou R. Three-arm clinical trial of improved flour targeting intestinal microbiota (MALINEA). MATERNAL & CHILD NUTRITION 2024; 20:e13649. [PMID: 38599819 PMCID: PMC11168351 DOI: 10.1111/mcn.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The main objective of this project was to compare in the field conditions two strategies of re-nutrition of children with moderate acute malnutrition (MAM) aged from 6 to 24 months, targeting the microbiota in comparison with a standard regimen. A three-arm, open-label, pragmatic randomised trial was conducted in four countries (Niger, CAR, Senegal and Madagascar). Children received for 12 weeks either fortified blended flour (FBF control) = arm 1, or FBF + azithromycin (oral suspension of 20 mg/kg/day daily given with a syringe) for the first 3 days at inclusion = arm 2 or mix FBF with inulin/fructo-oligosaccharides (6 g/day if age ≥12 months and 4 g if age <12 months) = arm 3. For each arm, children aged from 6 to 11 months received 100 g x 2 per day of flours and those aged from 12 to 24 months received 100 g × 3 per day of FBF. The primary endpoint was nutritional recovery, defined by reaching a weight-for-height z-score (WHZ) ≥ -1.5 within 12 weeks. Overall, 881 children were randomised (297, 290 and 294 in arm 1, arm 2 and arm 3, respectively). Three hundred and forty-four children were males (39%) and median/mean age were 14.6/14.4 months (SD = 4.9, IQR = 10.5-18.4). At inclusion, the three arms were comparable for all criteria, but differences were observed between countries. Overall, 44% (390/881) of the children recovered at week 12 from MAM, with no significant difference between the three arms (41.4%, 45.5% and 45.9%, in arm 1, arm 2 and arm 3, respectively, p = 0.47). This study did not support the true advantages of adding a prebiotic or antibiotic to flour. When using a threshold of WHZ ≥ -2 as an exploratory endpoint, significant differences were observed between the three arms, with higher success rates in arms with antibiotics or prebiotics compared to the control arm (66.9%, 66.0% and 55.2%, respectively, p = 0.005).
Collapse
Affiliation(s)
- Muriel Vray
- Emerging Diseases Epidemiology Unit, Institut de PasteurUniversité Paris‐CitéParisFrance
| | - Laura Tondeur
- Emerging Diseases Epidemiology Unit, Institut de PasteurUniversité Paris‐CitéParisFrance
| | | | | | - Alexandre Manirakiza
- Epidemiology and Clinical Research UnitInstitut Pasteur de BanguiBanguiCentral African Republic
| | | | | | - Antonio Vargas
- Nutrition and Health Unit, Action Against HungerMadridSpain
| | - André Briend
- Department of Nutrition, Exercise and Sports, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health TechnologyTampere University and Tampere University HospitalTampereFinland
| | - Ronan Jambou
- Direction Scientifique, Centre de Recherche Médicale et Sanitaire (CERMES)NiameyNiger
| |
Collapse
|
6
|
McDougall A, Nguyen R, Nguyen PY, Allen C, Cheang S, Makama M, Mills K, Hastie R, Ammerdorffer A, Gulmezoglu AM, Vogel JP. The effects of probiotics administration during pregnancy on preeclampsia and associated maternal, fetal, and newborn outcomes: a systematic review and meta-analysis. Am J Obstet Gynecol MFM 2024; 6:101322. [PMID: 38447676 DOI: 10.1016/j.ajogmf.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE This study aimed to synthesize the available evidence on probiotic administration during pregnancy for the prevention of preeclampsia and its effects on related maternal, fetal, and newborn outcomes. DATA SOURCES Six databases were systematically searched for eligible studies, namely Ovid MEDLINE, Embase, CINAHL, Cochrane, Global Index Medicus, and the Maternity and Infant Care Database, from inception to August 2, 2023. STUDY ELIGIBILITY CRITERIA Randomized controlled trials that evaluated the effects of probiotic administration on women during any stage of pregnancy were eligible for inclusion. METHODS The protocol was registered with the International Prospective Register of Systematic Reviews under identifier CRD42023421613. Evaluating study eligibility, extracting data, assessing risk of bias (ROB-2 tool), and rating certainty (Grading of Recommendations, Assessment, Development and Evaluations) were conducted independently by 2 authors. The primary outcomes were incidence of preeclampsia, eclampsia, and maternal mortality. A meta-analysis was performed, and the results were reported as risk ratios with 95% confidence intervals. RESULTS A total of 29 trials (7735 pregnant women) met the eligibility criteria. There was heterogeneity across the trials in the population of enrolled women and the type of probiotic tested (20 different strains), although most used oral administration. Probiotics may make no difference to the risk of preeclampsia (risk ratio, 1.14; 95% confidence interval, 0.84-1.53; 11 trials; 2401 women; low certainty evidence), preterm birth at <37 weeks' gestation (risk ratio, 0.93; 95% confidence interval, 0.66-1.30; 18 trials, 4016 women; low certainty evidence), or gestational age at delivery (mean difference, -0.03 weeks [≈0.2 days]; 95% confidence interval, -0.16 to 0.10 weeks [≈ -1.1 to 0.7 days]; 13 trials, 2194 women; low certainty evidence). It is difficult to assess the effects of probiotics on other secondary outcomes because the evidence was of very low certainty, however, no benefits or harms were observed. CONCLUSION Limited evidence suggests that probiotic supplementation does not affect the risk for preeclampsia. Further high-quality trials are needed to definitively assess the benefits and possible harms of probiotic supplementation during pregnancy. There is also a lack of data from trials that included women who were undernourished or who experienced microbial dysbiosis and for whom probiotic supplementation might be useful.
Collapse
Affiliation(s)
- Annie McDougall
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel); Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia (Dr McDougall).
| | - Renae Nguyen
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel)
| | - Phi-Yen Nguyen
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel)
| | - Connor Allen
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel)
| | - Sarah Cheang
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel)
| | - Maureen Makama
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel); School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia (Dr Makama and Prof Vogel)
| | - Kate Mills
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel)
| | - Roxanne Hastie
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Australia (Dr Hastie)
| | - Anne Ammerdorffer
- Concept Foundation, Geneva, Switzerland (Dr Ammerdorffer and Dr Gulmezoglu)
| | - A Metin Gulmezoglu
- Concept Foundation, Geneva, Switzerland (Dr Ammerdorffer and Dr Gulmezoglu)
| | - Joshua P Vogel
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Dr McDougall, Ms R Nguyen, Ms P Nguyen; Mr Allen, Ms Cheang, Dr Makama, Ms Mills, and Prof Vogel); School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia (Dr Makama and Prof Vogel)
| |
Collapse
|
7
|
Mostafa I, Sthity RA, Lamiya UH, Tariqujjaman M, Mahfuz M, Hasan SMT, Ahmed T. Effect of Gut Microbiota-Directed Complementary Food Supplementation on Fecal and Plasma Biomarkers of Gut Health and Environmental Enteric Dysfunction in Slum-Dwelling Children with Moderate Acute Malnutrition. CHILDREN (BASEL, SWITZERLAND) 2024; 11:69. [PMID: 38255381 PMCID: PMC10814735 DOI: 10.3390/children11010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Dietary supplementation with a gut microbiota-directed complementary food (MDCF-2) significantly improved weight gain and repaired gut microbiota, as reported in a recent randomized controlled trial on Bangladeshi children with moderate acute malnutrition (MAM). Environmental enteric dysfunction (EED) is a small bowel disorder, and recent evidence shows that it is linked to growth failure in children. Therefore, we intended to investigate whether supplementation with MDCF-2 has any role in modifying gut health by changing the levels of biomarkers of EED and gut inflammation in children with MAM. We randomly assigned 124 children aged 12-18 months to one of two intervention diets, either MDCF-2 or ready-to-use supplementary food (RUSF). Approximately 50 g of the diet was administered in two feeding sessions daily for 12 weeks. Stool and plasma biomarkers were assessed to evaluate intestinal health. Results showed that the average change in citrulline concentration (µmol/L) significantly increased among children who consumed MDCF-2 compared to those who consumed RUSF (mean difference-in-differences: 123.10; 95% CI: 3.60, 242.61; p = 0.044). The research findings demonstrated that MDCF-2 might have a beneficial effect on improving the gastrointestinal health of malnourished children.
Collapse
Affiliation(s)
- Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Rahvia Alam Sthity
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
| | - Umme Habiba Lamiya
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
| | - Md. Tariqujjaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - S. M. Tafsir Hasan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; (R.A.S.); (U.H.L.); (M.T.); (M.M.); (S.M.T.H.); (T.A.)
- Department of Public Health Nutrition, James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh
| |
Collapse
|
8
|
Wei S, Jespersen ML, Baunwall SMD, Myers PN, Smith EM, Dahlerup JF, Rasmussen S, Nielsen HB, Licht TR, Bahl MI, Hvas CL. Cross-generational bacterial strain transfer to an infant after fecal microbiota transplantation to a pregnant patient: a case report. MICROBIOME 2022; 10:193. [PMID: 36352460 PMCID: PMC9647999 DOI: 10.1186/s40168-022-01394-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) effectively prevents the recurrence of Clostridioides difficile infection (CDI). Long-term engraftment of donor-specific microbial consortia may occur in the recipient, but potential further transfer to other sites, including the vertical transmission of donor-specific strains to future generations, has not been investigated. Here, we report, for the first time, the cross-generational transmission of specific bacterial strains from an FMT donor to a pregnant patient with CDI and further to her child, born at term, 26 weeks after the FMT treatment. METHODS A pregnant woman (gestation week 12 + 5) with CDI was treated with FMT via colonoscopy. She gave vaginal birth at term to a healthy baby. Fecal samples were collected from the feces donor, the mother (before FMT, and 1, 8, 15, 22, 26, and 50 weeks after FMT), and the infant (meconium at birth and 3 and 6 months after birth). Fecal samples were profiled by deep metagenomic sequencing for strain-level analysis. The microbial transfer was monitored using single nucleotide variants in metagenomes and further compared to a collection of metagenomic samples from 651 healthy infants and 58 healthy adults. RESULTS The single FMT procedure led to an uneventful and sustained clinical resolution in the patient, who experienced no further CDI-related symptoms up to 50 weeks after treatment. The gut microbiota of the patient with CDI differed considerably from the healthy donor and was characterized as low in alpha diversity and enriched for several potential pathogens. The FMT successfully normalized the patient's gut microbiota, likely by donor microbiota transfer and engraftment. Importantly, our analysis revealed that some specific strains were transferred from the donor to the patient and then further to the infant, thus demonstrating cross-generational microbial transfer. CONCLUSIONS The evidence for cross-generational strain transfer following FMT provides novel insights into the dynamics and engraftment of bacterial strains from healthy donors. The data suggests FMT treatment of pregnant women as a potential strategy to introduce beneficial strains or even bacterial consortia to infants, i.e., neonatal seeding. Video Abstract.
Collapse
Affiliation(s)
- Shaodong Wei
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Marie Louise Jespersen
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
- Clinical-Microbiomics A/S, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Mark Dahl Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Emilie Milton Smith
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark.
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Crane RJ, Parker EP, Fleming S, Gwela A, Gumbi W, Ngoi JM, de Laurent ZR, Nyatichi E, Ngari M, Wambua J, Uhlig HH, Berkley JA. Cessation of exclusive breastfeeding and seasonality, but not small intestinal bacterial overgrowth, are associated with environmental enteric dysfunction: A birth cohort study amongst infants in rural Kenya. EClinicalMedicine 2022; 47:101403. [PMID: 35497062 PMCID: PMC9046123 DOI: 10.1016/j.eclinm.2022.101403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Background Environmental Enteric Dysfunction (EED) is a chronic intestinal inflammatory disorder of unclear aetiology prevalent amongst children in low-income settings and associated with stunting. We aimed to characterise development of EED and its putative risk factors amongst rural Kenyan infants. Methods In a birth cohort study in Junju, rural coastal Kenya, between August 2015 and January 2017, 100 infants were each followed for nine months. Breastfeeding status was recorded weekly and anthropometry monthly. Acute illnesses and antibiotics were captured by active and passive surveillance. Intestinal function and small intestinal bacterial overgrowth (SIBO) were assessed by monthly urinary lactulose mannitol (LM) and breath hydrogen tests. Faecal alpha-1-antitrypsin, myeloperoxidase and neopterin were measured as EED biomarkers, and microbiota composition assessed by 16S sequencing. Findings Twenty nine of the 88 participants (33%) that underwent length measurement at nine months of age were stunted (length-for-age Z score <-2). During the rainy season, linear growth was slower and LM ratio was higher. In multivariable models, LM ratio, myeloperoxidase and neopterin increased after cessation of continuous-since-birth exclusive breastfeeding. For LM ratio this only occurred during the rainy season. EED markers were not associated with antibiotics, acute illnesses, SIBO, or gut microbiota diversity. Microbiota diversified with age and was not strongly associated with complementary food introduction or linear growth impairment. Interpretation Our data suggest that intensified promotion of uninterrupted exclusive breastfeeding amongst infants under six months during the rainy season, where rainfall is seasonal, may help prevent EED. Our findings also suggest that therapeutic strategies directed towards SIBO are unlikely to impact on EED in this setting. However, further development of non-invasive diagnostic methods for SIBO is required. Funding This research was funded in part by the Wellcome Trust (Research Training Fellowship to RJC (103376/Z/13/Z)). EPKP was supported by the MRC/DfID Newton Fund (MR/N006259/1). JAB was supported by the MRC/DFiD/Wellcome Trust Joint Global Health Trials scheme (MR/M007367/1) and the Bill & Melinda Gates Foundation (OPP1131320). HHU was supported by the NIHR Oxford Biomedical Research Centre (IS-BRC-1215-20008).
Collapse
Affiliation(s)
- Rosie J. Crane
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7LG, UK
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
| | - Edward P.K. Parker
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Simon Fleming
- Royal Cornwall Hospitals NHS Trust, Treliske, Truro TR1 3LQ, UK
| | - Agnes Gwela
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
| | - Wilson Gumbi
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
| | - Joyce M. Ngoi
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Accra, Ghana
| | | | - Emily Nyatichi
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
| | - Moses Ngari
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition (CHAIN) Network, P.O Box 43640 – 00100, Nairobi, Kenya
| | - Juliana Wambua
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford OX3 9DU, UK
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - James A. Berkley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7LG, UK
- KEMRI Wellcome Trust Research Programme, PO Box 80108-230, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition (CHAIN) Network, P.O Box 43640 – 00100, Nairobi, Kenya
| |
Collapse
|
10
|
The Concept of Intrauterine Programming and the Development of the Neonatal Microbiome in the Prevention of SARS-CoV-2 Infection. Nutrients 2022; 14:nu14091702. [PMID: 35565670 PMCID: PMC9104449 DOI: 10.3390/nu14091702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
The process of intrauterine programming is related to the quality of the microbiome formed in the fetus and the newborn. The implementation of probiotics, prebiotics, and psychobiotics shows immunomodulatory potential towards the organism, especially the microbiome of the pregnant woman and her child. Nutrigenomics, based on the observation of pregnant women and the developing fetus, makes it possible to estimate the biological effects of active dietary components on gene expression or silencing. Nutritional intervention for pregnant women should consider the nutritional status of the patient, biological markers, and the potential impact of dietary intervention on fetal physiology. The use of a holistic model of nutrition allows for appropriately targeted and effective dietary prophylaxis that can impact the physical and mental health of both the mother and the newborn. This model targets the regulation of the immune response of the pregnant woman and the newborn, considering the clinical state of the microbiota and the pathomechanism of the nervous system. Current scientific reports indicate the protective properties of immunobiotics (probiotics) about the reduction of the frequency of infections and the severity of the course of COVID-19 disease. The aim of this study was to test the hypothesis that intrauterine programming influences the development of the microbiome for the prevention of SARS-CoV-2 infection based on a review of research studies.
Collapse
|