1
|
Jay A, Jordan DF, Gerstein A, Landry CR. The role of gene copy number variation in antimicrobial resistance in human fungal pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:1. [PMID: 39781035 PMCID: PMC11703754 DOI: 10.1038/s44259-024-00072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Faced with the burden of increasing resistance to antifungals in many fungal pathogens and the constant emergence of new drug-resistant strains, it is essential to assess the importance of various resistance mechanisms. Fungi have relatively plastic genomes and can tolerate genomic copy number variation (CNV) caused by aneuploidy and gene amplification or deletion. In many cases, these genomic changes lead to adaptation to stressful conditions, including those caused by antifungal drugs. Here, we specifically examine the contribution of CNVs to antifungal resistance. We undertook a thorough literature search, collecting reports of antifungal resistance caused by a CNV, and classifying the examples of CNV-conferred resistance into four main mechanisms. We find that in human fungal pathogens, there is little evidence that gene copy number plays a major role in the emergence of antifungal resistance compared to other types of mutations. We discuss why we might be underestimating their importance and new approaches being used to study them.
Collapse
Affiliation(s)
- Adarsh Jay
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, G1V 0A6 Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec City, G1V 0A6 Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec City, G1V 0A6 Canada
| | - David F. Jordan
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, G1V 0A6 Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec City, G1V 0A6 Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec City, G1V 0A6 Canada
| | - Aleeza Gerstein
- Department of Microbiology, The University of Manitoba, Winnipeg, R3T 2N2 Canada
- Department of Statistics, The University of Manitoba, Winnipeg, R3T 2N2 Canada
| | - Christian R. Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, G1V 0A6 Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec City, G1V 0A6 Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec City, G1V 0A6 Canada
| |
Collapse
|
2
|
Lin Y, Jung H, Bulman CA, Ng J, Vinck R, O’Beirne C, Zhong S, Moser MS, Tricoche N, Peguero R, Li RW, Urban JF, Le Pape P, Pagniez F, Moretto M, Weil T, Lustigman S, Cariou K, Mitreva M, Sakanari JA, Gasser G. Discovery of New Broad-Spectrum Anti-Infectives for Eukaryotic Pathogens Using Bioorganometallic Chemistry. J Med Chem 2023; 66:15867-15882. [PMID: 38009931 PMCID: PMC11840807 DOI: 10.1021/acs.jmedchem.3c01333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Hyeim Jung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A. Bulman
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - James Ng
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Cillian O’Beirne
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Shuai Zhong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Matthew S. Moser
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Ricardo Peguero
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Robert W. Li
- Animal Parasitic Diseases Laboratory, United States Department of Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Joseph F. Urban
- Diet, Genomics and Immunology Laboratory, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Patrice Le Pape
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Fabrice Pagniez
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Marco Moretto
- Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Tobias Weil
- Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Judy A. Sakanari
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
3
|
Lin Y, Jung H, Bulman CA, Ng J, Vinck R, O'Beirne C, Moser MS, Tricoche N, Peguero R, Li RW, Urban JF, Pape PL, Pagniez F, Moretto M, Weil T, Lustigman S, Cariou K, Mitreva M, Sakanari JA, Gasser G. Discovery of New Broad-Spectrum Anti-Infectives for Eukaryotic Pathogens Using Bioorganometallic Chemistry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546819. [PMID: 37425761 PMCID: PMC10327022 DOI: 10.1101/2023.06.28.546819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.
Collapse
|
4
|
Tsukuda Y, Mizuhara N, Usuki Y, Yamaguchi Y, Ogita A, Tanaka T, Fujita K. Structure-activity relationships of antifungal phenylpropanoid derivatives and their synergy with n-dodecanol and fluconazole. Lett Appl Microbiol 2021; 74:377-384. [PMID: 34825394 DOI: 10.1111/lam.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
trans-Anethole (anethole) is a phenylpropanoid; with other drugs, it exhibits synergistic activity against several fungi and is expected to be used in new therapies that cause fewer patient side effects. However, the detailed substructure(s) of the molecule responsible for this synergy has not been fully elucidated. We investigated the structure-activity relationships of phenylpropanoids and related derivatives, with particular attention on the methoxy group and the double bond of the propenyl group in anethole, as well as the length of the p-alkyl chain in p-alkylanisoles. Antifungal potency was largely related to p-alkyl chain length and the methoxy group of anethole, but not to the double bond of its propenyl group. Production of reactive oxygen species also played a role in these fungicidal activities. Inhibition of drug efflux was associated with the length of the p-alkyl chain and the double bond of the propenyl group in anethole, but not with the methoxy group. Although a desirable synergy was observed between n-dodecanol and anethole or p-alkylanisoles with a length of C2-C6 in alkyl chains, it cannot be explained away as being solely due to the inhibition of drug efflux. Similar results were obtained when phenylpropanoid derivatives were combined with fluconazole against Candida albicans.
Collapse
Affiliation(s)
- Y Tsukuda
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - N Mizuhara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Usuki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Yamaguchi
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - A Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - T Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - K Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
5
|
Ueda Y, Tahara YO, Miyata M, Ogita A, Yamaguchi Y, Tanaka T, Fujita KI. Involvement of a Multidrug Efflux Pump and Alterations in Cell Surface Structure in the Synergistic Antifungal Activity of Nagilactone E and Anethole against Budding Yeast Saccharomyces cerevisiae. Antibiotics (Basel) 2021; 10:antibiotics10050537. [PMID: 34066540 PMCID: PMC8148520 DOI: 10.3390/antibiotics10050537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Nagilactone E, an antifungal agent derived from the root bark of Podocarpus nagi, inhibits 1,3-β glucan synthesis; however, its inhibitory activity is weak. Anethole, the principal component of anise oil, enhances the antifungal activity of nagilactone E. We aimed to determine the combinatorial effect and underlying mechanisms of action of nagilactone E and anethole against the budding yeast Saccharomyces cerevisiae. Analyses using gene-deficient strains showed that the multidrug efflux pump PDR5 is associated with nagilactone E resistance; its transcription was gradually restricted in cells treated with the drug combination for a prolonged duration but not in nagilactone-E-treated cells. Green-fluorescent-protein-tagged Pdr5p was intensively expressed and localized on the plasma membrane of nagilactone-E-treated cells but not in drug-combination-treated cells. Quick-freeze deep-etch electron microscopy revealed the smoothening of intertwined fiber structures on the cell surface of drug-combination-treated cells and spheroplasts, indicating a decline in cell wall components and loss of cell wall strength. Anethole enhanced the antifungal activity of nagilactone E by enabling its retention within cells, thereby accelerating cell wall damage. The combination of nagilactone E and anethole can be employed in clinical settings as an antifungal, as well as a food preservative to restrict food spoilage.
Collapse
Affiliation(s)
- Yuki Ueda
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
| | - Akira Ogita
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
- Research Center for Urban Health and Sports, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshihiro Yamaguchi
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
| | - Ken-ichi Fujita
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (Y.U.); (Y.O.T.); (M.M.); (A.O.); (Y.Y.); (T.T.)
- Correspondence: ; Tel.: +81-6-6605-2580
| |
Collapse
|
6
|
Adesanwo JK, Akinloye AA, Otemuyiwa IO, Akinpelu DA. Chemical Characteristics and Biological Activities of Annona squamosa Fruit Pod and Seed Extracts. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2020; 000:000-000. [DOI: 10.14218/jerp.2020.00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|