1
|
Roh S, Yeo S, Bang RS, Han K, Velikov KP, Velev OD. Transparency-changing elastomers by controlling of the refractive index of liquid inclusions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425101. [PMID: 38981584 DOI: 10.1088/1361-648x/ad6110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Complex materials that change their optical properties in response to changes in environmental conditions can find applications in displays, smart windows, and optical sensors. Here a class of biphasic composites with stimuli-adaptive optical transmittance is introduced. The biphasic composites comprise aqueous droplets (a mixture of water, glycerol, and surfactant) embedded in an elastomeric matrix. The biphasic composites are tuned to be optically transparent through a careful match of the refractive indices between the aqueous droplets and the elastomeric matrix. We demonstrate that stimuli (e.g., salinity and temperature change) can trigger variations in the optical transmittance of the biphasic composite. The introduction of such transparency-changing soft matter with liquid inclusions offers a novel approach to designing advanced optical devices, optical sensors, and metamaterials.
Collapse
Affiliation(s)
- Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Republic of Korea
| | - Seonju Yeo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
| | - Rachel S Bang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Krassimir P Velikov
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| |
Collapse
|
2
|
Zhang Y, Gao Z, Lei Y, Song L, He W, Liu J, Song M, Dai Y, Yang G, Gong A. FgFAD12 Regulates Vegetative Growth, Pathogenicity and Linoleic Acid Biosynthesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:288. [PMID: 38667959 PMCID: PMC11051453 DOI: 10.3390/jof10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), as important components of lipids, play indispensable roles in the development of all organisms. ∆12 fatty acid desaturase (FAD12) is a speed-determining step in the biosynthesis of PUFAs. Here, we report the characterization of FAD12 in Fusarium graminearum, which is the prevalent agent of Fusarium head blight, a destructive plant disease worldwide. The results demonstrated that deletion of the FgFAD12 gene resulted in defects in vegetative growth, conidial germination and plant pathogenesis but not sexual reproduction. A fatty acid analysis further proved that the deletion of FgFAD12 restrained the reaction of oleic acid to linoleic acid, and a large amount of oleic acid was detected in the cells. Moreover, the ∆Fgfad12 mutant showed increased resistance to osmotic stress and reduced tolerance to oxidative stress. The expression of FgFAD12 did show a temperature-dependent manner, which was not affected at a low temperature of 10 °C when compared to 25 °C. RNA-seq analysis further demonstrated that most genes enriched in fatty acid metabolism, the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid degradation, steroid biosynthesis and fatty acid elongation pathways were significantly up-regulated in the ∆Fgfad12 mutants. Overall, our results indicate that FgFAD12 is essential for linoleic acid biosynthesis and plays an important role in the infection process of F. graminearum.
Collapse
Affiliation(s)
- Yimei Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| | - Zhen Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yinyu Lei
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Liuye Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Weijie He
- College of Plant Science and Technology, Huazhong Agricultura University, Wuhan 430070, China;
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Mengge Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yafeng Dai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Guang Yang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| |
Collapse
|
3
|
Chang Y, Wang Z, Li H, Dang W, Song Y, Kang X, Zhang H. Morphological Changes and Strong Cytotoxicity in Yarrowia lipolytica by Overexpressing Delta-12-Desaturase. J Fungi (Basel) 2024; 10:126. [PMID: 38392798 PMCID: PMC10890566 DOI: 10.3390/jof10020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, delta-12 desaturase was overexpressed in Yarrowia lipolytica using the single-copy integrative vector pINA1312 and multicopy integrative vector pINA1292, resulting in the engineered yeast strains 1312-12 and 1292-12, respectively. The content of intracellular linoleic acid (LA) in the 1292-12 strain was much higher than in the 1312-12 strain and the control group. One interesting finding was that the 1292-12 strain showed obvious changes in surface morphology. The 1292-12 colonies were much smaller and smoother, whereas their single cells became much larger compared to the control strain. In addition, the dry cell weight (DCW) of the 1292-12 strain was obviously increased from 8.5 to 12.7 g/L, but the viable cell number sharply decreased from 107 to 105/mL. These results indicated that increased LA content in Yarrowia lipolytica could induce morphological changes or even oxidative stress-dependent cell death. The reactive oxygen species (ROS) and malondialdehyde (MDA) were accumulated in the 1292-12 strain, while the antioxidant activities of intracellular catalase (CAT) and superoxide dismutase (SOD) were significantly decreased by 27.6 and 32.0%, respectively. Furthermore, it was also revealed that these issues could be ameliorated by the exogenous supplementation of vitamin C, fish and colza oil.
Collapse
Affiliation(s)
- Yufei Chang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zhen Wang
- School of Public Health, Qilu Medical University, Zibo 255300, China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinxin Kang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
4
|
Ma P, Takashima S, Fujita C, Yamada S, Oshima Y, Cai HL, Yurimoto H, Sakai Y, Hayakawa T, Shimada M, Ning X, Wei B, Nakagawa T. Fatty acid composition of the methylotrophic yeast Komagataella phaffii grown under low- and high-methanol conditions. Yeast 2021; 38:541-548. [PMID: 34089530 DOI: 10.1002/yea.3655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 11/11/2022] Open
Abstract
In this study, we analysed the intracellular fatty acid profiles of Komagataella phaffii during methylotrophic growth. K. phaffii grown on methanol had significantly lower total fatty acid contents in the cells compared with glucose-grown cells. C18 and C16 fatty acids were the predominant fatty acids in K. phaffii, although the contents of odd-chain fatty acids such as C17 fatty acids were also relatively high. Moreover, the intracellular fatty acid composition of K. phaffii changed in response to not only carbon sources but also methanol concentrations: C17 fatty acids and C18:2 content increased significantly as methanol concentration increased, whereas C18:1 and C18:3 contents were significantly lower in methanol-grown cells. The intracellular content of unidentified compounds (Cn H2n O4 ), on the other hand, was significantly greater in cells grown on methanol. As the intracellular contents of these Cn H2n O4 compounds were significantly higher in a gene-disrupted strain for glutathione peroxidase (gpx1Δ) than in the wild-type strain, we presume that the Cn H2n O4 compounds are fatty acid peroxides. These results indicate that K. phaffii can coordinate intracellular fatty acid composition during methylotrophic growth in order to adapt to high-methanol conditions and that certain fatty acid species such as C17:0, C17:1, C17:2 and C18:2 may be related to the physiological functions by which K. phaffii adapts to high-methanol conditions.
Collapse
Affiliation(s)
- Pengli Ma
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Chikako Fujita
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Saya Yamada
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yusuke Oshima
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan
| | - Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Hayakawa
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Xia Ning
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Tomoyuki Nakagawa
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Lara P, Vega-Alvarado L, Sahonero-Canavesi DX, Koenen M, Villanueva L, Riveros-Mckay F, Morett E, Juárez K. Transcriptome Analysis Reveals Cr(VI) Adaptation Mechanisms in Klebsiella sp. Strain AqSCr. Front Microbiol 2021; 12:656589. [PMID: 34122372 PMCID: PMC8195247 DOI: 10.3389/fmicb.2021.656589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella sp. strain AqSCr, isolated from Cr(VI)-polluted groundwater, reduces Cr(VI) both aerobically and anaerobically and resists up 34 mM Cr(VI); this resistance is independent of the ChrA efflux transporter. In this study, we report the whole genome sequence and the transcriptional profile by RNA-Seq of strain AqSCr under Cr(VI)-adapted conditions and found 255 upregulated and 240 downregulated genes compared to controls without Cr(VI) supplementation. Genes differentially transcribed were mostly associated with oxidative stress response, DNA repair and replication, sulfur starvation response, envelope-osmotic stress response, fatty acid (FA) metabolism, ribosomal subunits, and energy metabolism. Among them, genes not previously associated with chromium resistance, for example, cybB, encoding a putative superoxide oxidase (SOO), gltA2, encoding an alternative citrate synthase, and des, encoding a FA desaturase, were upregulated. The sodA gene encoding a manganese superoxide dismutase was upregulated in the presence of Cr(VI), whereas sodB encoding an iron superoxide dismutase was downregulated. Cr(VI) resistance mechanisms in strain AqSCr seem to be orchestrated by the alternative sigma factors fecl, rpoE, and rpoS (all of them upregulated). Membrane lipid analysis of the Cr(IV)-adapted strain showed a lower proportion of unsaturated lipids with respect to the control, which we hypothesized could result from unsaturated lipid peroxidation followed by degradation, together with de novo synthesis mediated by the upregulated FA desaturase-encoding gene, des. This report helps to elucidate both Cr(VI) toxicity targets and global bacterial response to Cr(VI).
Collapse
Affiliation(s)
- Paloma Lara
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Riveros-Mckay
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Soczewka P, Flis K, Tribouillard-Tanvier D, di Rago JP, Santos CN, Menezes R, Kaminska J, Zoladek T. Flavonoids as Potential Drugs for VPS13-Dependent Rare Neurodegenerative Diseases. Genes (Basel) 2020; 11:E828. [PMID: 32708255 PMCID: PMC7397310 DOI: 10.3390/genes11070828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022] Open
Abstract
Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
- Institut National de la Santé et de la Recherche Médicale INSERM, 33077 Bordeaux, France
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
| | - Cláudia N. Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| |
Collapse
|
7
|
Schwarz J, J Leopold H, Leighton R, Miller RC, Aplin CP, Boersma AJ, Heikal AA, Sheets ED. Macromolecular crowding effects on energy transfer efficiency and donor-acceptor distance of hetero-FRET sensors using time-resolved fluorescence. Methods Appl Fluoresc 2019; 7:025002. [PMID: 30690439 DOI: 10.1088/2050-6120/ab0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Living cells are crowded with macromolecules and organelles, which affect a myriad of biochemical processes. As a result, there is a need for sensitive molecular sensors for quantitative, site-specific assessment of macromolecular crowding. Here, we investigated the excited-state dynamics of recently developed hetero-FRET sensors (mCerulean3-linker-mCitrine) in homogeneous and heterogeneous environments using time-resolved fluorescence measurements, which are compatible with fluorescence lifetime imaging microscopy (FLIM). The linker in these FRET constructs, which tether the mCerulean3 (the donor) and mCitrine (the acceptor), vary in both length and flexibility. Glycerol and Ficoll-70 solutions were used for homogeneous and heterogeneous environments, respectively, at variable concentrations. The wavelength-dependent studies suggest that the 425-nm excitation and the 475-nm emission of the donor are best suited for quantitative assessment of the energy transfer efficiency and the donor-acceptor distance of these FRET probes. Under the same experimental conditions, the enzymatically cleaved counterpart of these probes was used as a control as well as a means to account for the changes in the environmental refractive indices. Our results indicate that the energy transfer efficiency of these FRET probes increases as the linker becomes shorter and more flexible in pure buffer at room temperature. In addition, the FRET probes favor a compact structure with enhanced energy transfer efficiency and a shorter donor-acceptor distance in the heterogeneous, polymer-crowded environment due to steric hindrance. In contrast, the stretched conformation of these FRET probes is more favorable in the viscous, homogeneous environment with a reduced energy transfer efficiency and relatively larger donor-acceptor distance as compared with those in pure buffer, which was attributed to a reduced structural fluctuation of the mCerulean3-mCitrine FRET pair in the viscous, more restrictive glycerol-enriched buffer. Our findings will help to advance the potential of these hetero-FRET probes using FLIM for spatio-temporal assessment of the compartmentalized crowding in living cells.
Collapse
Affiliation(s)
- Jacob Schwarz
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Soczewka P, Kolakowski D, Smaczynska-de Rooij I, Rzepnikowska W, Ayscough KR, Kaminska J, Zoladek T. Yeast-model-based study identified myosin- and calcium-dependent calmodulin signalling as a potential target for drug intervention in chorea-acanthocytosis. Dis Model Mech 2019; 12:dmm.036830. [PMID: 30635263 PMCID: PMC6361151 DOI: 10.1242/dmm.036830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Chorea-acanthocytosis (ChAc) is a rare neurodegenerative disease associated with mutations in the human VPS13A gene. The mechanism of ChAc pathogenesis is unclear. A simple yeast model was used to investigate the function of the single yeast VSP13 orthologue, Vps13. Vps13, like human VPS13A, is involved in vesicular protein transport, actin cytoskeleton organisation and phospholipid metabolism. A newly identified phenotype of the vps13Δ mutant, sodium dodecyl sulphate (SDS) hypersensitivity, was used to screen a yeast genomic library for multicopy suppressors. A fragment of the MYO3 gene, encoding Myo3-N (the N-terminal part of myosin, a protein involved in the actin cytoskeleton and in endocytosis), was isolated. Myo3-N protein contains a motor head domain and a linker. The linker contains IQ motifs that mediate the binding of calmodulin, a negative regulator of myosin function. Amino acid substitutions that disrupt the interaction of Myo3-N with calmodulin resulted in the loss of vps13Δ suppression. Production of Myo3-N downregulated the activity of calcineurin, a protein phosphatase regulated by calmodulin, and alleviated some defects in early endocytosis events. Importantly, ethylene glycol tetraacetic acid (EGTA), which sequesters calcium and thus downregulates calmodulin and calcineurin, was a potent suppressor of vps13Δ. We propose that Myo3-N acts by sequestering calmodulin, downregulating calcineurin and increasing activity of Myo3, which is involved in endocytosis and, together with Osh2/3 proteins, functions in endoplasmic reticulum-plasma membrane contact sites. These results show that defects associated with vps13Δ could be overcome, and point to a functional connection between Vps13 and calcium signalling as a possible target for chemical intervention in ChAc. Yeast ChAc models may uncover the underlying pathological mechanisms, and may also serve as a platform for drug testing. This article has an associated First Person interview with the first author of the paper. Summary: Using the vps13Δ strain, a yeast model of the neurodegenerative disorder chorea-acanthocytosis, we found that its defects can be overcome by reduction of calcineurin activity and/or type-I-myosin activation.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Damian Kolakowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | | | - Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Kathryn R Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| |
Collapse
|
9
|
Zhang M, Yu Q, Xiao C, Zhang K, Zhang D, Zhang B, Li M. Disruption of SPT23 results in increased heat sensitivity due to plasma membrane damage in Pichia pastoris. FEMS Yeast Res 2018; 18:4855941. [PMID: 29447393 DOI: 10.1093/femsyr/foy015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/10/2018] [Indexed: 11/14/2022] Open
Abstract
The ability to adapt to environmental changes is a necessary strategy for cell survival. Spt23 is responsible for regulation of Δ-9 desaturase expression in Pichia pastoris. Disruption of SPT23 leads to a remarkable decrease in cellular unsaturated fatty acids. In this study, we found that deletion of SPT23 resulted in growth defects under high temperature culture conditions and heat treatment induced the expression of SPT23. By measuring expression changes of heat shock proteins, protein levels and cellular localization of Hsf1, it was revealed that the sensitivity of spt23Δ to high temperature was independent of the heat shock response. Addition of the osmotic stabilizer sorbitol can restore the growth defects of spt23Δ under heat conditions. In addition, loss of SPT23 led to increased plasma membrane permeability, decreased plasma membrane integrity, depolarization, ergosterol synthesis defects and cell wall component disorder, which suggested that the sensitivity to heat treatment in spt23Δ was due to plasma membrane damage. Taken together, our results give new insights into the relationship between Spt23 and high temperature environmental stress.
Collapse
Affiliation(s)
- Meng Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Chenpeng Xiao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Dan Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin 300193, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
11
|
Zhang M, Yu Q, Liu Z, Liang C, Zhang B, Li M. UBX domain-containing proteins are involved in lipid homeostasis and stress responses in Pichia pastoris. Int J Biochem Cell Biol 2017; 90:136-144. [PMID: 28807601 DOI: 10.1016/j.biocel.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Ubiquitin regulatory X (UBX) domain-containing proteins constitute a family of proteins and are substrate adaptors of AAA ATPase Cdc48. UBX proteins can bind to the N-terminal region of Cdc48 to perform endoplasmic reticulum associated protein degradation (ERAD). In this study, we identified two UBX domain-containing proteins, Ubx1 and Ubx2, in Pichia pastoris and found that the two proteins could recover the growth defect of Saccharomyces cerevisiae in ubx2Δ. Our results revealed that Ubx1 and Ubx2 play critical roles in synthesis of unsaturated fatty acids by affecting Spt23. In addition, the results demonstrated that both Ubx1 and Ubx2 are involved in lipid droplet formation and protein degradation. Deletion of UBX1 led to increased sensitivity to oxidative stress and disruption of UBX2 impaired cell viability under osmotic stress. The phenotypes of ubx1Δ+UBX2, ubx2Δ+UBX1 and ubx1Δubx2Δ and RNA-seq data suggested that Ubx1 and Ubx2 play different roles in cell functions, and the roles of Ubx1 may be more numerous than Ubx2. In summary, our findings provide new insights into the relationship between lipid homeostasis and cell functions in the oil-producing organism P. pastoris.
Collapse
Affiliation(s)
- Meng Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Zhe Liu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Chen Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin, 300193, PR China.
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
12
|
Santomartino R, Riego-Ruiz L, Bianchi MM. Three, two, one yeast fatty acid desaturases: regulation and function. World J Microbiol Biotechnol 2017; 33:89. [PMID: 28390014 DOI: 10.1007/s11274-017-2257-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Fatty acid composition of biological membranes functionally adapts to environmental conditions by changing its composition through the activity of lipid biosynthetic enzymes, including the fatty acid desaturases. Three major desaturases are present in yeasts, responsible for the generation of double bonds in position C9-C10, C12-C13 and C15-C16 of the carbon backbone. In this review, we will report data addressed to define the functional role of basidiomycete and ascomycete yeast desaturase enzymes in response to various external signals and the regulation of the expression of their corresponding genes. Many yeast species have the complete set of three desaturases; however, only the Δ9 desaturase seems to be necessary and sufficient to ensure yeast viability. The evolutionary issue of this observation will be discussed.
Collapse
Affiliation(s)
- Rosa Santomartino
- Dip. di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), A.C., San Luis Potosí, Mexico
| | - Michele M Bianchi
- Dip. di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
13
|
Liu Z, Zhang M, Han X, Xu H, Zhang B, Yu Q, Li M. TiO2 nanoparticles cause cell damage independent of apoptosis and autophagy by impairing the ROS-scavenging system in Pichia pastoris. Chem Biol Interact 2016; 252:9-18. [DOI: 10.1016/j.cbi.2016.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023]
|
14
|
Zhang SH. The Genetic Basis of Abiotic Stress Resistance in Extremophilic Fungi: The Genes Cloning and Application. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|