1
|
Alzamami A, Alturki NA, Khan K, Basharat Z, Mashraqi MM. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers 2024; 28:4259-4276. [PMID: 38457020 DOI: 10.1007/s11030-024-10815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 45710, Pakistan.
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
2
|
Gu Y, Zhang B, Tian J, Li L, He Y. Physiology, quorum sensing, and proteomics of lactic acid bacteria were affected by Saccharomyces cerevisiae YE4. Food Res Int 2023; 166:112612. [PMID: 36914328 DOI: 10.1016/j.foodres.2023.112612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
The interaction mode between lactic acid bacteria (LAB) and yeast in a fermentation system directly determines the quality of the products, thus understanding their mode of interaction can improve product quality. The present study investigated the effects of Saccharomyces cerevisiae YE4 on LAB from the perspectives of physiology, quorum sensing (QS), and proteomics. The presence of S. cerevisiae YE4 slowed down the growth of Enterococcus faecium 8-3 but had no significant effect on acid production or biofilm formation. S. cerevisiae YE4 significantly reduced the activity of autoinducer-2 at 19 h in E. faecium 8-3 and at 7-13 h in Lactobacillus fermentum 2-1. Expression of the QS-related genes luxS and pfs was also inhibited at 7 h. Moreover, a total of 107 E. faecium 8-3 proteins differed significantly in coculture with S. cerevisiae YE4-these proteins are involved in metabolic pathways including biosynthesis of secondary metabolites; biosynthesis of amino acids; alanine, aspartate, and glutamate metabolism; fatty acid metabolism; and fatty acid biosynthesis. Among them, proteins involved in cell adhesion, cell wall formation, two-component systems, and ABC transporters were detected. Therefore, S. cerevisiae YE4 might affect the physiological metabolism of E. faecium 8-3 by affecting cell adhesion, cell wall formation, and cell-cell interactions.
Collapse
Affiliation(s)
- Yue Gu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Baojun Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Lijie Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| | - Yinfeng He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
3
|
Characterization of Pseudogymnoascus destructans conidial adherence to extracellular matrix: Association with fungal secreted proteases and identification of candidate extracellular matrix binding proteins. Microb Pathog 2023; 174:105895. [PMID: 36423748 DOI: 10.1016/j.micpath.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Pseudogymnoascus destructans is the etiological agent of white-nose syndrome (WNS), a fungal skin infection of hibernating bats. Pathophysiology of the disease involves disruption of bat metabolism and hibernation patterns, which subsequently causes premature emergence and mortality. However, information on the mechanism(s) and virulence factors of P. destructans infection is minimally known. Typically, fungal adherence to host cells and extracellular matrix (ECM) is the critical first step of the infection. It allows pathogenic fungi to establish colonization and provides an entry for invasion in host tissues. In this study, we characterized P. destructans conidial adherence to laminin and fibronectin. We found that P. destructans conidia adhered to laminin and fibronectin in a dose-dependent, time-dependent and saturable manner. We also observed changes in the gene expression of secreted proteases, in response to ECM exposure. However, the interaction between fungal conidia and ECM was not specific, nor was it facilitated by enzymatic activity of secreted proteases. We therefore further investigated other P. destructans proteins that recognized ECM and found glyceraldehyde-3-phosphate dehydrogenase and elongation factor 1-alpha among the candidate proteins. Our results demonstrate that P. destructans may use conidial surface proteins to recognize laminin and fibronectin and facilitate conidial adhesion to ECM. In addition, other non-specific interactions may contribute to the conidial adherence to ECM. However, the ECM binding protein candidates identified in this study highlight additional potential fungal virulence factors worth investigating in the P. destructans mechanism of infection in future studies.
Collapse
|
4
|
de Souza AF, Pigosso LL, Silva LOS, Galo IDC, Paccez JD, e Silva KSF, de Oliveira MAP, Pereira M, Soares CMDA. Iron Deprivation Modulates the Exoproteome in Paracoccidioides brasiliensis. Front Cell Infect Microbiol 2022; 12:903070. [PMID: 35719340 PMCID: PMC9205457 DOI: 10.3389/fcimb.2022.903070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Fungi of the Paracoccidioides genus are the etiological agents of the systemic mycosis paracoccidioidomycosis and, when in the host, they find a challenging environment that is scarce in nutrients and micronutrients, such as Fe, which is indispensable for the survival of the pathogen. Previous studies have shown that fungi of this genus, in response to Fe deprivation, are able to synthesize and capture siderophores (Fe3+ chelators), use Fe-containing host proteins as a source of the metal, and use a non-canonical reductive pathway for Fe3+ assimilation. Despite all of these findings, there are still gaps that need to be filled in the pathogen response to metal deprivation. To contribute to the knowledge related to this subject, we obtained the exoproteome of Paracoccidioides brasiliensis (Pb18) undergoing Fe deprivation and by nanoUPLC-MSE. One hundred forty-one proteins were identified, and out of these, 64 proteins were predicted to be secreted. We also identified the regulation of several virulence factors. Among the results, we highlight Cyb5 as a secreted molecule of Paracoccidioides in the exoproteome obtained during Fe deprivation. Cyb5 is described as necessary for the Fe deprivation response of Saccharomyces cerevisiae and Aspergillus fumigatus. Experimental data and molecular modeling indicated that Cyb5 can bind to Fe ions in vitro, suggesting that it can be relevant in the arsenal of molecules related to iron homeostasis in P. brasiliensis.
Collapse
Affiliation(s)
- Aparecido Ferreira de Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Laurine Lacerda Pigosso
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Italo Dany Cavalcante Galo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
- *Correspondence: Célia Maria de Almeida Soares,
| |
Collapse
|
5
|
Marcos CM, de Oliveira HC, Assato PA, Castelli RF, Fusco-Almeida AM, Mendes-Giannini MJS. Drk1, a Dimorphism Histidine Kinase, Contributes to Morphology, Virulence, and Stress Adaptation in Paracoccidioides brasiliensis. J Fungi (Basel) 2021; 7:jof7100852. [PMID: 34682273 PMCID: PMC8539220 DOI: 10.3390/jof7100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022] Open
Abstract
P. brasiliensis is a thermally dimorphic fungus belonging to Paracoccidioides complex, causative of a systemic, endemic mycosis limited to Latin American countries. Signal transduction pathways related to important aspects as surviving, proliferation according to the biological niches are linked to the fungal pathogenicity in many species, but its elucidation in P. brasiliensis remains poorly explored. As Drk1, a hybrid histidine kinase, plays regulators functions in other dimorphic fungi species, mainly in dimorphism and virulence, here we investigated its importance in P. brasilensis. We, therefore generated the respective recombinant protein, anti-PbDrk1 polyclonal antibody and a silenced strain. The Drk1 protein shows a random distribution including cell wall location that change its pattern during osmotic stress condition; moreover the P. brasiliensis treatment with anti-PbDrk1 antibody, which does not modify the fungus's viability, resulted in decreased virulence in G. mellonella model and reduced interaction with pneumocytes. Down-regulating PbDRK1 yielded phenotypic alterations such as yeast cells with more elongated morphology, virulence attenuation in G. mellonella infection model, lower amount of chitin content, increased resistance to osmotic and cell wall stresses, and also caspofungin, and finally increased sensitivity to itraconazole. These observations highlight the importance of PbDrk1 to P. brasiliensis virulence, stress adaptation, morphology, and cell wall organization, and therefore it an interesting target that could help develop new antifungals.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil;
| | - Patrícia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Laboratório Central de Multiusuários, Faculdade de Ciências Agronômicas, Campus Botucatu, UNESP—Universidade Estadual Paulista, São Paulo 18610-034, Brazil
| | - Rafael Fernando Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil;
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
6
|
Hettiarachchige IK, Vander Jagt CJ, Mann RC, Sawbridge TI, Spangenberg GC, Guthridge KM. Global Changes in Asexual Epichloë Transcriptomes during the Early Stages, from Seed to Seedling, of Symbiotum Establishment. Microorganisms 2021; 9:microorganisms9050991. [PMID: 34064362 PMCID: PMC8147782 DOI: 10.3390/microorganisms9050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Asexual Epichloë fungi are strictly seed-transmitted endophytic symbionts of cool-season grasses and spend their entire life cycle within the host plant. Endophyte infection can confer protective benefits to its host through the production of bioprotective compounds. Inversely, plants provide nourishment and shelter to the resident endophyte in return. Current understanding of the changes in global gene expression of asexual Epichloë endophytes during the early stages of host-endophyte symbiotum is limited. A time-course study using a deep RNA-sequencing approach was performed at six stages of germination, using seeds infected with one of three endophyte strains belonging to different representative taxa. Analysis of the most abundantly expressed endophyte genes identified that most were predicted to have a role in stress and defence responses. The number of differentially expressed genes observed at early time points was greater than those detected at later time points, suggesting an active transcriptional reprogramming of endophytes at the onset of seed germination. Gene ontology enrichment analysis revealed dynamic changes in global gene expression consistent with the developmental processes of symbiotic relationships. Expression of pathway genes for biosynthesis of key secondary metabolites was studied comprehensively and fuzzy clustering identified some unique expression patterns. Furthermore, comparisons of the transcriptomes from three endophyte strains in planta identified genes unique to each strain, including genes predicted to be associated with secondary metabolism. Findings from this study highlight the importance of better understanding the unique properties of individual endophyte strains and will serve as an excellent resource for future studies of host-endophyte interactions.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Christy J. Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Ross C. Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- Correspondence:
| |
Collapse
|
7
|
Braz JD, Sardi JDCO, Pitangui NDS, Voltan AR, Almeida AMF, Mendes-Giannini MJS. Gene expression of Paracoccidioides virulence factors after interaction with macrophages and fibroblasts. Mem Inst Oswaldo Cruz 2021; 116:e200592. [PMID: 33787770 PMCID: PMC8011670 DOI: 10.1590/0074-02760200592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Jaqueline Derissi Braz
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - Nayla de Souza Pitangui
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Aline Raquel Voltan
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| |
Collapse
|
8
|
Fregonezi NF, Oliveira LT, Singulani JDL, Marcos CM, Dos Santos CT, Taylor ML, Mendes-Giannini MJS, de Oliveira HC, Fusco-Almeida AM. Heat Shock Protein 60, Insights to Its Importance in Histoplasma capsulatum: From Biofilm Formation to Host-Interaction. Front Cell Infect Microbiol 2021; 10:591950. [PMID: 33553002 PMCID: PMC7862341 DOI: 10.3389/fcimb.2020.591950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 12/04/2022] Open
Abstract
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins, acting as essential regulators of diverse constitutive metabolic processes. The Hsp60 of the dimorphic fungal Histoplasma capsulatum is the major surface adhesin to mammalian macrophages and studies of antibody-mediated protection against H. capsulatum have provided insight into the complexity involving Hsp60. However, nothing is known about the role of Hsp60 regarding biofilms, a mechanism of virulence exhibited by H. capsulatum. Considering this, the present study aimed to investigate the influence of the Hsp60 on biofilm features of H. capsulatum. Also, the non-conventional model Galleria mellonella was used to verify the effect of this protein during in vivo interaction. The use of invertebrate models such as G. mellonella is highly proposed for the evaluation of pathogenesis, immune response, virulence mechanisms, and antimicrobial compounds. For that purpose, we used a monoclonal antibody (7B6) against Hsp60 and characterized the biofilm of two H. capsulatum strains by metabolic activity, biomass content, and images from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). We also evaluated the survival rate of G. mellonella infected with both strains under blockage of Hsp60. The results showed that mAb 7B6 was effective to reduce the metabolic activity and biomass of both H. capsulatum strains. Furthermore, the biofilms of cells treated with the antibody were thinner as well as presented a lower amount of cells and extracellular polymeric matrix compared to its non-treated controls. The blockage of Hsp60 before fungal infection of G. mellonella larvae also resulted in a significant increase of the larvae survival compared to controls. Our results highlight for the first time the importance of the Hsp60 protein to the establishment of the H. capsulatum biofilms and the G. mellonella larvae infection. Interestingly, the results with Hsp60 mAb 7B6 in this invertebrate model suggest a pattern of fungus-host interaction different from those previously found in a murine model, which can be due to the different features between insect and mammalian immune cells such as the absence of Fc receptors in hemocytes. However further studies are needed to support this hypothesis
Collapse
Affiliation(s)
- Nathália Ferreira Fregonezi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Maria Lucia Taylor
- Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Haroldo Cesar de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
9
|
Interacting with Hemoglobin: Paracoccidioides spp. Recruits hsp30 on Its Cell Surface for Enhanced Ability to Use This Iron Source. J Fungi (Basel) 2021; 7:jof7010021. [PMID: 33401497 PMCID: PMC7823998 DOI: 10.3390/jof7010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.
Collapse
|
10
|
Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie van Leeuwenhoek 2020; 113:593-604. [PMID: 31902009 DOI: 10.1007/s10482-019-01382-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
Paracoccidiodomycosis (PCM) is a systemic mycosis caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The disease requires long and complicated treatment. The aim of this review is to address the fungal virulence factors that could be the target of the development of new drugs for PCM treatment. Virulence factors favoring the process of fungal infection and pathogenicity are considered as a microbial attribute associated with host susceptibility. P. brasiliensis has some known virulence factors which are 43 kDa glycoprotein (gp 43) which is an important fungal antigen, 70 kDa glycoprotein (gp 70), the carbohydrates constituting the fungal cell wall α-1,3, glucan and β-1,3-glucan, cell adhesion molecules and the presence of melanin pigments. The discovery and development of drugs that interact with these factors, such as inhibitors of β-1,3-glucan, reduced synthesis of gp 43, inhibitors of melanin production, is of great importance for the treatment of PCM. The study of virulence factors favors the understanding of pathogen-host relationships, aiming to evaluate the possibility of developing new therapeutic targets and mechanisms that these molecules play in the infectious process, favoring the design of a more specific treatment for this disease.
Collapse
|
11
|
Marcos CM, Tamer G, de Oliveira HC, Assato PA, Scorzoni L, Santos CT, de Lacorte Singulani J, de Fátima da Silva J, de Almeida R, de Paula E Silva ACA, da Silva RAM, de Andrade CR, Tamayo DP, Lopez AM, Barbosa NM, Zanelli CF, Hernandez-Ruiz O, McEwen JG, Mendes-Giannini MJS, Fusco-Almeida AM. Down-regulation of TUFM impairs host cell interaction and virulence by Paracoccidioides brasiliensis. Sci Rep 2019; 9:17206. [PMID: 31748561 PMCID: PMC6868139 DOI: 10.1038/s41598-019-51540-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The genus Paracoccidioides consist of dimorphic fungi geographically limited to the subtropical regions of Latin America, which are responsible for causing deep systemic mycosis in humans. However, the molecular mechanisms by which Paracoccidioides spp. causes the disease remain poorly understood. Paracoccidioides spp. harbor genes that encode proteins involved in host cell interaction and mitochondrial function, which together are required for pathogenicity and mediate virulence. Previously, we identified TufM (previously known as EF-Tu) in Paracoccidioides brasiliensis (PbTufM) and suggested that it may be involved in the pathogenicity of this fungus. In this study, we examined the effects of downregulating PbTUFM using a silenced strain with a 55% reduction in PbTUFM expression obtained by antisense-RNA (aRNA) technology. Silencing PbTUFM yielded phenotypic differences, such as altered translation elongation, respiratory defects, increased sensitivity of yeast cells to reactive oxygen stress, survival after macrophage phagocytosis, and reduced interaction with pneumocytes. These results were associated with reduced virulence in Galleria mellonella and murine infection models, emphasizing the importance of PbTufM in the full virulence of P. brasiliensis and its potential as a target for antifungal agents against paracoccidioidomycosis.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Gabrielle Tamer
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Patricia Akemi Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
- Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Claudia Tavares Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Rodrigo de Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Ana Carolina Alves de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Rosangela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Cleverton Roberto de Andrade
- Faculdade de Odontologia, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Fisiologia e Patologia, São Paulo, Brazil
| | - Diana Patricia Tamayo
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Angela Maria Lopez
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Natália Moreira Barbosa
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Ciências Biológicas, Laboratório de Biologia Molecular e Celular de Microrganismos, São Paulo, Brazil
| | - Cleslei Fernando Zanelli
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Ciências Biológicas, Laboratório de Biologia Molecular e Celular de Microrganismos, São Paulo, Brazil
| | - Orville Hernandez-Ruiz
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
- Grupo de Investigación MICROBA -Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Juan G McEwen
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
- Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clinica, São Paulo, Brazil.
| |
Collapse
|
12
|
Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes Infect 2019; 21:401-411. [PMID: 30951888 DOI: 10.1016/j.micinf.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a systemic disorder that involves the lungs and other organs. The adherence of pathogenic microorganisms to host tissues is an essential event in the onset of colonization and spread. The host-pathogen interaction is a complex interplay between the defense mechanisms of the host and the efforts of pathogenic microorganisms to colonize it. Therefore, the identification of fungi proteins interacting with host proteins is an important step understanding the survival strategies of the fungus within the host. In this paper, we used affinity chromatography based on surface proteomics (ACSP) to investigate the interactions of pathogen proteins with host surface molecules. Paracoccidioides lutzii extracts enriched of surface proteins were captured by chromatographic resin, which was immobilized with macrophage cell surface proteins, and identified by mass spectrometry. A total of 215 proteins of P. lutzii were identified interacting with macrophage proteins. In silico analysis classified those proteins according to the presence of sites for N- and O-glycosylation and secretion by classical and non-classical pathways. Serine proteinase (SP) and fructose-1,6-bisphosphate aldolase (FBA) were identified in our proteomics analysis. Immunolocalization assay and flow cytometry both showed an increase in the expression of these two proteins during host-pathogen interaction.
Collapse
|
13
|
Hu S, Cao L, Wu Y, Zhou Y, Jiang T, Wang L, Wang Q, Ming D, Chen S, Wang M. Comparative genomic analysis of Myroides odoratimimus isolates. Microbiologyopen 2018; 8:e00634. [PMID: 29797432 PMCID: PMC6391281 DOI: 10.1002/mbo3.634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Myroides odoratimimus is an important nosocomial pathogen. Management of M. odoratimimus infection is difficult owing to the multidrug resistance and the unknown pathogenesis mechanisms. Based on our previous genomic sequencing data of M. odoratimimus PR63039 (isolated from a patient with the urinary tract infection), in this study, we further performed comparative genomic analysis for 10 selected Myroides strains. Our results showed that these Myroides genome contexts were very similar and phylogenetically related. Various prophages were identified in the four clinical isolate genomes, which possibly contributed to the genome evolution among the Myroides strains. CRISPR elements were only detected in the two clinical (PR63039 and CCUG10230) isolates and two environmental (CCUG12700 and H1bi) strains. With more stringent cutoff parameters in CARD analysis, the four clinical M. odoratimimus contained roughly equal antibiotic resistance genes, indicating their similar antibiotic resistance profiles. The three clinical (CCUG10230, CCUG12901, CIP101113) and three environmental (CCUG12700, L41, H1bi) M. odoratimimus strains were speculated to carry the indistinguishable virulent factors (VFs), which may involve in the similar pathogenesis mechanism. Moreover, some VFs might confer to the high capacity of dissemination, attacking tissue cells and induction of autoimmune complications. Our results facilitate the research of antibiotic resistance and the development of therapeutic regimens for the M. odoratimimus infections.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Cao
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Yiyin Wu
- College of Computer Science and Technology, Huaqiao University, Xiamen, Fujian, China
| | - Yajun Zhou
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Jiang
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Liqiang Wang
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Qiujing Wang
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mingxi Wang
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|