1
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
2
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
3
|
Sharples AP. Epigenome-proteome integration in aged skeletal muscle after exercise training. J Physiol 2025; 603:29-31. [PMID: 39298058 DOI: 10.1113/jp287235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 01/07/2025] Open
|
4
|
Fei S, Rule BD, Godwin JS, Mobley CB, Roberts MD, von Walden F, Vechetti IJ. miRNA-1 regulation is necessary for mechanical overload-induced muscle hypertrophy in male mice. Physiol Rep 2025; 13:e70166. [PMID: 39761956 PMCID: PMC11705529 DOI: 10.14814/phy2.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that play a critical role in regulating gene expression post-transcriptionally. They are involved in various developmental and physiological processes, and their dysregulation is linked to various diseases. Skeletal muscle-specific miRNAs, including miR-1, play a crucial role in the development and maintenance of skeletal muscle. It has been demonstrated that the expression of miR-1 decreases by approximately 50% in response to hypertrophic stimuli, suggesting its potential involvement in muscle hypertrophy. In our study, we hypothesize that reduction of miR-1 levels is necessary for skeletal muscle growth due to its interaction to essential pro-growth genes. Promoting a smaller reduction of miR-1 levels, we observed a blunted hypertrophic response in mice undergoing a murine model of muscle hypertrophy. In addition, our results suggest that miR-1 inhibits the expression of Itm2a, a membrane-related protein, as potential miR-1-related candidate for skeletal muscle hypertrophy. While the exact mechanism in muscle hypertrophy has not been identified, our results suggest that miR-1-regulated membrane proteins are important for skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- Shengyi Fei
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Blake D. Rule
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | | | | | | | | - Ivan J. Vechetti
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
5
|
Edman S, Jones Iii RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Chambers TL, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth. EMBO Rep 2024; 25:5810-5837. [PMID: 39482487 PMCID: PMC11624283 DOI: 10.1038/s44319-024-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.
Collapse
Affiliation(s)
- Sebastian Edman
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Ronald G Jones Iii
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Paulo R Jannig
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Pieter J Koopmans
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Toby L Chambers
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Calvin S Peterson
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Logan N Scott
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas P Greene
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Vandre C Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Biological Sciences, Oakland University, Rochester Hills, MI, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Liu Zhengye
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedic Surgery, Region Jönköping County, Eksjö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A Murach
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA.
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
6
|
Cui M, Jannig P, Halladjian M, Figueiredo VC, Wen Y, Vechetti IJ, Krogh N, Jude B, Edman S, Lanner J, McCarthy J, Murach KA, Sejersen T, Nielsen H, von Walden F. The rRNA epitranscriptome and myonuclear SNORD landscape in skeletal muscle fibers contributes to ribosome heterogeneity and is altered by a hypertrophic stimulus. Am J Physiol Cell Physiol 2024; 327:C516-C524. [PMID: 38912733 PMCID: PMC11426995 DOI: 10.1152/ajpcell.00301.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
In cell biology, ribosomal RNA (rRNA) 2'O-methyl (2'-O-Me) is the most prevalent posttranscriptional chemical modification contributing to ribosome heterogeneity. The modification involves a family of small nucleolar RNAs (snoRNAs) and is specified by box C/D snoRNAs (SNORDs). Given the importance of ribosome biogenesis for skeletal muscle growth, we asked if rRNA 2'-O-Me in nascent ribosomes synthesized in response to a growth stimulus is an unrecognized mode of ribosome heterogeneity in muscle. To determine the pattern and dynamics of 2'-O-Me rRNA, we used a sequencing-based profiling method called RiboMeth-seq (RMS). We applied this method to tissue-derived rRNA of skeletal muscle and rRNA specifically from the muscle fiber using an inducible myofiber-specific RiboTag mouse in sedentary and mechanically overloaded conditions. These analyses were complemented by myonuclear-specific small RNA sequencing to profile SNORDs and link the rRNA epitranscriptome to known regulatory elements generated within the muscle fiber. We demonstrate for the first time that mechanical overload of skeletal muscle 1) induces decreased 2'-O-Me at a subset of skeletal muscle rRNA and 2) alters the SNORD profile in isolated myonuclei. These findings point to a transient diversification of the ribosome pool via 2'-O-Me during growth and adaptation in skeletal muscle. These findings suggest changes in ribosome heterogeneity at the 2'-O-Me level during muscle hypertrophy and lay the foundation for studies investigating the functional implications of these newly identified "growth-induced" ribosomes.NEW & NOTEWORTHY Ribosomal RNAs (rRNAs) are posttranscriptionally modified by 2'O-methyl (2'-O-Me). This study applied RiboMeth-seq (RMS) to detect changes in 2'-O-Me levels during skeletal muscle hypertrophy, uncovering transient diversification of the ribosome pool in skeletal muscle fibers. This work implies a role for ribosome heterogeneity in skeletal muscle growth and adaptation.
Collapse
Affiliation(s)
- Minying Cui
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Jannig
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Maral Halladjian
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vandré C Figueiredo
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Baptiste Jude
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Edman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - John McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, People's Republic of China
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ferdinand von Walden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, People's Republic of China
| |
Collapse
|
7
|
Burke BI, Ismaeel A, McCarthy JJ. The utility of the rodent synergist ablation model in identifying molecular and cellular mechanisms of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2024; 327:C601-C606. [PMID: 39069822 PMCID: PMC11427019 DOI: 10.1152/ajpcell.00362.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle exhibits remarkable plasticity to adapt to stimuli such as mechanical loading. The mechanisms that regulate skeletal muscle hypertrophy due to mechanical overload have been thoroughly studied. Remarkably, our understanding of many of the molecular and cellular mechanisms that regulate hypertrophic growth were first identified using the rodent synergist ablation (SA) model and subsequently corroborated in human resistance exercise training studies. To demonstrate the utility of the SA model, we briefly summarize the hypertrophic mechanisms identified using the model and the following translation of these mechanism to human skeletal muscle hypertrophy induced by resistance exercise training.
Collapse
Affiliation(s)
- Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
8
|
Syroid AL, Hawke TJ. The risks and rewards of the synergist ablation model in skeletal muscle biology research. Am J Physiol Cell Physiol 2024; 327:C599-C600. [PMID: 39069823 DOI: 10.1152/ajpcell.00504.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Anika L Syroid
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Roberts MD, Hornberger TA, Phillips SM. The utility-and limitations-of the rodent synergist ablation model in examining mechanisms of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2024; 327:C607-C613. [PMID: 39069828 PMCID: PMC11427104 DOI: 10.1152/ajpcell.00405.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
In this issue, Burke et al. discuss the utility of the rodent synergist ablation (SA) model for examining mechanisms associated with skeletal muscle hypertrophy. In this invited perspective, we aim to complement their original perspective by discussing limitations to the model along with alternative mechanical overload models that have strengths and limitations.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Burke BI, Ismaeel A, von Walden F, Murach KA, McCarthy JJ. Skeletal muscle hypertrophy: cell growth is cell growth. Am J Physiol Cell Physiol 2024; 327:C614-C618. [PMID: 39069829 PMCID: PMC11901336 DOI: 10.1152/ajpcell.00418.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Roberts et al. have provided an insightful counterpoint to our review article on the utility of the synergist ablation model. The purpose of this review is to provide some further dialogue regarding the strengths and weaknesses of the synergist ablation model. Specifically, we highlight that the robustness of the model overshadows surgical limitations. We also compare the transcriptomic responses to synergist ablation in mice and resistance exercise in humans to identify common pathways. We conclude that "cell growth is cell growth" and that the mechanisms available to cells to accumulate biomass and increase in size are similar across cell types and independent of the rate of growth.
Collapse
Affiliation(s)
- Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Ferdinand von Walden
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Kevin A Murach
- Department Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
11
|
Ismaeel A, Peck BD, Montgomery MM, Burke BI, Goh J, Kang G, Franco AB, Xia Q, Goljanek-Whysall K, McDonagh B, McLendon JM, Koopmans PJ, Jacko D, Schaaf K, Bloch W, Gehlert S, Wen Y, Murach KA, Peterson CA, Boudreau RL, Fisher-Wellman KH, McCarthy JJ. microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607377. [PMID: 39149347 PMCID: PMC11326265 DOI: 10.1101/2024.08.09.607377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - McLane M Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Abigail B Franco
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass Spectrometry and Proteomics Core, University of Kentucky, Lexington, KY, USA
| | - Qin Xia
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Pieter J Koopmans
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Edman S, Jones RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-Hour Time Course of Integrated Molecular Responses to Resistance Exercise in Human Skeletal Muscle Implicates MYC as a Hypertrophic Regulator That is Sufficient for Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586857. [PMID: 38586026 PMCID: PMC10996609 DOI: 10.1101/2024.03.26.586857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing defined the transcriptome while DNA methylomics and computational approaches complemented these data. The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and hypertrophy.
Collapse
Affiliation(s)
- Sebastian Edman
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Paulo R. Jannig
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Karolinska Institute, Division of Clinical Physiology, Department of Laboratory Medicine, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Karolinska Institute, Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Nicholas T. Thomas
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Pieter Jan Koopmans
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Francielly Morena
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Calvin S. Peterson
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Logan N. Scott
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Vandre C. Figueiredo
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- Oakland University, Department of Biological Sciences, Rochester Hills, MI, USA
| | - Christopher S. Fry
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Liu Zhengye
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Johanna T. Lanner
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Yuan Wen
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Ferdinand von Walden
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| |
Collapse
|