1
|
Kapinusova G, Suman J, Strejcek M, Pajer P, Cajthaml T, Ulbrich P, Neumann-Schaal M, Uhlik O. Svornostia abyssi gen. nov., sp. nov. isolated from the world's deepest silver-uranium mine currently devoted to the extraction of radon-saturated water. Int J Syst Evol Microbiol 2024; 74. [PMID: 38922323 DOI: 10.1099/ijsem.0.006432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
A Gram-stain-positive, rod-shaped, aerobic, motile bacterium, J379T, was isolated from radioactive water spring C1, located in a former silver-uranium mine in the Czech Republic. This slow-growing strain exhibited optimal growth at 24-28 °C on solid media with <1 % salt concentration and alkaline pH 8-10. The only respiratory quinone found in strain J379T was MK-7(H4). C18 : 1 ω9c (60.9 %), C18 : 0 (9.4 %), C16 : 0 and alcohol-C18 : 0 (both 6.2 %) were found to be the major fatty acids. The peptidoglycan contained directly cross-linked meso-diaminopimelic acid. Phylogenetic reconstruction based on the 16S rRNA gene sequences and the core-genome analysis revealed that strain J379T forms a separate phylogenetic lineage within the recently amended order Solirubrobacterales. A comparison of the 16S rRNA gene sequences between strain J379T and other members of the order Solirubrobacterales showed <96 % similarity. This analysis revealed that the closest type strains were Parviterribacter kavangonensis D16/0 /H6T (95.2 %), Capillimicrobium parvum 0166_1T (94.9 %) and Conexibacter arvalis KV-962T (94.5 %). Whole-genome analysis showed that the closest type strain was Baekduia soli BR7-21T with an average nucleotide identity of 78 %, average amino acid identity of 63.2 % and percentage of conserved proteins of 48.2 %. The G+C content of the J379T genomic DNA was 71.7 mol%. Based on the phylogenetic and phylogenomic data, as well as its physiological characteristics, strain J379T is proposed to represent a type strain (DSM 113746T=CCM 9300T) of Svornostia abyssi gen. nov. sp. nov. within the family Baekduiaceae.
Collapse
Affiliation(s)
- Gabriela Kapinusova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
2
|
Castro-Gutierrez V, Fuller E, Garcillán-Barcia MP, Helgason T, Hassard F, Moir J. Dissemination of metaldehyde catabolic pathways is driven by mobile genetic elements in Proteobacteria. Microb Genom 2022; 8. [DOI: 10.1099/mgen.0.000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders
Acinetobacter calcoaceticus
E1 and
Sphingobium
CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In
A. calcoaceticus
E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading β- and γ-Proteobacteria, indicating horizontal gene transfer (HGT). For
Sphingobium
CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in
Escherichia coli
alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in α, β and γ-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an α-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided.
Collapse
Affiliation(s)
- Víctor Castro-Gutierrez
- Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, 11501, Costa Rica
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
- Department of Biology, University of York, Heslington, York, UK
| | - Edward Fuller
- Department of Biology, University of York, Heslington, York, UK
| | - María Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Cantabria, Spain
| | | | - Francis Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - James Moir
- Department of Biology, University of York, Heslington, York, UK
| |
Collapse
|
3
|
Kapinusova G, Jani K, Smrhova T, Pajer P, Jarosova I, Suman J, Strejcek M, Uhlik O. Culturomics of Bacteria from Radon-Saturated Water of the World's Oldest Radium Mine. Microbiol Spectr 2022; 10:e0199522. [PMID: 36000901 PMCID: PMC9602452 DOI: 10.1128/spectrum.01995-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 12/31/2022] Open
Abstract
Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or any other characteristics, have recently been the subject of phylogenetic studies with a closer focus on the description and/or isolation of phylogenetically novel or biotechnologically interesting microorganisms. Generally, however, most such microorganisms are rarely obtained in pure culture or are even, for now, unculturable under laboratory conditions. In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl), Czech Republic, we investigated a combination of classical cultivation approaches with those imitating sampling source conditions. Using these environmentally relevant cultivation approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs. Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9 taxonomic classes, ~10% of which were identified as hitherto undescribed taxa. Genomes of the latter were sequenced and analyzed, with a special focus on endogenous defense systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of the isolates were more resistant to menadione than the model strain Deinococcus radiodurans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae, Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface water springs contain diverse bacterial populations, including as-yet-undescribed taxa and strains with promising biotechnological potential. Furthermore, this study suggests that environmentally relevant cultivation techniques increase the efficiency of cultivation, thus enhancing the chance of isolating hitherto uncultured microorganisms. IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a former silver-uranium mine and the world's first and for a long time only radium mine, nowadays the deepest mine devoted to the extraction of water which is saturated with radon and has therapeutic benefits given its chemical properties. This healing water, which is approximately 13 thousand years old, is used under medical supervision for the treatment of patients with neurological and rheumatic disorders. Our culturomic approach using low concentrations of growth substrates or the environmental matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation time resulted in the isolation of a broad spectrum of microorganisms from 4 radioactive springs of Jáchymov which are phylogenetically novel and/or bear various adaptive or coping mechanisms to thrive under selective pressure and can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnological, or medical disciplines.
Collapse
Affiliation(s)
- Gabriela Kapinusova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Kunal Jani
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Tereza Smrhova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Irena Jarosova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biotechnology, Prague, Czech Republic
| | - Jachym Suman
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| |
Collapse
|
4
|
Vodickova P, Suman J, Benesova E, Strejcek M, Neumann-Schaal M, Cajthaml T, Ridl J, Pajer P, Ulbrich P, Uhlik O, Lipovova P. Arthrobacter polaris sp. nov., a new cold-adapted member of the family Micrococcaceae isolated from Antarctic fellfield soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An aerobic, Gram-stain-positive and non-spore-forming strain, designated C1-1T, was isolated from a fellfield soil sample collected from frost-sorted polygons on Jane Col, Signy Island, Maritime Antarctic. Cells with a size of 0.65–0.9×1.2–1.7 µm have a flagellar motile apparatus and exhibit a rod–coccus growth cycle. Optimal growth conditions were observed at 15–20 °C, pH 7.0 and NaCl concentration up to 0.5 % (w/v) in the medium. The 16S rRNA gene sequence of C1-1T showed the highest pairwise similarity of 98.77 % to
Arthrobacter glacialis
NBRC 113092T. Phylogenetic trees based on the 16S rRNA and whole-genome sequences revealed that strain C1-1T belongs to the genus
Arthrobacter
and is most closely related to members of the ‘
Arthrobacter psychrolactophilus
group’. The G+C content of genomic DNA was 58.95 mol%. The original and orthologous average nucleotide identities between strain C1-1T and
A. glacialis
NBRC 113092T were 77.15 % and 77.38 %, respectively. The digital DNA–DNA relatedness values between strain C1-1T and
A. glacialis
NBRC 113092T was 21.6 %. The polar lipid profile was composed mainly of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified glycolipid. The predominant cellular fatty acids were anteiso-C15 : 0 (75 %) and anteiso-C17 : 0 (15.2 %). Menaquinone MK-9(H2) (86.4 %) was the major respiratory quinone in strain C1-1T. The peptidoglycan type was determined as A3α (l-Lys–l-Ala3; A11.6). Based on all described phylogenetic, physiological and chemotaxonomic characteristics, we propose that strain C1-1T (=DSM 112353T=CCM 9148T) is the type strain of a novel species Arthrobacter polaris sp. nov.
Collapse
Affiliation(s)
- Patricie Vodickova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Eva Benesova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic
| | - Jakub Ridl
- Department of Zoology, Faculty of Science, Charles University, Viničná 1594, 128 00, Prague 2, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 16001, Prague 6, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Petra Lipovova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
5
|
Smrhova T, Jani K, Pajer P, Kapinusova G, Vylita T, Suman J, Strejcek M, Uhlik O. Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. ENVIRONMENTAL MICROBIOME 2022; 17:48. [PMID: 36089611 PMCID: PMC9465906 DOI: 10.1186/s40793-022-00440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The extreme conditions of thermal springs constitute a unique aquatic habitat characterized by low nutrient contents and the absence of human impacts on the microbial community composition. Thus, these springs may host phylogenetically novel microorganisms with potential use in biotechnology. With this hypothesis in mind, we examined the microbial composition of four thermal springs of the world-renowned spa town of Karlovy Vary (Carlsbad), Czechia, which differ in their temperature and chemical composition. RESULTS Microbial profiling using 16S rRNA gene sequencing revealed the presence of phylogenetically novel taxa at various taxonomic levels, spanning from genera to phyla. Many sequences belonged to novel classes within the phyla Hydrothermae, Altiarchaeota, Verrucomicrobia, and TA06. Cultivation-based methods employing oligotrophic media resulted in the isolation of 44 unique bacterial isolates. These include strains that withstand concentrations of up to 12% NaClw/v in cultivation media or survive a temperature of 100 °C, as well as hitherto uncultured bacterial species belonging to the genera Thermomonas, Paenibacillus, and Cellulomonas. These isolates harbored stress response genes that allow them to thrive in the extreme environment of thermal springs. CONCLUSIONS Our study is the first to analyze the overall microbial community composition of the renowned Karlovy Vary thermal springs. We provide insight into yet another level of uniqueness of these springs. In addition to their unique health benefits and cultural significance, we demonstrate that these springs harbor phylogenetically distinct microorganisms with unusual life strategies. Our findings open up avenues for future research with the promise of a deeper understanding of the metabolic potential of these microorganisms.
Collapse
Affiliation(s)
- Tereza Smrhova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Kunal Jani
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Gabriela Kapinusova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Tomas Vylita
- Institute of Balneology and Spa Sciences, Karlovy Vary, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
6
|
Comparative Genomic Analysis of Antarctic Pseudomonas Isolates with 2,4,6-Trinitrotoluene Transformation Capabilities Reveals Their Unique Features for Xenobiotics Degradation. Genes (Basel) 2022; 13:genes13081354. [PMID: 36011267 PMCID: PMC9407559 DOI: 10.3390/genes13081354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Since physicochemical methods for remediation are poorly effective, the use of microorganisms has gained interest as an alternative to restore TNT-contaminated sites. We previously demonstrated the high TNT-transforming capability of three novel Pseudomonas spp. isolated from Deception Island, Antarctica, which exceeded that of the well-characterized TNT-degrading bacterium Pseudomonas putida KT2440. In this study, a comparative genomic analysis was performed to search for the metabolic functions encoded in the genomes of these isolates that might explain their TNT-transforming phenotype, and also to look for differences with 21 other selected pseudomonads, including xenobiotics-degrading species. Comparative analysis of xenobiotic degradation pathways revealed that our isolates have the highest abundance of key enzymes related to the degradation of fluorobenzoate, TNT, and bisphenol A. Further comparisons considering only TNT-transforming pseudomonads revealed the presence of unique genes in these isolates that would likely participate directly in TNT-transformation, and others involved in the β-ketoadipate pathway for aromatic compound degradation. Lastly, the phylogenomic analysis suggested that these Antarctic isolates likely represent novel species of the genus Pseudomonas, which emphasizes their relevance as potential agents for the bioremediation of TNT and other xenobiotics.
Collapse
|