1
|
Kon T, Kon-Nanjo K, Simakov O. Subtelomeric repeat expansion in Hydractinia symbiolongicarpus chromosomes. Mob DNA 2025; 16:14. [PMID: 40134021 PMCID: PMC11934779 DOI: 10.1186/s13100-025-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Despite the striking conservation of animal chromosomes, their repetitive element complements are vastly diverse. Only recently, high quality chromosome-level genome assemblies enabled identification of repeat compositions along a broad range of animal chromosomes. Here, utilizing the chromosome-level genome assembly of Hydractinia symbiolongicarpus, a colonial hydrozoan cnidarian, we describe an accumulation of a single 372 bp repeat unit in the subtelomeric regions. Based on the sequence divergence, its partial affinity with the Helitron group can be detected. This sequence is associated with a repeated minisatellite unit of about 150 bp. Together, they account for 26.1% of the genome (126 Mb of the 483 Mb). This could explain the genome size increase observed in H. symbiolongicarpus compared with other cnidarians, yet distinguishes this expansion from other large cnidarian genomes, such as Hydra vulgaris, where such localized propagation is absent. Additionally, we identify a derivative of an IS3EU-like DNA element accumulated at the putative centromeric regions. Our analysis further reveals that Helitrons generally comprise a large proportion of H. symbiolongicarpus (11.8%). We investigated Helitron presence and distributions across several cnidarian genomes. We find that in Nematostella vectensis, an anthozoan cnidarian, Helitron-like sequences were similarly accumulated at the subtelomeric regions. All these findings suggest that Helitron derivatives are prone to forming chromosomal extensions in cnidarians through local amplification in subtelomeric regions, driving variable genome expansions within the clade.
Collapse
Affiliation(s)
- Tetsuo Kon
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria.
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria
| |
Collapse
|
2
|
Salamanca-Díaz DA, Horkan HR, García-Castro H, Emili E, Salinas-Saavedra M, Pérez-Posada A, Rossi ME, Álvarez-Presas M, Mac Gabhann R, Hillenbrand P, Febrimarsa, Curantz C, Weavers PK, Lund-Ricard Y, Förg T, Michaca MH, Sanders SM, Kenny NJ, Paps J, Frank U, Solana J. The Hydractinia cell atlas reveals cellular and molecular principles of cnidarian coloniality. Nat Commun 2025; 16:2121. [PMID: 40032860 PMCID: PMC11876637 DOI: 10.1038/s41467-025-57168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Coloniality is a widespread growth form in cnidarians, tunicates, and bryozoans, among others. Colonies function as single physiological units despite their modular structure of zooids and supporting tissues. A key question is how structurally and functionally distinct colony parts are generated. In the cnidarian Hydractinia symbiolongicarpus, colonies consist of zooids (polyps) interconnected by stolons attached to the substrate. Using single-cell transcriptomics, we profiled ~200,000 Hydractinia cells, including stolons and two polyp types, identifying major cell types and their distribution across colony parts. Distinct colony parts are primarily characterised by unique combinations of shared cell types and to a lesser extent by part-specific cell types. We identified cell type-specific transcription factors (TFs) and gene sets expressed within these cell types. This suggests that cell type combinations and occasional innovations drive the evolution of coloniality in cnidarians. We uncover a novel stolon-specific cell type linked to biomineralization and chitin synthesis, potentially crucial for habitat adaptation. Additionally, we describe a new cell type mediating self/non-self recognition. In summary, the Hydractinia cell atlas provides insights into the cellular and molecular mechanisms underpinning coloniality.
Collapse
Affiliation(s)
- David A Salamanca-Díaz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Helen R Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Miguel Salinas-Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Maria Eleonora Rossi
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Marta Álvarez-Presas
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Rowan Mac Gabhann
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Paula Hillenbrand
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah, Indonesia
| | - Camille Curantz
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Paris K Weavers
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yasmine Lund-Ricard
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Tassilo Förg
- Institute of Zoology, University of Heidelberg, Heidelberg, Germany
| | - Manuel H Michaca
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania, PA, USA
| | - Steven M Sanders
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania, PA, USA
| | - Nathan J Kenny
- Department of Biochemistry, University of Otago, Aotearoa, Dunedin, New Zealand
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
- Department of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Koutsouveli V, Torres-Oliva M, Bayer T, Fuß J, Grossschmidt N, Marulanda-Gomez AM, Jensen N, Gill D, Schmitz RA, Pita L, Reusch TBH. The Chromosome-level Genome of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865 Reveals a Unique Immune Gene Repertoire. Genome Biol Evol 2025; 17:evaf006. [PMID: 39834228 PMCID: PMC11797021 DOI: 10.1093/gbe/evaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M. leidyi with a focus on its immune gene repertoire. The genome was 247.97 Mb, with N50 16.84 Mb, and 84.7% completeness. Its karyotype was 13 chromosomes. In this genome and that of two other ctenophores, Bolinopsis microptera and Hormiphora californensis, we detected a high number of protein domains related to potential immune receptors. Among those, proteins containing Toll/interleukin-1 (TIR2) domain, NACHT domain, Scavenger Receptor Cystein-Rich (SRCR) domain, or C-type Lectin domain (CTLD) were abundant and presented unique domain architectures in M. leidyi. M. leidyi seems to lack bona fide Toll-like Receptors, but it does possess a repertoire of 15 TIR2 domain-containing genes. Besides, we detected a bona fide NOD-like receptor and 38 NACHT domain-containing genes. In order to verify the function of those domain-containing genes, we exposed M. leidyi to the pathogen Vibrio coralliilyticus. Among the differentially expressed genes, we identified potential immune receptors, including four TIR2 domain-containing genes, all of which were upregulated in response to pathogen exposure. To conclude, many common immune receptor domains, highly conserved across metazoans, are already present in Ctenophora. These domains have large expansions and unique architectures in M. leidyi, findings consistent with the basal evolutionary position of this group, but still might have conserved functions in immunity and host-microbe interaction.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Till Bayer
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Nora Grossschmidt
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Angela M Marulanda-Gomez
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Nadin Jensen
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Diana Gill
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Lucía Pita
- Marine Biology and Oceanography, Marine Biogeochemistry, Atmosphere and Climate, Institut de Ciències del Mar–Spanish National Research Council (CSIC), Barcelona, Spain
| | - Thorsten B H Reusch
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
4
|
Zuccarotto A, Sollitto M, Leclère L, Panzella L, Gerdol M, Leone S, Castellano I. Molecular evolution of ovothiol biosynthesis in animal life reveals diversity of the natural antioxidant ovothiols in Cnidaria. Free Radic Biol Med 2025; 227:117-128. [PMID: 39617215 DOI: 10.1016/j.freeradbiomed.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024]
Abstract
Sulfoxide synthase OvoA is the key enzyme involved in the biosynthesis of ovothiols (OSHs), secondary metabolites endowed with unique antioxidant properties. Understanding the evolution of such enzymes and the diversity of their metabolites should reveal fundamental mechanisms governing redox signaling and environmental adaptation. "Early-branching" animals such as Cnidaria display unique molecular diversity and symbiotic relationships responsible for the biosynthesis of natural products, however, they have been neglected in previous research on antioxidants and OSHs. In this work, we have integrated genome and transcriptome mining with biochemical analyses to study the evolution and diversification of OSHs biosynthesis in cnidarians. By tracing the history of the ovoA gene, we inferred its loss in the latest common ancestor of Medusozoa, followed by the acquisition of a unique ovoB/ovoA chimaeric gene in Hydrozoa, likely through a horizontal gene transfer from dinoflagellate donors. While Anthozoa (corals and anemones), bearing canonical ovoA genes, produced a striking variety of OSHs (A, B, and C), the multifunctional enzyme in Hydrozoa was related to OSH B biosynthesis, as shown in Clytia hemisphaerica. Surprisingly, the ovoA-lacking jellyfish Aurelia aurita and Pelagia noctiluca also displayed OSHs, and we provided evidence of their incorporation from external sources. Finally, transcriptome mining revealed ovoA conserved expression pattern during larval development from Cnidaria to more evolved organisms and its regulation by external stimuli, such as UV exposure. The results of our study shed light on the origin and diversification of OSH biosynthesis in basal animals and highlight the importance of redox-active molecules from ancient metazoans as cnidarians to vertebrates.
Collapse
Affiliation(s)
- Annalisa Zuccarotto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy; Department of Biology, University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Lucas Leclère
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
5
|
Krasovec G, Frank U. Apoptosis-dependent head development during metamorphosis of the cnidarian Hydractinia symbiolongicarpus. Dev Biol 2024; 516:148-157. [PMID: 39163924 PMCID: PMC7617490 DOI: 10.1016/j.ydbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Apoptosis is a regulated cell death that depends on caspases. It has mainly been studied as a mechanism for the removal of unwanted cells. However, apoptotic cells can induce fate or behavior changes of their neighbors and thereby participate in development. Here, we address the functions of apoptosis during metamorphosis of the cnidarian Hydractinia symbiolongicarpus. We describe the apoptotic profile during metamorphosis of the larva and identify Caspase3/7a, but no other executioner caspases, as essential for apoptosis in this context. Using pharmacological and genetic approaches, we find that apoptosis is required for normal head development. Inhibition of apoptosis resulted in defects in head morphogenesis. Neurogenesis was compromised in the body column of apoptosis-inhibited animals but there was no effect on the survival or proliferation of stem cells, suggesting that apoptosis is required for cellular commitment rather than for the maintenance of their progenitors. Differential transcriptomic analysis identifies TRAF genes as downregulated in apoptosis-inhibited larvae and functional experiments provide evidence that they are essential for head development. Finally, we find no major role for apoptosis in head regeneration in this animal, in contrast to the significance of apoptosis in Hydra head regeneration.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
7
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals. Genome Res 2024; 34:498-513. [PMID: 38508693 PMCID: PMC11067881 DOI: 10.1101/gr.278382.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liam B Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah 57169, Indonesia
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Center for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NIH Intramural Sequencing Center, Rockville, Maryland 20852, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
8
|
Zancolli G, von Reumont BM, Anderluh G, Caliskan F, Chiusano ML, Fröhlich J, Hapeshi E, Hempel BF, Ikonomopoulou MP, Jungo F, Marchot P, de Farias TM, Modica MV, Moran Y, Nalbantsoy A, Procházka J, Tarallo A, Tonello F, Vitorino R, Zammit ML, Antunes A. Web of venom: exploration of big data resources in animal toxin research. Gigascience 2024; 13:giae054. [PMID: 39250076 PMCID: PMC11382406 DOI: 10.1093/gigascience/giae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Research on animal venoms and their components spans multiple disciplines, including biology, biochemistry, bioinformatics, pharmacology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom research can be challenging, and relevant tools and resources are often dispersed across different online platforms, making them less accessible to nonexperts. In this article, we address the multifaceted needs of the scientific community involved in venom and toxin-related research by identifying and discussing web resources, databases, and tools commonly used in this field. We have compiled these resources into a comprehensive table available on the VenomZone website (https://venomzone.expasy.org/10897). Furthermore, we highlight the challenges currently faced by researchers in accessing and using these resources and emphasize the importance of community-driven interdisciplinary approaches. We conclude by underscoring the significance of enhancing standards, promoting interoperability, and encouraging data and method sharing within the venom research community.
Collapse
Affiliation(s)
- Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Goethe University Frankfurt, Faculty of Biological Sciences, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Figen Caliskan
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University Federico II of Naples, 80055 Portici, Naples, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Jacob Fröhlich
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Evroula Hapeshi
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Benjamin-Florian Hempel
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Maria P Ikonomopoulou
- Madrid Institute of Advanced Studies in Food, Precision Nutrition & Aging Program, 28049 Madrid, Spain
| | - Florence Jungo
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, 1211 Geneva, Switzerland
| | - Pascale Marchot
- Laboratory Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, Centre National de la Recherche Scientifique, Faculté des Sciences, Campus Luminy, 13288 Marseille, France
| | - Tarcisio Mendes de Farias
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 00198 Rome, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Ayse Nalbantsoy
- Engineering Faculty, Bioengineering Department, Ege University, 35100 Bornova-Izmir, Turkey
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Andrea Tarallo
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), 73100 Lecce, Italy
| | - Fiorella Tonello
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mark Lawrence Zammit
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, 2090 Msida, Malta
- Malta National Poisons Centre, Malta Life Sciences Park, 3000 San Ġwann, Malta
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|