1
|
Witt KE, Villanea FA. Computational Genomics and Its Applications to Anthropological Questions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70010. [PMID: 40071816 PMCID: PMC11898561 DOI: 10.1002/ajpa.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 03/15/2025]
Abstract
The advent of affordable genome sequencing and the development of new computational tools have established a new era of genomic knowledge. Sequenced human genomes number in the tens of thousands, including thousands of ancient human genomes. The abundance of data has been met with new analysis tools that can be used to understand populations' demographic and evolutionary histories. Thus, a variety of computational methods now exist that can be leveraged to answer anthropological questions. This includes novel likelihood and Bayesian methods, machine learning techniques, and a vast array of population simulators. These computational tools provide powerful insights gained from genomic datasets, although they are generally inaccessible to those with less computational experience. Here, we outline the theoretical workings behind computational genomics methods, limitations and other considerations when applying these computational methods, and examples of how computational methods have already been applied to anthropological questions. We hope this review will empower other anthropologists to utilize these powerful tools in their own research.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human GeneticsClemson UniversityClemsonSouth CarolinaUSA
| | | |
Collapse
|
2
|
Lee JO, Lee S, Lee D, Hwang T, Joe S, Yang JO, Jeong J, Ohn JH, Kim JH. KTED: a comprehensive web-based database for transposable elements in the Korean genome. BIOINFORMATICS ADVANCES 2024; 4:vbae179. [PMID: 39697868 PMCID: PMC11652267 DOI: 10.1093/bioadv/vbae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
Summary Transposable elements (TEs), commonly referred to as "mobile elements," constitute DNA segments capable of relocating within a genome. Initially disregarded as "junk DNA" devoid of specific functionality, it has become evident that TEs have diverse influences on an organism's biology and health. The impact of these elements varies according to their location, classification, and their effects on specific genes or regulatory components. Despite their significant roles, a paucity of resources concerning TEs in population-scale genome sequencing remains. Herein, we analyze whole-genome sequencing data sourced from the Korean Genome and Epidemiology Study, encompassing 2500 Korean individuals. To facilitate convenient data access and observation, we developed a web-based database, KTED. Additionally, we scrutinized the differential distributions of TEs across five distinct common disease groups: dyslipidemia, hypertension, diabetes, thyroid disease, and cancer. Availability and implementation https://snubh.shinyapps.io/KTED.
Collapse
Affiliation(s)
- Jin-Ok Lee
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 13605, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Dongyoon Lee
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Taeyeon Hwang
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Soobok Joe
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jin Ok Yang
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jibin Jeong
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jung Hun Ohn
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jee Hyun Kim
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Groza C, Chen X, Wheeler TJ, Bourque G, Goubert C. A unified framework to analyze transposable element insertion polymorphisms using graph genomes. Nat Commun 2024; 15:8915. [PMID: 39414821 PMCID: PMC11484939 DOI: 10.1038/s41467-024-53294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Transposable elements are ubiquitous mobile DNA sequences generating insertion polymorphisms, contributing to genomic diversity. We present GraffiTE, a flexible pipeline to analyze polymorphic mobile elements insertions. By integrating state-of-the-art structural variant detection algorithms and graph genomes, GraffiTE identifies polymorphic mobile elements from genomic assemblies or long-read sequencing data, and genotypes these variants using short or long read sets. Benchmarking on simulated and real datasets reports high precision and recall rates. GraffiTE is designed to allow non-expert users to perform comprehensive analyses, including in models with limited transposable element knowledge and is compatible with various sequencing technologies. Here, we demonstrate the versatility of GraffiTE by analyzing human, Drosophila melanogaster, maize, and Cannabis sativa pangenome data. These analyses reveal the landscapes of polymorphic mobile elements and their frequency variations across individuals, strains, and cultivars.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
- Human Genetics, McGill University, Montréal, QC, Canada
| | - Clément Goubert
- Human Genetics, McGill University, Montréal, QC, Canada.
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Usoltsev D, Kolosov N, Rotar O, Loboda A, Boyarinova M, Moguchaya E, Kolesova E, Erina A, Tolkunova K, Rezapova V, Molotkov I, Melnik O, Freylikhman O, Paskar N, Alieva A, Baranova E, Bazhenova E, Beliaeva O, Vasilyeva E, Kibkalo S, Skitchenko R, Babenko A, Sergushichev A, Dushina A, Lopina E, Basyrova I, Libis R, Duplyakov D, Cherepanova N, Donner K, Laiho P, Kostareva A, Konradi A, Shlyakhto E, Palotie A, Daly MJ, Artomov M. Complex trait susceptibilities and population diversity in a sample of 4,145 Russians. Nat Commun 2024; 15:6212. [PMID: 39043636 PMCID: PMC11266540 DOI: 10.1038/s41467-024-50304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The population of Russia consists of more than 150 local ethnicities. The ethnic diversity and geographic origins, which extend from eastern Europe to Asia, make the population uniquely positioned to investigate the shared properties of inherited disease risks between European and Asian ancestries. We present the analysis of genetic and phenotypic data from a cohort of 4,145 individuals collected in three metro areas in western Russia. We show the presence of multiple admixed genetic ancestry clusters spanning from primarily European to Asian and high identity-by-descent sharing with the Finnish population. As a result, there was notable enrichment of Finnish-specific variants in Russia. We illustrate the utility of Russian-descent cohorts for discovery of novel population-specific genetic associations, as well as replication of previously identified associations that were thought to be population-specific in other cohorts. Finally, we provide access to a database of allele frequencies and GWAS results for 464 phenotypes.
Collapse
Affiliation(s)
- Dmitrii Usoltsev
- Almazov National Medical Research Centre, St Petersburg, Russia
- ITMO University, St Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nikita Kolosov
- Almazov National Medical Research Centre, St Petersburg, Russia
- ITMO University, St Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Oxana Rotar
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Alexander Loboda
- Almazov National Medical Research Centre, St Petersburg, Russia
- ITMO University, St Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
| | | | | | | | - Anastasia Erina
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | - Valeriia Rezapova
- Almazov National Medical Research Centre, St Petersburg, Russia
- ITMO University, St Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
| | - Ivan Molotkov
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Olesya Melnik
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | - Nadezhda Paskar
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Asiiat Alieva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Elena Baranova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Elena Bazhenova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Olga Beliaeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Elena Vasilyeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - Sofia Kibkalo
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | - Alina Babenko
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | | | | | | | - Roman Libis
- Orenburg State Medical University, Orenburg, Russia
| | - Dmitrii Duplyakov
- Samara State Medical University, Samara, Russia
- Samara Regional Cardiology Dispensary, Samara, Russia
| | | | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Paivi Laiho
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Anna Kostareva
- Almazov National Medical Research Centre, St Petersburg, Russia
- ITMO University, St Petersburg, Russia
| | - Alexandra Konradi
- Almazov National Medical Research Centre, St Petersburg, Russia
- ITMO University, St Petersburg, Russia
| | | | - Aarno Palotie
- Broad Institute, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Broad Institute, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mykyta Artomov
- Almazov National Medical Research Centre, St Petersburg, Russia.
- ITMO University, St Petersburg, Russia.
- Broad Institute, Cambridge, MA, USA.
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Modenini G, Abondio P, Sazzini M, Boattini A. Polymorphic transposable elements provide new insights on high-altitude adaptation in the Tibetan Plateau. Genomics 2024; 116:110854. [PMID: 38701989 DOI: 10.1016/j.ygeno.2024.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.
Collapse
Affiliation(s)
- Giorgia Modenini
- Dept. of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Paolo Abondio
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Marco Sazzini
- Dept. of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy; Interdepartmental Centre - Alma Mater Research Institute on Global Changes and Climate Change, University of Bologna, Italy
| | - Alessio Boattini
- Dept. of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Choi J, Kim S, Kim J, Son HY, Yoo SK, Kim CU, Park YJ, Moon S, Cha B, Jeon MC, Park K, Yun JM, Cho B, Kim N, Kim C, Kwon NJ, Park YJ, Matsuda F, Momozawa Y, Kubo M, Biobank Japan Project, Kim HJ, Park JH, Seo JS, Kim JI, Im SW. A whole-genome reference panel of 14,393 individuals for East Asian populations accelerates discovery of rare functional variants. SCIENCE ADVANCES 2023; 9:eadg6319. [PMID: 37556544 PMCID: PMC10411914 DOI: 10.1126/sciadv.adg6319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Underrepresentation of non-European (EUR) populations hinders growth of global precision medicine. Resources such as imputation reference panels that match the study population are necessary to find low-frequency variants with substantial effects. We created a reference panel consisting of 14,393 whole-genome sequences including more than 11,000 Asian individuals. Genome-wide association studies were conducted using the reference panel and a population-specific genotype array of 72,298 subjects for eight phenotypes. This panel yields improved imputation accuracy of rare and low-frequency variants within East Asian populations compared with the largest reference panel. Thirty-nine previously unidentified associations were found, and more than half of the variants were East Asian specific. We discovered genes with rare protein-altering variants, including LTBP1 for height and GPR75 for body mass index, as well as putative regulatory mechanisms for rare noncoding variants with cell type-specific effects. We suggest that this dataset will add to the potential value of Asian precision medicine.
Collapse
Affiliation(s)
- Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seong-Keun Yoo
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Young Jun Park
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | - Young Joo Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Macrogen Inc., Seoul, Republic of Korea
- Asian Genome Center, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Republic of Korea
| |
Collapse
|
7
|
Bilgrav Saether K, Nilsson D, Thonberg H, Tham E, Ameur A, Eisfeldt J, Lindstrand A. Transposable element insertions in 1000 Swedish individuals. PLoS One 2023; 18:e0289346. [PMID: 37506127 PMCID: PMC10381067 DOI: 10.1371/journal.pone.0289346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The majority of rare diseases are genetic, and regardless of advanced high-throughput genomics-based investigations, 60% of patients remain undiagnosed. A major factor limiting our ability to identify disease-causing alterations is a poor understanding of the morbid and normal human genome. A major genomic contributor of which function and distribution remain largely unstudied are the transposable elements (TE), which constitute 50% of our genome. Here we aim to resolve this knowledge gap and increase the diagnostic yield of rare disease patients investigated with clinical genome sequencing. To this end we characterized TE insertions in 1000 Swedish individuals from the SweGen dataset and 2504 individuals from the 1000 Genomes Project (1KGP), creating seven population-specific TE insertion databases. Of note, 66% of TE insertions in SweGen were present at >1% in the 1KGP databases, proving that most insertions are common across populations. Focusing on the rare TE insertions, we show that even though ~0.7% of those insertions affect protein coding genes, they rarely affect known disease casing genes (<0.1%). Finally, we applied a TE insertion identification workflow on two clinical cases where disease causing TE insertions were suspected and could verify the presence of pathogenic TE insertions in both. Altogether we demonstrate the importance of TE insertion detection and highlight possible clinical implications in rare disease diagnostics.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Thonberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Yang X, Wang X, Zou Y, Zhang S, Xia M, Fu L, Vollger MR, Chen NC, Taylor DJ, Harvey WT, Logsdon GA, Meng D, Shi J, McCoy RC, Schatz MC, Li W, Eichler EE, Lu Q, Mao Y. Characterization of large-scale genomic differences in the first complete human genome. Genome Biol 2023; 24:157. [PMID: 37403156 PMCID: PMC10320979 DOI: 10.1186/s13059-023-02995-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.
Collapse
Affiliation(s)
- Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Manying Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lianting Fu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dan Meng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Shi
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Modenini G, Abondio P, Guffanti G, Boattini A, Macciardi F. Evolutionarily recent retrotransposons contribute to schizophrenia. Transl Psychiatry 2023; 13:181. [PMID: 37244930 DOI: 10.1038/s41398-023-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the dorsolateral prefrontal cortex of schizophrenic and control individuals and identified 38 nrTEs that possibly contribute to the emergence of this psychiatric disorder, two of them further confirmed with haplotype-based methods. We then performed in silico functional inferences and found that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. To our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be key to understanding the ethio-pathogenesis of this complex disorder.
Collapse
Affiliation(s)
| | - Paolo Abondio
- BiGeA Department, University of Bologna, Bologna, Italy
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Guia Guffanti
- Department of Psychiatry, McLean Hospital-Harvard Medical School, Belmont, MA, USA
| | | | - Fabio Macciardi
- Department of Medical Education (Neuroscience), CUSM, Colton, CA, USA.
| |
Collapse
|
10
|
Modenini G, Abondio P, Guffanti G, Boattini A, Macciardi F. Evolutionarily recent retrotransposons contribute to schizophrenia. RESEARCH SQUARE 2023:rs.3.rs-2474682. [PMID: 36747630 PMCID: PMC9900980 DOI: 10.21203/rs.3.rs-2474682/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transposable Elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the Dorsolateral Prefrontal Cortex of schizophrenic and control individuals, and identified 38 nrTEs which possibly contribute to the emergence of this psychiatric disorder. Furthermore, we performed in silico functional inferences and found, for instance, that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. Therefore, to our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be the key to understanding the ethiopathogenesis of this complex disorder.
Collapse
|
11
|
Chen X, Bourque G, Goubert C. Genotyping of Transposable Element Insertions Segregating in Human Populations Using Short-Read Realignments. Methods Mol Biol 2023; 2607:63-83. [PMID: 36449158 DOI: 10.1007/978-1-0716-2883-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transposable element (TE) insertions are a major source of structural variation in the human genome. Due to the repetitive nature and biological importance of TEs, many bioinformatic tools have been developed to identify and genotype TE insertion polymorphisms using high-throughput short-reads. In this chapter, we outline recently developed methods to characterize TE insertion polymorphisms in human populations. We also provide detailed protocols to tackle this question primarily using three software: MELT2, ERVcaller, and TypeREF.
Collapse
Affiliation(s)
- Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Human Genetics, McGill University, Montreal, QC, Canada
| | - Clément Goubert
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.
- McGill Genome Centre, Montreal, QC, Canada.
- Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience 2022; 44:1525-1550. [PMID: 35585302 PMCID: PMC9213607 DOI: 10.1007/s11357-022-00580-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer’s disease (LOAD) over a relatively short period of time (12–48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.
Collapse
|
14
|
Niu Y, Teng X, Zhou H, Shi Y, Li Y, Tang Y, Zhang P, Luo H, Kang Q, Xu T, He S. Characterizing mobile element insertions in 5675 genomes. Nucleic Acids Res 2022; 50:2493-2508. [PMID: 35212372 PMCID: PMC8934628 DOI: 10.1093/nar/gkac128] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various cancers. However, human MEI resources from large-scale genome sequencing are still lacking compared to those for SNPs and SVs. Here, we report a comprehensive map of 36 699 non-reference MEIs constructed from 5675 genomes, comprising 2998 Chinese samples (∼26.2×, NyuWa) and 2677 samples from the 1000 Genomes Project (∼7.4×, 1KGP). We discovered that LINE-1 insertions were highly enriched in centromere regions, implying the role of chromosome context in retroelement insertion. After functional annotation, we estimated that MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we built a companion database named HMEID for public use. This resource represents the latest and largest genomewide study on MEIs and will have broad utility for exploration of human MEI findings.
Collapse
Affiliation(s)
- Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Tang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Kang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Prakrithi P, Singhal K, Sharma D, Jain A, Bhoyar RC, Imran M, Senthilvel V, Divakar MK, Mishra A, Scaria V, Sivasubbu S, Mukerji M. An Alu insertion map of the Indian population: identification and analysis in 1021 genomes of the IndiGen project. NAR Genom Bioinform 2022; 4:lqac009. [PMID: 35178516 PMCID: PMC8846365 DOI: 10.1093/nargab/lqac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Actively retrotransposing primate-specific Alu repeats display insertion-deletion (InDel) polymorphism through their insertion at new loci. In the global datasets, Indian populations remain under-represented and so do their Alu InDels. Here, we report the genomic landscape of Alu InDels from the recently released 1021 Indian Genomes (IndiGen) (available at https://clingen.igib.res.in/indigen). We identified 9239 polymorphic Alu insertions that include private (3831), rare (3974) and common (1434) insertions with an average of 770 insertions per individual. We achieved an 89% PCR validation of the predicted genotypes in 94 samples tested. About 60% of identified InDels are unique to IndiGen when compared to other global datasets; 23% of sites were shared with both SGDP and HGSVC; among these, 58% (1289 sites) were common polymorphisms in IndiGen. The insertions not only show a bias for genic regions, with a preference for introns but also for the associated genes showing enrichment for processes like cell morphogenesis and neurogenesis (P-value < 0.05). Approximately, 60% of InDels mapped to genes present in the OMIM database. Finally, we show that 558 InDels can serve as ancestry informative markers to segregate global populations. This study provides a valuable resource for baseline Alu InDels that would be useful in population genomics.
Collapse
Affiliation(s)
- P Prakrithi
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Khushboo Singhal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Disha Sharma
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vigneshwar Senthilvel
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mitali Mukerji
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
16
|
Lüth T, Laβ J, Schaake S, Wohlers I, Pozojevic J, Jamora RDG, Rosales RL, Brüggemann N, Saranza G, Diesta CCE, Schlüter K, Tse R, Reyes CJ, Brand M, Busch H, Klein C, Westenberger A, Trinh J. Elucidating Hexanucleotide Repeat Number and Methylation within the X-Linked Dystonia-Parkinsonism (XDP)-Related SVA Retrotransposon in TAF1 with Nanopore Sequencing. Genes (Basel) 2022; 13:genes13010126. [PMID: 35052466 PMCID: PMC8775018 DOI: 10.3390/genes13010126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background: X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by progressive dystonia and parkinsonism. It is caused by a SINE-VNTR-Alu (SVA) retrotransposon insertion in the TAF1 gene with a polymorphic (CCCTCT)n domain that acts as a genetic modifier of disease onset and expressivity. Methods: Herein, we used Nanopore sequencing to investigate SVA genetic variability and methylation. We used blood-derived DNA from 96 XDP patients for amplicon-based deep Nanopore sequencing and validated it with fragment analysis which was performed using fluorescence-based PCR. To detect methylation from blood- and brain-derived DNA, we used a Cas9-targeted approach. Results: High concordance was observed for hexanucleotide repeat numbers detected with Nanopore sequencing and fragment analysis. Within the SVA locus, there was no difference in genetic variability other than variations of the repeat motif between patients. We detected high CpG methylation frequency (MF) of the SVA and flanking regions (mean MF = 0.94, SD = ±0.12). Our preliminary results suggest only subtle differences between the XDP patient and the control in predicted enhancer sites directly flanking the SVA locus. Conclusions: Nanopore sequencing can reliably detect SVA hexanucleotide repeat numbers, methylation and, lastly, variation in the repeat motif.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Joshua Laβ
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Susen Schaake
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Inken Wohlers
- Medical Systems Biology Division, Luebeck Institute of Experimental Dermatology, University of Luebeck, 23538 Luebeck, Germany; (I.W.); (H.B.)
- Institute for Cardiogenetics, University of Luebeck, 23538 Luebeck, Germany
| | - Jelena Pozojevic
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Roland Dominic G. Jamora
- Department of Neurosciences, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| | - Raymond L. Rosales
- Department of Neurology and Psychiatry, The Hospital Neuroscience Institute, University of Santo Tomas, Manila 1008, Philippines;
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
- Department of Neurology, University of Luebeck, 23538 Luebeck, Germany
| | - Gerard Saranza
- Section of Neurology, Department of Internal Medicine, Chong Hua Hospital, Cebu City 6000, Philippines;
| | - Cid Czarina E. Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati 1229, Philippines;
| | - Kathleen Schlüter
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Ronnie Tse
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Charles Jourdan Reyes
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Max Brand
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Hauke Busch
- Medical Systems Biology Division, Luebeck Institute of Experimental Dermatology, University of Luebeck, 23538 Luebeck, Germany; (I.W.); (H.B.)
- Institute for Cardiogenetics, University of Luebeck, 23538 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Ana Westenberger
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Joanne Trinh
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
- Correspondence:
| |
Collapse
|
17
|
Petersen M, Winter S, Coimbra R, J de Jong M, Kapitonov VV, Nilsson MA. Population analysis of retrotransposons in giraffe genomes supports RTE decline and widespread LINE1 activity in Giraffidae. Mob DNA 2021; 12:27. [PMID: 34836553 PMCID: PMC8620236 DOI: 10.1186/s13100-021-00254-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The majority of structural variation in genomes is caused by insertions of transposable elements (TEs). In mammalian genomes, the main TE fraction is made up of autonomous and non-autonomous non-LTR retrotransposons commonly known as LINEs and SINEs (Long and Short Interspersed Nuclear Elements). Here we present one of the first population-level analysis of TE insertions in a non-model organism, the giraffe. Giraffes are ruminant artiodactyls, one of the few mammalian groups with genomes that are colonized by putatively active LINEs of two different clades of non-LTR retrotransposons, namely the LINE1 and RTE/BovB LINEs as well as their associated SINEs. We analyzed TE insertions of both types, and their associated SINEs in three giraffe genome assemblies, as well as across a population level sampling of 48 individuals covering all extant giraffe species. RESULTS The comparative genome screen identified 139,525 recent LINE1 and RTE insertions in the sampled giraffe population. The analysis revealed a drastically reduced RTE activity in giraffes, whereas LINE1 is still actively propagating in the genomes of extant (sub)-species. In concert with the extremely low activity of the giraffe RTE, we also found that RTE-dependent SINEs, namely Bov-tA and Bov-A2, have been virtually immobile in the last 2 million years. Despite the high current activity of the giraffe LINE1, we did not find evidence for the presence of currently active LINE1-dependent SINEs. TE insertion heterozygosity rates differ among the different (sub)-species, likely due to divergent population histories. CONCLUSIONS The horizontally transferred RTE/BovB and its derived SINEs appear to be close to inactivation and subsequent extinction in the genomes of extant giraffe species. This is the first time that the decline of a TE family has been meticulously analyzed from a population genetics perspective. Our study shows how detailed information about past and present TE activity can be obtained by analyzing large-scale population-level genomic data sets.
Collapse
Affiliation(s)
- Malte Petersen
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Raphael Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Menno J de Jong
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Vladimir V Kapitonov
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
19
|
Steely CJ, Russell KL, Feusier JE, Qiao Y, Tavtigian SV, Marth G, Jorde LB. Mobile element insertions and associated structural variants in longitudinal breast cancer samples. Sci Rep 2021; 11:13020. [PMID: 34158539 PMCID: PMC8219704 DOI: 10.1038/s41598-021-92444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
While mobile elements are largely inactive in healthy somatic tissues, increased activity has been found in cancer tissues, with significant variation among different cancer types. In addition to insertion events, mobile elements have also been found to mediate many structural variation events in the genome. Here, to better understand the timing and impact of mobile element insertions and associated structural variants in cancer, we examined their activity in longitudinal samples of four metastatic breast cancer patients. We identified 11 mobile element insertions or associated structural variants and found that the majority of these occurred early in tumor progression. Most of the variants impact intergenic regions; however, we identified a translocation interrupting MAP2K4 involving Alu elements and a deletion in YTHDF2 involving mobile elements that likely inactivate reported tumor suppressor genes. The high variant allele fraction of the translocation, the loss of the other copy of MAP2K4, the recurrent loss-of-function mutations found in this gene in other cancers, and the important function of MAP2K4 indicate that this translocation is potentially a driver mutation. Overall, using a unique longitudinal dataset, we find that most variants are likely passenger mutations in the four patients we examined, but some variants impact tumor progression.
Collapse
Affiliation(s)
- Cody J Steely
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA.
| | - Kristi L Russell
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
| | - Julie E Feusier
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
| | - Yi Qiao
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, 84112, USA
| | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Gabor Marth
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, 84112, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, 84112, USA
| |
Collapse
|
20
|
Ali A, Han K, Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life (Basel) 2021; 11:118. [PMID: 33557056 PMCID: PMC7913837 DOI: 10.3390/life11020118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Kyudong Han
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre of Biotechnologies, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
21
|
Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, Richardson SR, Cheetham SW, Faulkner GJ. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol Cell 2020; 80:915-928.e5. [PMID: 33186547 DOI: 10.1016/j.molcel.2020.10.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Edinburgh EH16 4SB, UK
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|