1
|
Grine FE, Post NW, Greening V, Crevecoeur I, Billings BK, Meyer A, Holt S, Black W, Morris AG, Veeramah KR, Mongle CS. Frontal sinus size in South African Later Stone Age Holocene Khoe-San. Anat Rec (Hoboken) 2025; 308:801-826. [PMID: 39118368 DOI: 10.1002/ar.25556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Frontal size variation is comparatively poorly sampled among sub-Saharan African populations. This study assessed frontal sinus size in a sample of Khoe-San skeletal remains from South African Later Stone Age contexts. Volumes were determined from CT scans of 102 adult crania; individual sex could be estimated in 82 cases. Sinus volume is not sexually dimorphic in this sample. The lack of frontal sinus aplasia is concordant with the low incidences recorded for other sub-Saharan African and most other global populations save those that inhabit high latitudes. There is considerable variation in frontal sinus size among global populations, and the Khoe-San possess among the smallest. The Khoe-San have rather diminutive sinuses compared to sub-Saharan Bantu-speaking populations but resemble a northern African (Sudanese) population. Genetic studies indicate the earliest population divergence within Homo sapiens to have been between the Khoe-San and all other living groups, and that this likely occurred in Africa during the span of Marine Isotope Stages 8-6. There is scant information on frontal sinus development among Late Quaternary African fossils that are likely either closely related or attributable to Homo sapiens. Among these, the MIS 3 cranium from Hofmeyr, South Africa, exhibits distinct Khoe-San cranial affinities and despite its large size has a very small frontal sinus. This raises the possibility that the small frontal sinuses of the Holocene South African Khoe-San might be a feature retained from an earlier MIS 3 population.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
- Department of Anatomical Sciences, School of Medicine, Stony Brook University, New York, USA
| | - Nicholas W Post
- Richard Gilder Graduate School and Division of Anthropology, American Museum of Natural History, New York, New York, USA
| | | | - Isabelle Crevecoeur
- Laboratoire de la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, Université de Bordeaux, Pessac Cedex, France
- Chargée de Recherche CNRS, Université de Bordeaux, Pessac Cedex, France
| | - Brendon K Billings
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Anja Meyer
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Station, National Museum, Bloemfontein, South Africa
| | - Wendy Black
- Archaeology Unit, Iziko Museums of South Africa, Cape Town, South Africa
| | - Alan G Morris
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Krishna R Veeramah
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Swiel Y, Kelso J, Peyrégne S. Resolving the source of branch length variation in the Y chromosome phylogeny. Genome Biol 2025; 26:4. [PMID: 39762943 PMCID: PMC11702058 DOI: 10.1186/s13059-024-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Genetic variation in the non-recombining part of the human Y chromosome has provided important insight into the paternal history of human populations. However, a significant and yet unexplained branch length variation of Y chromosome lineages has been observed, notably amongst those that are highly diverged from the human reference Y chromosome. Understanding the origin of this variation, which has previously been attributed to changes in generation time, mutation rate, or efficacy of selection, is important for accurately reconstructing human evolutionary and demographic history. RESULTS Here, we analyze Y chromosomes from present-day and ancient modern humans, as well as Neandertals, and show that branch length variation amongst human Y chromosomes cannot solely be explained by differences in demographic or biological processes. Instead, reference bias results in mutations being missed on Y chromosomes that are highly diverged from the reference used for alignment. We show that masking fast-evolving, highly divergent regions of the human Y chromosome mitigates the effect of this bias and enables more accurate determination of branch lengths in the Y chromosome phylogeny. CONCLUSION We show that our approach allows us to estimate the age of ancient samples from Y chromosome sequence data and provide updated estimates for the time to the most recent common ancestor using the portion of the Y chromosome where the effect of reference bias is minimized.
Collapse
Affiliation(s)
- Yaniv Swiel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
3
|
Gretzinger J, Gibbon VE, Penske SE, Sealy JC, Rohrlach AB, Salazar-García DC, Krause J, Schiffels S. 9,000 years of genetic continuity in southernmost Africa demonstrated at Oakhurst rockshelter. Nat Ecol Evol 2024; 8:2121-2134. [PMID: 39300260 PMCID: PMC11541196 DOI: 10.1038/s41559-024-02532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Southern Africa has one of the longest records of fossil hominins and harbours the largest human genetic diversity in the world. Yet, despite its relevance for human origins and spread around the globe, the formation and processes of its gene pool in the past are still largely unknown. Here, we present a time transect of genome-wide sequences from nine individuals recovered from a single site in South Africa, Oakhurst Rockshelter. Spanning the whole Holocene, the ancient DNA of these individuals allows us to reconstruct the demographic trajectories of the indigenous San population and their ancestors during the last 10,000 years. We show that, in contrast to most regions around the world, the population history of southernmost Africa was not characterized by several waves of migration, replacement and admixture but by long-lasting genetic continuity from the early Holocene to the end of the Later Stone Age. Although the advent of pastoralism and farming substantially transformed the gene pool in most parts of southern Africa after 1,300 BP, we demonstrate using allele-frequency and identity-by-descent segment-based methods that the ‡Khomani San and Karretjiemense from South Africa still show direct signs of relatedness to the Oakhurst hunter-gatherers, a pattern obscured by recent, extensive non-Southern African admixture. Yet, some southern San in South Africa still preserve this ancient, Pleistocene-derived genetic signature, extending the period of genetic continuity until today.
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Victoria E Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Sandra E Penske
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Judith C Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Domingo C Salazar-García
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany.
| |
Collapse
|
4
|
Breton G, Barham L, Mudenda G, Soodyall H, Schlebusch CM, Jakobsson M. BaTwa populations from Zambia retain ancestry of past hunter-gatherer groups. Nat Commun 2024; 15:7307. [PMID: 39181874 PMCID: PMC11344834 DOI: 10.1038/s41467-024-50733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sub-equatorial Africa is today inhabited predominantly by Bantu-speaking groups of Western African descent who brought agriculture to the Luangwa valley in eastern Zambia ~2000 years ago. Before their arrival the area was inhabited by hunter-gatherers, who in many cases were subsequently replaced, displaced or assimilated. In Zambia, we know little about the genetic affinities of these hunter-gatherers. We examine ancestry of two isolated communities in Zambia, known as BaTwa and possible descendants of recent hunter-gatherers. We genotype over two million genome-wide SNPs from two BaTwa populations (total of 80 individuals) and from three comparative farming populations to: (i) determine if the BaTwa carry genetic links to past hunter-gatherer-groups, and (ii) characterise the genetic affinities of past Zambian hunter-gatherer-groups. The BaTwa populations do harbour a hunter-gatherer-like genetic ancestry and Western African ancestry. The hunter-gatherer component is a unique local signature, intermediate between current-day Khoe-San ancestry from southern Africa and central African rainforest hunter-gatherer ancestry.
Collapse
Affiliation(s)
- Gwenna Breton
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Department of Clinical Genetics and Genomics, Centre for Medical Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lawrence Barham
- Department of Archaeology, Classics & Egyptology, University of Liverpool, Liverpool, UK
| | - George Mudenda
- Livingstone Museum, Livingstone, Zambia
- National Museums Board, Lusaka, Zambia
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
5
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
6
|
Vicente M, Lankheet I, Russell T, Hollfelder N, Coetzee V, Soodyall H, Jongh MD, Schlebusch CM. Male-biased migration from East Africa introduced pastoralism into southern Africa. BMC Biol 2021; 19:259. [PMID: 34872534 PMCID: PMC8650298 DOI: 10.1186/s12915-021-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hunter-gatherer lifestyles dominated the southern African landscape up to ~ 2000 years ago, when herding and farming groups started to arrive in the area. First, herding and livestock, likely of East African origin, appeared in southern Africa, preceding the arrival of the large-scale Bantu-speaking agro-pastoralist expansion that introduced West African-related genetic ancestry into the area. Present-day Khoekhoe-speaking Namaqua (or Nama in short) pastoralists show high proportions of East African admixture, linking the East African ancestry with Khoekhoe herders. Most other historical Khoekhoe populations have, however, disappeared over the last few centuries and their contribution to the genetic structure of present-day populations is not well understood. In our study, we analyzed genome-wide autosomal and full mitochondrial data from a population who trace their ancestry to the Khoekhoe-speaking Hessequa herders from the southern Cape region of what is now South Africa. RESULTS We generated genome-wide data from 162 individuals and mitochondrial DNA data of a subset of 87 individuals, sampled in the Western Cape Province, South Africa, where the Hessequa population once lived. Using available comparative data from Khoe-speaking and related groups, we aligned genetic date estimates and admixture proportions to the archaeological proposed dates and routes for the arrival of the East African pastoralists in southern Africa. We identified several Afro-Asiatic-speaking pastoralist groups from Ethiopia and Tanzania who share high affinities with the East African ancestry present in southern Africa. We also found that the East African pastoralist expansion was heavily male-biased, akin to a pastoralist migration previously observed on the genetic level in ancient Europe, by which Pontic-Caspian Steppe pastoralist groups represented by the Yamnaya culture spread across the Eurasian continent during the late Neolithic/Bronze Age. CONCLUSION We propose that pastoralism in southern Africa arrived through male-biased migration of an East African Afro-Asiatic-related group(s) who introduced new subsistence and livestock practices to local southern African hunter-gatherers. Our results add to the understanding of historical human migration and mobility in Africa, connected to the spread of food-producing and livestock practices.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Imke Lankheet
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thembi Russell
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Vinet Coetzee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.
- SciLife Lab, Uppsala, Sweden.
| |
Collapse
|
7
|
Rambaldi Migliore N, Colombo G, Capodiferro MR, Mazzocchi L, Chero Osorio AM, Raveane A, Tribaldos M, Perego UA, Mendizábal T, Montón AG, Lombardo G, Grugni V, Garofalo M, Ferretti L, Cereda C, Gagliardi S, Cooke R, Smith-Guzmán N, Olivieri A, Aram B, Torroni A, Motta J, Semino O, Achilli A. Weaving Mitochondrial DNA and Y-Chromosome Variation in the Panamanian Genetic Canvas. Genes (Basel) 2021; 12:genes12121921. [PMID: 34946870 PMCID: PMC8702192 DOI: 10.3390/genes12121921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
The Isthmus of Panama was a crossroads between North and South America during the continent’s first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.
Collapse
Affiliation(s)
- Nicola Rambaldi Migliore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Giulia Colombo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Marco Rosario Capodiferro
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Lucia Mazzocchi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Ana Maria Chero Osorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Alessandro Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Maribel Tribaldos
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (M.T.); (J.M.)
| | - Ugo Alessandro Perego
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Department of Math and Science, Southeastern Community College, West Burlington, IA 52655, USA
| | - Tomás Mendizábal
- Center for Historical, Anthropological and Cultural Research—AIP, Panama City 0816-07812, Panama;
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
| | - Alejandro García Montón
- Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.G.M.); (B.A.)
| | - Gianluca Lombardo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Viola Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Maria Garofalo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Luca Ferretti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Stella Gagliardi
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
- Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Nicole Smith-Guzmán
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
- Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Bethany Aram
- Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.G.M.); (B.A.)
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Jorge Motta
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (M.T.); (J.M.)
| | - Ornella Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Correspondence: (O.S.); (A.A.)
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Correspondence: (O.S.); (A.A.)
| |
Collapse
|
8
|
Schlebusch CM, Sjödin P, Breton G, Günther T, Naidoo T, Hollfelder N, Sjöstrand AE, Xu J, Gattepaille LM, Vicente M, Scofield DG, Malmström H, de Jongh M, Lombard M, Soodyall H, Jakobsson M. Khoe-San Genomes Reveal Unique Variation and Confirm the Deepest Population Divergence in Homo sapiens. Mol Biol Evol 2021; 37:2944-2954. [PMID: 32697301 PMCID: PMC7530619 DOI: 10.1093/molbev/msaa140] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The southern African indigenous Khoe-San populations harbor the most divergent lineages of all living peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the Khoe-San group harbors the greatest level of diversity across the globe. In line with previous studies, we found several gene regions with extreme values in genome-wide scans for selection, potentially caused by natural selection in the lineage leading to Homo sapiens and more recent in time. These gene regions included immunity-, sperm-, brain-, diet-, and muscle-related genes. When accounting for recent admixture, all Khoe-San groups display genetic diversity approaching the levels in other African groups and a reduction in effective population size starting around 100,000 years ago. Hence, all human groups show a reduction in effective population size commencing around the time of the Out-of-Africa migrations, which coincides with changes in the paleoclimate records, changes that potentially impacted all humans at the time.
Collapse
Affiliation(s)
- Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Stockholm and Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Gwenna Breton
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Thijessen Naidoo
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Stockholm and Uppsala, Sweden
| | - Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Agnes E Sjöstrand
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jingzi Xu
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Lucie M Gattepaille
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Douglas G Scofield
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Michael de Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Marlize Lombard
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa.,Academy of Science of South Africa
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Stockholm and Uppsala, Sweden
| |
Collapse
|