1
|
Carbone V, Reilly K, Sang C, Schofield LR, Kelly WJ, Ronimus RS, Attwood GT, Palevich N. Crystal Structure of the Multidomain Pectin Methylesterase PmeC5 from Butyrivibrio fibrisolvens D1 T. Biomolecules 2025; 15:720. [PMID: 40427613 PMCID: PMC12109409 DOI: 10.3390/biom15050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Pectin is a dynamic and complex polysaccharide that forms a substantial proportion of the primary plant cell wall and middle lamella of forage ingested by grazing ruminants. Pectin methylesterases (PMEs) are enzymes that belongs to the carbohydrate esterase family 8 (CE8) and catalyze the demethylesterification of pectin, a key polysaccharide in cell walls. Here we present the crystal structure of the catalytic domain of PmeC5 that is associated with a gene from Butyrivibrio fibrisolvens D1T that encodes a large secreted pectinesterase family protein (2089 aa) determined to a resolution of 1.33 Å. Protein in silico modelling of the secreted pectinesterase confirmed the presence of an additional pectate lyase (PL9) and adhesin-like domains. The structure of PmeC5 was the characteristic right-handed parallel β-helical topology and active site residues of Asp231, Asp253, and Arg326 typical of the enzyme class. PmeC5 is a large modular enzyme that is characteristic of rumen B. fibrisolvens megaplasmids and plays a central role in degrading plant cell wall components and releasing methanol in the rumen environment. Such secreted PMEs are significant contributors to plant fiber digestion and methane production, making them attractive targets for both methane mitigation strategies and livestock productivity enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Faleiros CA, Nunes AT, Gonçalves OS, Alexandre PA, Poleti MD, Mattos EC, Perna-Junior F, Rodrigues PHM, Fukumasu H. Exploration of mobile genetic elements in the ruminal microbiome of Nellore cattle. Sci Rep 2024; 14:13056. [PMID: 38844487 PMCID: PMC11156634 DOI: 10.1038/s41598-024-63951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.
Collapse
Affiliation(s)
- Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Osiel S Gonçalves
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Pâmela A Alexandre
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, QLD, Australia
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Elisângela C Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Flavio Perna-Junior
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Paulo H Mazza Rodrigues
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
3
|
Weinert-Nelson JR, Biddle AS, Sampath H, Williams CA. Fecal Microbiota, Forage Nutrients, and Metabolic Responses of Horses Grazing Warm- and Cool-Season Grass Pastures. Animals (Basel) 2023; 13:ani13050790. [PMID: 36899650 PMCID: PMC10000167 DOI: 10.3390/ani13050790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Integrating warm-season grasses into cool-season equine grazing systems can increase pasture availability during summer months. The objective of this study was to evaluate effects of this management strategy on the fecal microbiome and relationships between fecal microbiota, forage nutrients, and metabolic responses of grazing horses. Fecal samples were collected from 8 mares after grazing cool-season pasture in spring, warm-season pasture in summer, and cool-season pasture in fall as well as after adaptation to standardized hay diets prior to spring grazing and at the end of the grazing season. Random forest classification was able to predict forage type based on microbial composition (accuracy: 0.90 ± 0.09); regression predicted forage crude protein (CP) and non-structural carbohydrate (NSC) concentrations (p < 0.0001). Akkermansia and Clostridium butyricum were enriched in horses grazing warm-season pasture and were positively correlated with CP and negatively with NSC; Clostridum butyricum was negatively correlated with peak plasma glucose concentrations following oral sugar tests (p ≤ 0.05). These results indicate that distinct shifts in the equine fecal microbiota occur in response different forages. Based on relationships identified between the microbiota, forage nutrients, and metabolic responses, further research should focus on the roles of Akkermansia spp. and Clostridium butyricum within the equine hindgut.
Collapse
Affiliation(s)
- Jennifer R. Weinert-Nelson
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Amy S. Biddle
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19711, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Carey A. Williams
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
4
|
Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Biomedicines 2023; 11:biomedicines11020411. [PMID: 36830947 PMCID: PMC9952990 DOI: 10.3390/biomedicines11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.
Collapse
|
5
|
Zhang X, Cheng C, Lv J, Bai H, Sun F, Liu C, Liu C, Zhang Y, Xin H. Effects of waste milk feeding on rumen fermentation and bacterial community of pre-weaned and post-weaned dairy calves. Front Microbiol 2023; 13:1063523. [PMID: 36726559 PMCID: PMC9885116 DOI: 10.3389/fmicb.2022.1063523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to investigate the effect of waste milk with antibiotic residue on rumen fermentation and rumen bacterial composition of dairy calves during pre-weaned and post-weaned periods. A total of 24 Holstein male calves (43.4 ± 0.93 kg body weight, mean ± standard error) were allocated into four blocks based on birth date. Dairy calves were supplied 100% milk replacer (MR, n = 8), 50% milk replacer mixed with 50% waste milk (MM, n = 8), or 100% waste milk (WM, n = 8). Ruminal samples were collected at 49 and 63 days of age and then subjected to determinations of pH value, volatile fatty acids (VFA), ammonia nitrogen (NH3-N) and 16S rRNA gene amplicon sequencing. The results showed that feeding WM had no effect on the pH value, the concentrations of VFA (acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid), and NH3-N in dairy calves compared to feeding MR. However, from 49 to 63 days of age, the pH value (p < 0.001) was significantly increased, while the levels of total VFA (p = 0.004), acetic acid (p = 0.01), propionic acid (p = 0.003) and valeric acid (p < 0.001) were significantly decreased. For rumen microorganisms, there was no differences in bacterial diversity among the treatments. But the relative abundance of Veillonellaceae was significantly lower (p = 0.05) in the calves fed WM than that from MR group at 49 days of age; however, no difference was detected at 63 days of age. Feeding WM to calves tended to reduce family Veillonellaceae and genus Olsenella in the rumen at 49 days of age (p = 0.049). Analysis of temporal changes in rumen bacteria based on alpha-diversity and beta-diversity as well as the microbial relative abundances did not exhibit any difference. In addition, relative abundances of Clostridia_UCG-014, Prevotella, Syntrophococcus, Eubacterium_nodatum_group, Pseudoramibacter and Solobacterium were correlated with rumen pH value and the concentrations of TVFA, propionic acid, isovaleric acid, valeric acid and NH3-N. In conclusion, compare to MR, calves supplied with WM had little changes on the rumen pH value, NH3-N or VFAs contents. Additionally, limited effects could be found on rumen microbiota in the calves fed WM. However, further studies needed to explore if there exist any long-term effects of early-life rumen microbiota modulation on dairy cows.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuanteng Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jingyi Lv
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fang Sun
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chundong Liu
- Harbin Wondersun the Cow Feeds the Reproduction Co., Ltd., Harbin, China
| | - Chunlong Liu
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Harbin, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hangshu Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Hangshu Xin, ✉
| |
Collapse
|
6
|
Untargeted Multimodal Metabolomics Investigation of the Haemonchus contortus Exsheathment Secretome. Cells 2022; 11:cells11162525. [PMID: 36010603 PMCID: PMC9406637 DOI: 10.3390/cells11162525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 °C) was developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic nematodes, Haemonchus contortus (barber‘s pole worm). This study reports the use of multimodal untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva (iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines, as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractability of parasitic nematodes for characterizing small molecule host–parasite interactions related to pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.
Collapse
|
7
|
Arce-Cordero JA, Liu T, Ravelo A, Lobo RR, Agustinho BC, Monteiro HF, Jeong KC, Faciola AP. Effects of calcium-magnesium carbonate and calcium-magnesium hydroxide as supplemental sources of magnesium on ruminal microbiome. Transl Anim Sci 2022; 6:txac092. [PMID: 35912064 PMCID: PMC9335223 DOI: 10.1093/tas/txac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Our objective was to evaluate the inclusion of calcium-magnesium carbonate [CaMg(CO3)2] and calcium-magnesium hydroxide [CaMg(OH)4] in corn silage-based diets and their impact on ruminal microbiome. Our previous work showed a lower pH and molar proportion of butyrate from diets supplemented with [CaMg(CO3)2] compared to [CaMg(OH)4]; therefore, we hypothesized that ruminal microbiome would be affected by Mg source. Four continuous culture fermenters were arranged in a 4 × 4 Latin square with the following treatments defined by the supplemental source of Mg: 1) Control (100% MgO, plus sodium sesquicarbonate as a buffer); 2) CO3 [100% CaMg(CO3)2]; 3) OH [100% CaMg(OH)4]; and 4) CO3/OH [50% Mg from CaMg(CO3)2, 50% Mg from CaMg(OH)4]. Diet nutrient concentration was held constant across treatments (16% CP, 30% NDF, 1.66 MCal NEl/kg, 0.67% Ca, and 0.25% Mg). We conducted four fermentation periods of 10 d, with the last 3 d for collection of samples of solid and liquid digesta effluents for DNA extraction. Overall, 16 solid and 16 liquid samples were analyzed by amplification of the V4 variable region of bacterial 16S rRNA. Data were analyzed with R and SAS to determine treatment effects on taxa relative abundance of liquid and solid fractions. Correlation of butyrate molar proportion with taxa relative abundance was also analyzed. Treatments did not affect alpha and beta diversities or relative abundance of phylum, class and order in either liquid or solid fractions. At the family level, relative abundance of Lachnospiraceae in solid fraction was lower for CO3 and CO3/OH compared to OH and Control (P < 0.01). For genera, abundance of Butyrivibrio (P = 0.01) and Lachnospiraceae ND3007 (P < 0.01) (both from Lachnospiraceae family) was lower and unclassified Ruminococcaceae (P = 0.03) was greater in CO3 than Control and OH in solid fraction; while abundance of Pseudobutyrivibrio (P = 0.10) and Lachnospiraceae FD2005 (P = 0.09) (both from Lachnospiraceae family) and Ruminobacter (P = 0.09) tended to decrease in CO3 compared to Control in liquid fraction. Butyrate molar proportion was negatively correlated to Ruminococcaceae (r = –0.55) in solid fraction and positively correlated to Pseudobutyrivibrio (r = 0.61) and Lachnospiraceae FD2005 (r = 0.61) in liquid. Our results indicate that source of Mg has an impact on bacterial taxa associated with ruminal butyrate synthesis, which is important for epithelial health and fatty acid synthesis.
Collapse
Affiliation(s)
- Jose A Arce-Cordero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Escuela de Zootecnia, Universidad de Costa Rica, San Jose, 11501-2060, Costa Rica
| | - Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Anay Ravelo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Richard R Lobo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Bruna C Agustinho
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Hugo F Monteiro
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kwang C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
8
|
Sengupta K, Hivarkar SS, Palevich N, Chaudhary PP, Dhakephalkar PK, Dagar SS. Genomic architecture of three newly isolated unclassified Butyrivibrio species elucidate their potential role in the rumen ecosystem. Genomics 2022; 114:110281. [DOI: 10.1016/j.ygeno.2022.110281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
|
9
|
Ortiz-Chura A, Gere J, Marcoppido G, Depetris G, Cravero S, Faverín C, Pinares-Patiño C, Cataldi A, Cerón-Cucchi ME. Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves. ACTA ACUST UNITED AC 2021; 7:1205-1218. [PMID: 34754962 PMCID: PMC8556761 DOI: 10.1016/j.aninu.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
Collapse
Affiliation(s)
- Abimael Ortiz-Chura
- Institute of Pathobiology, CICVyA National Institute of Agricultural Technology, IPVet, UEDD INTA-CONICET, Hurlingham, C1686, Argentina
| | - José Gere
- Engineering Research and Development Division, National Technological University (UTN), National Scientific and Technical Research Council (CONICET), Buenos Aires, C1179, Argentina
| | - Gisela Marcoppido
- Institute of Pathobiology, CICVyA National Institute of Agricultural Technology, IPVet, UEDD INTA-CONICET, Hurlingham, C1686, Argentina
| | - Gustavo Depetris
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology (INTA), Balcarce, B7620, Argentina
| | - Silvio Cravero
- Institute of Agrobiotechnology and Molecular Biology, IABIMO, National Institute of Agricultural Technology (INTA), National Scientific and Technical Research Council (CONICET), Hurlingham, C1686, Argentina
| | - Claudia Faverín
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology (INTA), Balcarce, B7620, Argentina
| | - Cesar Pinares-Patiño
- The Agribusiness Group, Lincoln University, PO Box 85016, Lincoln, 7674, New Zealand
| | - Angel Cataldi
- Institute of Agrobiotechnology and Molecular Biology, IABIMO, National Institute of Agricultural Technology (INTA), National Scientific and Technical Research Council (CONICET), Hurlingham, C1686, Argentina
| | - María E Cerón-Cucchi
- Institute of Pathobiology, CICVyA National Institute of Agricultural Technology, IPVet, UEDD INTA-CONICET, Hurlingham, C1686, Argentina
| |
Collapse
|
10
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021; 12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Sue A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sarah J Lewis
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
11
|
Effects of Age, Diet CP, NDF, EE, and Starch on the Rumen Bacteria Community and Function in Dairy Cattle. Microorganisms 2021; 9:microorganisms9081788. [PMID: 34442867 PMCID: PMC8400643 DOI: 10.3390/microorganisms9081788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
To understand the effects of diet and age on the rumen bacterial community and function, forty-eight dairy cattle at 1.5 (M1.5), 6 (M6), 9 (M9), 18 (M18), 23 (M23), and 27 (M27) months old were selected. Rumen fermentation profile, enzyme activity, and bacteria community in rumen fluid were measured. The acetate to propionate ratio (A/P) at M9, M18, and M23 was higher than other ages, and M6 was the lowest (p < 0.05). The total volatile fatty acid (TVFA) at M23 and M27 was higher than at other ages (p < 0.05). The urease at M18 was lower than at M1.5, M6, and M9, and the xylanase at M18 was higher than at M1.5, M23, and M27 (p < 0.05). Thirty-three bacteria were identified as biomarkers of the different groups based on the linear discriminant analysis (LDA) when the LDA score >4. The variation partitioning approach analysis showed that the age and diet had a 7.98 and 32.49% contribution to the rumen bacteria community variation, respectively. The richness of Succinivibrionaceae_UCG-002 and Fibrobacter were positive correlated with age (r > 0.60, p < 0.01) and positively correlated with TVFA and acetate (r > 0.50, p < 0.01). The Lachnospiraceae_AC2044_group, Pseudobutyrivibrio, and Saccharofermentans has a positive correlation (r > 0.80, p < 0.05) with diet fiber and a negative correlation (r < −0.80, p < 0.05) with diet protein and starch, which were also positively correlated with the acetate and A/P (r > 0.50, p < 0.01). The genera of Lachnospiraceae_AC2044_group, Pseudobutyrivibrio, and Saccharofermentans could be worked as the target bacteria to modulate the rumen fermentation by diet; meanwhile, the high age correlated bacteria such as Succinivibrionaceae_UCG-002 and Fibrobacter also should be considered when shaping the rumen function.
Collapse
|
12
|
Bacterial Diversity Profiling of the New Zealand Parasitic Blowfly Lucilia sericata Based on 16S rRNA Gene Amplicon Sequencing. Microbiol Resour Announc 2021; 10:10/19/e00257-21. [PMID: 33986085 PMCID: PMC8142571 DOI: 10.1128/mra.00257-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes). Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes).
Collapse
|
13
|
16S rRNA Gene Amplicon Profiling of the New Zealand Parasitic Blowfly Calliphora vicina. Microbiol Resour Announc 2021; 10:10/18/e00289-21. [PMID: 33958401 PMCID: PMC8103871 DOI: 10.1128/mra.00289-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Calliphora vicina, collected from Ashhurst, New Zealand (May 2020). The three dominant genera among the adult male and female C. vicina were Serratia and Morganella (phylum Proteobacteria) and Carnobacterium (phylum Firmicutes), while the larvae were also dominated by the genera Lactobacillus (phylum Firmicutes). Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Calliphora vicina, collected from Ashhurst, New Zealand (May 2020). The three dominant genera among the adult male and female C. vicina blowflies were Serratia and Morganella (phylum Proteobacteria) and Carnobacterium (phylum Firmicutes), while the larvae were also dominated by the genera Lactobacillus (phylum Firmicutes).
Collapse
|