1
|
Polkhovskaya E, Moskalev E, Merkulov P, Dudnikova K, Dudnikov M, Gruzdev I, Demurin Y, Soloviev A, Kirov I. Cost-Effective Detection of SNPs and Structural Variations in Full-Length Genes of Wheat and Sunflower Using Multiplex PCR and Rapid Nanopore Kit. BIOLOGY 2025; 14:138. [PMID: 40001906 PMCID: PMC11851361 DOI: 10.3390/biology14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The rapid identification of allele variants in target genes is crucial for accelerating marker-assisted selection (MAS) in plant breeding. Although current high-throughput genotyping methods are efficient in detecting known polymorphisms, they are limited when multiple variant sites are scattered along the gene. This study presents a target amplicon sequencing approach using Oxford Nanopore Technologies (ONT-TAS) to rapidly sequence full-length genes and identify allele variants in sunflower and wheat collections. This procedure combines multiplex PCR and a rapid sequencing kit, significantly reducing the time and cost compared to previous methods. The efficiency of the approach was demonstrated by sequencing four genes (Ahasl1, Ahasl2, Ahasl3, and FAD2) in 40 sunflower genotypes and three genes (Ppo, Wx, and Lox) in 30 wheat genotypes. The ONT-TAS revealed a complete picture of SNPs and InDels distributed over the individual alleles, enabling rapid (4.5 h for PCR and sequencing) characterization of the genetic diversity of the target genes in the germplasm collections. The results showed a significant diversity of the Ahasl1/Ahasl3 and Wx-A/Lox-B genes in the sunflower and wheat collections, respectively. This method offers a high-throughput, cost-effective (USD 3.4 per gene) solution for genotyping and identifying novel allele variants in plant breeding programs.
Collapse
Affiliation(s)
- Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Evgeniy Moskalev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Ksenia Dudnikova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Ivan Gruzdev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038 Krasnodar, Russia;
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
- All-Russia Center for Plant Quarantine, 140150 Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| |
Collapse
|
2
|
Backenstose NJC, MacGuigan DJ, Osborne CA, Bernal MA, Thomas EK, Normandeau E, Yule DL, Stott W, Ackiss AS, Albert VA, Bernatchez L, Krabbenhoft TJ. Origin of the Laurentian Great Lakes fish fauna through upward adaptive radiation cascade prior to the Last Glacial Maximum. Commun Biol 2024; 7:978. [PMID: 39134631 PMCID: PMC11319351 DOI: 10.1038/s42003-024-06503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
The evolutionary histories of adaptive radiations can be marked by dramatic demographic fluctuations. However, the demographic histories of ecologically-linked co-diversifying lineages remain understudied. The Laurentian Great Lakes provide a unique system of two such radiations that are dispersed across depth gradients with a predator-prey relationship. We show that the North American Coregonus species complex ("ciscoes") radiated rapidly prior to the Last Glacial Maximum (80-90 kya), a globally warm period, followed by rapid expansion in population size. Similar patterns of demographic expansion were observed in the predator species, Lake Charr (Salvelinus namaycush), following a brief time lag, which we hypothesize was driven by predator-prey dynamics. Diversification of prey into deep water created ecological opportunities for the predators, facilitating their demographic expansion, which is consistent with an upward adaptive radiation cascade. This study provides a new timeline and environmental context for the origin of the Laurentian Great Lakes fish fauna, and firmly establishes this system as drivers of ecological diversification and rapid speciation through cyclical glaciation.
Collapse
Affiliation(s)
| | - Daniel J MacGuigan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Moisés A Bernal
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Eric Normandeau
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, G1V 0A6, Canada
| | - Daniel L Yule
- US Geological Survey, Lake Superior Biological Station, Great Lakes Science Center, Ashland, WI, USA
| | - Wendylee Stott
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Amanda S Ackiss
- US Geological Survey, Great Lakes Science Center, Ann Arbor, MI, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
- RENEW Institute, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
3
|
Eaton KM, Krabbenhoft TJ, Backenstose NJC, Bernal MA. The chromosome-scale reference genome for the pinfish (Lagodon rhomboides) provides insights into their evolutionary and demographic history. G3 (BETHESDA, MD.) 2024; 14:jkae096. [PMID: 38739549 PMCID: PMC11228864 DOI: 10.1093/g3journal/jkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The pinfish (Lagodon rhomboides) is an ecologically, economically, and culturally relevant member of the family Sparidae, playing crucial roles in the marine food webs of the western Atlantic Ocean and Gulf of Mexico. Despite their high abundance and ecological importance, there is a scarcity of genomic resources for this species. We assembled and annotated a chromosome-scale genome for the pinfish, resulting in a highly contiguous 785 Mb assembly of 24 scaffolded chromosomes. The high-quality assembly contains 98.9% complete BUSCOs and shows strong synteny to other chromosome-scale genomes of fish in the family Sparidae, with a limited number of large-scale genomic rearrangements. Leveraging this new genomic resource, we found evidence of significant expansions of dietary gene families over the evolutionary history of the pinfish, which may be associated with an ontogenetic shift from carnivory to herbivory seen in this species. Estimates of historical patterns of population demography using this new reference genome identified several periods of population growth and contraction which were associated with ancient climatic shifts and sea level changes. This genome serves as a valuable reference for future studies of population genomics and differentiation and provides a much-needed genomic resource for this western Atlantic sparid.
Collapse
Affiliation(s)
- Katherine M Eaton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Research and Education in Energy, Environment, and Water (RENEW) Institute, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Moisés A Bernal
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Smithsonian Tropical Research Institute (STRI), Panama City, 0843-03092, Panama
| |
Collapse
|
4
|
Van Nynatten A, Duncan AT, Lauzon R, Sheldon TA, Chen SK, Lovejoy NR, Mandrak NE, Chang BSW. Adaptive Evolution of Nearctic Deepwater Fish Vision: Implications for Assessing Functional Variation for Conservation. Mol Biol Evol 2024; 41:msae024. [PMID: 38314890 PMCID: PMC10896662 DOI: 10.1093/molbev/msae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Intraspecific functional variation is critical for adaptation to rapidly changing environments. For visual opsins, functional variation can be characterized in vitro and often reflects a species' ecological niche but is rarely considered in the context of intraspecific variation or the impact of recent environmental changes on species of cultural or commercial significance. Investigation of adaptation in postglacial lakes can provide key insight into how rapid environmental changes impact functional evolution. Here, we report evidence for molecular adaptation in vision in 2 lineages of Nearctic fishes that are deep lake specialists: ciscoes and deepwater sculpin. We found depth-related variation in the dim-light visual pigment rhodopsin that evolved convergently in these 2 lineages. In vitro characterization of spectral sensitivity of the convergent deepwater rhodopsin alleles revealed blue-shifts compared with other more widely distributed alleles. These blue-shifted rhodopsin alleles were only observed in deep clear postglacial lakes with underwater visual environments enriched in blue light. This provides evidence of remarkably rapid and convergent visual adaptation and intraspecific functional variation in rhodopsin. Intraspecific functional variation has important implications for conservation, and these fishes are of conservation concern and great cultural, commercial, and nutritional importance to Indigenous communities. We collaborated with the Saugeen Ojibway Nation to develop and test a metabarcoding approach that we show is efficient and accurate in recovering the ecological distribution of functionally relevant variation in rhodopsin. Our approach bridges experimental analyses of protein function and genetics-based tools used in large-scale surveys to better understand the ecological extent of adaptive functional variation.
Collapse
Affiliation(s)
- Alexander Van Nynatten
- Department of Biological Science, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Alexander T Duncan
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
- Fisheries Assessment Program, Chippewas of Nawash Unceded First Nation, Neyaashiinigmiing, Ontario, Canada
| | - Ryan Lauzon
- Fisheries Assessment Program, Chippewas of Nawash Unceded First Nation, Neyaashiinigmiing, Ontario, Canada
| | | | - Steven K Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan R Lovejoy
- Department of Biological Science, University of Toronto Scarborough, Scarborough, Ontario, Canada
- Department of Ecological and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas E Mandrak
- Department of Biological Science, University of Toronto Scarborough, Scarborough, Ontario, Canada
- Department of Ecological and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecological and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Bernal MA, Yule DL, Stott W, Evrard L, Dowling TE, Krabbenhoft TJ. Concordant patterns of morphological, stable isotope, and genetic variation in a recent ecological radiation (Salmonidae: Coregonus spp.). Mol Ecol 2022; 31:4495-4509. [PMID: 35785504 DOI: 10.1111/mec.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Groups of sympatric taxa with low inter-specific genetic differentiation, but considerable ecological differences, offer great opportunities to study the dynamics of divergence and speciation. This is the case of ciscoes (Coregonus spp.) in the Laurentian Great Lakes, which are characterized by a complex evolutionary history and are commonly described as having undergone an adaptive radiation. In this study, morphometrics, stable isotopes and transcriptome sequencing were used to study the relationships within the Coregonus artedi complex in western Lake Superior. We observed general concordance for morphological, ecological and genomic variation, but the latter was more taxonomically informative as it showed less overlap among species in multivariate space. Low levels of genetic differentiation were observed between individuals morphologically identified as C. hoyi and C. zenithicus, which could be evidence of incomplete lineage sorting or recent hybridization between the two groups. Transcriptome-based single nucleotide polymorphisms exhibited significant divergence for genes associated with vision, development, metabolism and immunity among species that occupy different habitats. This study highlights the importance of using an integrative approach when studying groups of taxa with a complex evolutionary history, as individual-level analyses of multiple independent datasets can provide a clearer picture of the patterns and processes associated with the origins of biodiversity.
Collapse
Affiliation(s)
- Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, Alabama 36849, United States of America.,Department of Biological Sciences and RENEW Institute, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Daniel L Yule
- U.S. Geological Survey, Great Lakes Science Center - Lake Superior Biological Station, 2800 Lake Shore Drive E., Ashland, WI 54806, United States of America
| | - Wendylee Stott
- Michigan State University CESU working for U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105-2807, United States of America
| | - Lori Evrard
- U.S. Geological Survey, Great Lakes Science Center - Lake Superior Biological Station, 2800 Lake Shore Drive E., Ashland, WI 54806, United States of America
| | - Thomas E Dowling
- Wayne State University, Department of Biological Sciences, Detroit, Michigan, 48202, United States of America
| | - Trevor J Krabbenhoft
- Department of Biological Sciences and RENEW Institute, University at Buffalo, Buffalo, NY 14260, United States of America
| |
Collapse
|
7
|
Miller SS, Dornbusch MR, Farmer AD, Huertas R, Gutierrez-Gonzalez JJ, Young ND, Samac DA, Curtin SJ. Alfalfa (Medicago sativa L.) pho2 mutant plants hyperaccumulate phosphate. G3 (BETHESDA, MD.) 2022; 12:jkac096. [PMID: 35471600 PMCID: PMC9157135 DOI: 10.1093/g3journal/jkac096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
In this article, we describe a set of novel alfalfa (Medicago sativa L.) plants that hyper-accumulate Phosphate ion (Pi) at levels 3- to 6-fold higher than wild-type. This alfalfa germplasm will have practical applications reclaiming Pi from contaminated or enriched soil or be used in conservation buffer strips to protect waterways from Pi run-off. Hyper-accumulating alfalfa plants were generated by targeted mutagenesis of PHOSPHATE2 (PHO2) using newly created CRISPR/Cas9 reagents and an improved mutant screening strategy. PHO2 encodes a ubiquitin conjugating E2 enzyme (UBC24) previously characterized in Arabidopsis thaliana, Medicago truncatula, and Oryza sativa. Mutations of PHO2 disrupt Pi homeostasis resulting in Pi hyper-accumulation. Successful CRISPR/Cas9 editing of PHO2 demonstrates that this is an efficient mutagenesis tool in alfalfa despite its complex autotetraploid genome structure. Arabidopsis and M. truncatula ortholog genes were used to identify PHO2 haplotypes in outcrossing tetraploid M. sativa with the aim of generating heritable mutations in both PHO2-like genes (PHO2-B and PHO2-C). After delivery of the reagent and regeneration from transformed leaf explants, plants with mutations in all haplotypes of PHO2-B and PHO2-C were identified. These plants were evaluated for morphology, Pi accumulation, heritable transmission of targeted mutations, segregation of mutant haplotypes and removal of T-DNA(s). The Agrobacterium-mediated transformation assay and gene editing reagents reported here were also evaluated for further optimization for future alfalfa functional genomic studies.
Collapse
Affiliation(s)
- Susan S Miller
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN 55108, USA
| | - Melinda R Dornbusch
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | | | - Juan J Gutierrez-Gonzalez
- Facultad de Ciencias Biológicas y Ambientales, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Deborah A Samac
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
AKHTAR MUHAMMADSHOAIB, ASHINO RYUICHI, OOTA HIROKI, ISHIDA HAJIME, NIIMURA YOSHIHITO, TOUHARA KAZUSHIGE, MELIN AMANDAD, KAWAMURA SHOJI. Genetic variation of olfactory receptor gene family in a Japanese population. ANTHROPOL SCI 2022. [DOI: 10.1537/ase.211024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- MUHAMMAD SHOAIB AKHTAR
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
| | - RYUICHI ASHINO
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
| | - HIROKI OOTA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo
| | - HAJIME ISHIDA
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara
| | - YOSHIHITO NIIMURA
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki
| | - KAZUSHIGE TOUHARA
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - AMANDA D. MELIN
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Calgary
| | - SHOJI KAWAMURA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
| |
Collapse
|
9
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|