1
|
Cheng F, Shen RJ, Zheng Z, Chen ZJ, Huang PJ, Feng ZK, Li X, Lin N, Zheng M, Liang Y, Qu J, Lu F, Jin ZB, Yang J. Distinct methylomic signatures of high-altitude acclimatization and adaptation in the Tibetan Plateau. Cell Discov 2025; 11:45. [PMID: 40328746 PMCID: PMC12056056 DOI: 10.1038/s41421-025-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
High altitude presents a challenging environment for human settlement. DNA methylation is an essential epigenetic mechanism that responds to environmental stimuli, but its roles in high-altitude short-term acclimatization (STA) and long-term adaptation (LTA) are poorly understood. Here, we conducted a methylome-wide association study involving 687 native highlanders and 299 acclimatized newcomers in the Tibetan Plateau and 462 native lowlanders to identify differentially methylated sites (DMSs) associated with STA or LTA. We identified 93 and 4070 DMSs for STA and LTA, respectively, which had no overlap, showed opposite asymmetric effect size patterns, and resided near genes enriched in distinct biological pathways/processes (e.g., cell cycle for STA and immune diseases and calcium signalling pathway for LTA). Epigenetic clock analysis revealed evidence of accelerated ageing in the acclimatized newcomers compared to the native lowlanders. Our research provides novel insights into epigenetic regulation in relation to high altitude and intervention strategies for altitude-related ageing or illnesses.
Collapse
Affiliation(s)
- Feifei Cheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhen Ji Chen
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng-Juan Huang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo-Kun Feng
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoman Li
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Lin
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanbo Liang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Lu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Tandon D, Campbell‐Staton S, Cheviron Z, von Holdt BM. Geographic Variation in Epigenetic Responses to Hypoxia in Deer Mice (Peromyscus maniculatus) Distributed Along an Elevational Gradient. Mol Ecol 2025; 34:e17752. [PMID: 40156223 PMCID: PMC12010463 DOI: 10.1111/mec.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Lowland and highland Peromyscus maniculatus populations display divergent, locally adapted physiological phenotypes shaped by altitudinal differences in oxygen availability. Many physiological responses to hypoxia seem to have evolved in lowland ancestors to offset episodic and localised bouts of low internal oxygen availability. However, upon chronic hypoxia exposure at high elevation, these responses can lead to physiological complications. Therefore, highland ancestry is often associated with evolved hypoxia responses, particularly traits promoting tolerance of constant hypoxia. Environmentally induced DNA methylation can dynamically alter gene expression patterns, providing a proximate basis for phenotypic plasticity. Given each population's differential reliance on plasticity for hypoxia tolerance, we hypothesised that lowland mice have a more robust epigenetic response to hypoxia exposure, driving trait plasticity, than highland mice. Using DNA methylation data of tissues from the heart's left ventricle, we show that upon hypoxia exposure, lowland mice chemically modulate the epigenetic landscape to a greater extent than highland mice, especially at key hypoxia-relevant genes such as Egln3. This gene is a regulator of the gene Epas1 that is frequently targeted for positive selection at high elevation. We find higher methylation among wild highland mice at gene Egln3 compared to wild lowland mice, suggesting a shared epigenetic ancestral response to episodic and chronic hypoxia. These findings highlight each population's distinct reliance on molecular plasticity driven by their unique evolutionary histories.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Shane Campbell‐Staton
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Zachary Cheviron
- Division of Biological Sciences and Wildlife Biology ProgramUniversity of MontanaMissoulaMontanaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
3
|
Frisancho AR. Origin of the Nuñoa, Perú High Altitude Field Research Site and How It Shaped Our Understanding of Functional Adaptation to High-Altitude Stressors. Am J Hum Biol 2025; 37:e70031. [PMID: 40219710 PMCID: PMC11992547 DOI: 10.1002/ajhb.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025] Open
Abstract
The study of physical growth and development of Indigenous children from Nuñoa, Perú, in the 1960s showed that growth in body size and skeletal maturation was slow and delayed, while growth in lung volume, measured by forced vital capacity (FVC), was accelerated. Hence, I proposed that the high functional adaptation of high-altitude natives was influenced by developmental processes. To test this hypothesis, my co-investigators and I conducted two sets of major physiological studies at high altitudes. The first studies were conducted in Cusco (3400 m) and Puno (3840 m), Perú. This research showed that the FVC and aerobic capacity of low-altitude Peruvian urban natives acclimatized to high altitudes during the developmental period were similar to those of high-altitude urban natives. In contrast, Peruvian and US participants acclimatized during adulthood did not have the same FVC and aerobic capacity as the high-altitude urban natives. The second set of studies was carried out in the city of La Paz, Bolivia (3752 m), and included Europeans who were acclimatized to high altitudes at different ages. This research confirmed that acclimatization during the developmental period was a major component of the high functional adaptation among high-altitude urban natives. These conclusions have been confirmed by epigenetic studies, which demonstrated that acclimatization to high altitude leads to modifications in the activity of the DNA that facilitate adaptation during the developmental period.
Collapse
Affiliation(s)
- A. Roberto Frisancho
- Department of Anthropology and Center for Human Growth and DevelopmentUniversity of MichiganAnn ArborMichiganUSA
- National University of San Antonio AbadCuscoPeru
| |
Collapse
|
4
|
Wang S, Hong Q, Zheng Y, Duan S, Cai G, Chen X. Epigenetics in high-altitude adaptation and disease. Sci Bull (Beijing) 2024; 69:3806-3811. [PMID: 39562186 DOI: 10.1016/j.scib.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Affiliation(s)
- Siyang Wang
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China; Department of Emergency Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Quan Hong
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Ying Zheng
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Shuwei Duan
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| |
Collapse
|
5
|
Zhang S, Yang L, Duoji Z, Qiangba D, Hu X, Jiang Z, Hou D, Hu Z, Basang Z. DNA Methylation Changes and Phenotypic Adaptations Induced Repeated Extreme Altitude Exposure at 8848 Meters. Int J Mol Sci 2024; 25:12652. [PMID: 39684363 DOI: 10.3390/ijms252312652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 12/18/2024] Open
Abstract
Repeated extreme environmental training (RET) enhances adaptability and induces lasting methylation modifications. We recruited 64 participants from a high-altitude region (4700 m), including 32 volunteers with repeated high-altitude exposure, reaching up to 8848 m and as many as 11 exposures. By analyzing 741,489 CpG loci and 39 phenotypes, we identified significant changes in 13 CpG loci (R2 > 0.8, ACC > 0.75) and 15 phenotypes correlated with increasing RET exposures. The phenotypic Bayesian causal network and phenotypic-CpG interaction networks showed greater robustness (node correlation) with more RET exposures, particularly in systolic blood pressure (SP), platelet count (PLT), and neutrophil count (NEUT). Six CpG sites were validated as significantly associated with hypoxia exposure using the GEO public da-taset (AltitudeOmics). Furthermore, dividing the participants into two groups based on the number of RET exposures (n = 9 and 4) revealed six CpG sites significantly corre-lated with PLT and red cell distribution width-standard deviation (RDW.SD). Our findings suggest that increased RET exposures strengthen the interactions between phenotypes and CpG sites, indicating that critical extreme adaptive states may alter methylation patterns, co-evolving with phenotypes such as PLT, RDW.SD, and NEUT.
Collapse
Affiliation(s)
- Shixuan Zhang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - La Yang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Zhuoma Duoji
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Danzeng Qiangba
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Xiaoxi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zeyu Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Dandan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zixin Hu
- Artificial Intelligence Innovation and Incubation Institute of Fudan University, Shanghai 200438, China
| | - Zhuoma Basang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| |
Collapse
|
6
|
Costa CE, Watowich MM, Goldman EA, Sterner KN, Negron-Del Valle JE, Phillips D, Platt ML, Montague MJ, Brent LJN, Higham JP, Snyder-Mackler N, Lea AJ. Genetic Architecture of Immune Cell DNA Methylation in the Rhesus Macaque. Mol Ecol 2024:e17576. [PMID: 39582237 DOI: 10.1111/mec.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Genetic variation that impacts gene regulation, rather than protein function, can have strong effects on trait variation both within and between species. Epigenetic mechanisms, such as DNA methylation, are often an important intermediate link between genotype and phenotype, yet genetic effects on DNA methylation remain understudied in natural populations. To address this gap, we used reduced representation bisulfite sequencing to measure DNA methylation levels at 555,856 CpGs in peripheral whole blood of 573 samples collected from free-ranging rhesus macaques (Macaca mulatta) living on the island of Cayo Santiago, Puerto Rico. We used allele-specific methods to map cis-methylation quantitative trait loci (meQTL) and tested for effects of 243,389 single nucleotide polymorphisms (SNPs) on local DNA methylation levels. Of 776,092 tested SNP-CpG pairs, we identified 516,213 meQTL, with 69.12% of CpGs having at least one meQTL (FDR < 5%). On average, meQTL explained 21.2% of nearby methylation variance, significantly more than age or sex. meQTL were enriched in genomic compartments where methylation is likely to impact gene expression, for example, promoters, enhancers and binding sites for methylation-sensitive transcription factors. In support, using mRNA-seq data from 172 samples, we confirmed 332 meQTL as whole blood cis-expression QTL (eQTL) in the population, and found meQTL-eQTL genes were enriched for immune response functions, like antigen presentation and inflammation. Overall, our study takes an important step towards understanding the genetic architecture of DNA methylation in natural populations, and more generally points to the biological mechanisms driving phenotypic variation in our close relatives.
Collapse
Affiliation(s)
- Christina E Costa
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
8
|
Sharma S, Koshy R, Kumar R, Mohammad G, Thinlas T, Graham BB, Pasha Q. Hypobaric hypoxia drives selection of altitude-associated adaptative alleles in the Himalayan population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169605. [PMID: 38159773 PMCID: PMC11285711 DOI: 10.1016/j.scitotenv.2023.169605] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Genetic variants play a crucial role in shaping the adaptive phenotypes associated with high-altitude populations. Nevertheless, a comprehensive understanding of the specific impacts of different environments associated with increasing altitudes on the natural selection of these genetic variants remains undetermined. Hence, this study aimed to identify genetic markers responsible for high-altitude adaptation with specific reference to different altitudes, majorly focussing on an altitude elevation range of ∼1500 m and a corresponding decrease of ≥5 % in ambient oxygen availability. We conducted a comprehensive genome-wide investigation (n = 192) followed by a validation study (n = 514) in low-altitude and three high-altitude populations (>2400 m) of Nubra village (NU) (3048 m), Sakti village (SKT) (3812 m), and Tso Moriri village (TK) (4522 m). Extensive genetic analysis identified 86 SNPs that showed significant associations with high-altitude adaptation. Frequency mapping of these SNPs revealed 38 adaptive alleles and specific haplotypes that exhibited a strong linear correlation with increasing altitude. Notably, these SNPs spanned crucial genes, such as ADH6 and NAPG along with the vastly studied genes like EGLN1 and EPAS1, involved in oxygen sensing, metabolism, and vascular homeostasis. Correlation analyses between these adaptive alleles and relevant clinical and biochemical markers provided evidence of their functional relevance in physiological adaptation to hypobaric hypoxia. High-altitude population showed a significant increase in plasma 8-isoPGF2α levels as compared to low-altitude population. Similar observation showcased increased blood pressure in NU as compared to TK (P < 0.0001). In silico analyses further confirmed that these alleles regulate gene expression of EGLN1, EPAS1, COQ7, NAPG, ADH6, DUOXA1 etc. This study provides genetic insights into the effects of hypobaric-hypoxia on the clinico-physiological characteristics of natives living in increasing high-altitude regions. Overall, our findings highlight the synergistic relationship between environment and evolutionary processes, showcasing physiological implications of genetic variants in oxygen sensing and metabolic pathway genes in increasing high-altitude environments.
Collapse
Affiliation(s)
- Samantha Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Medical and Molecular Genetics, Indiana University, Indianapolis 46202, IN, USA
| | - Remya Koshy
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Ghulam Mohammad
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, Ladakh 194101, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, Ladakh 194101, India
| | - Brian B Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Institute of Hypoxia Research, New Delhi 110067, India.
| |
Collapse
|
9
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Villafuerte FC, Simonson TS, Bermudez D, León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology (Bethesda) 2022; 37:0. [PMID: 35001654 PMCID: PMC9191173 DOI: 10.1152/physiol.00029.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
11
|
Oshita H, Sawada H, Mitani Y, Tsuboya N, Kabwe JC, Maruyama J, Yusuf A, Ito H, Okamoto R, Otsuki S, Yodoya N, Ohashi H, Oya K, Kobayashi Y, Kobayashi I, Dohi K, Nishimura Y, Saitoh S, Maruyama K, Hirayama M. Perinatal Hypoxia Aggravates Occlusive Pulmonary Vasculopathy In SU5416/Hypoxia-Treated Rats Later In Life. Am J Physiol Lung Cell Mol Physiol 2022; 323:L178-L192. [PMID: 35762603 DOI: 10.1152/ajplung.00422.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease, which is characterized by occlusive pulmonary vascular disease (PVD) in small pulmonary arteries. It remains unknown whether perinatal insults aggravate occlusive PVD later in life. We tested the hypothesis that perinatal hypoxia aggravates PVD and survival in rats. PVD was induced in rats with/without perinatal hypoxia (E14 to P3) by injecting SU5416 at 7 weeks of age and subsequent exposure to hypoxia for 3 weeks (SU5416/hypoxia). Hemodynamic and morphological analyses were performed in rats with/without perinatal hypoxia at 7 weeks of age (baseline rats, n=12) and at 15 weeks of age in 4 groups of rats: SU5416/hypoxia or control rats with/without perinatal hypoxia (n=40). Pulmonary artery smooth muscle cells (PASMCs) from the baseline rats with/without perinatal hypoxia were used to assess cell proliferation, inflammation and genomic DNA methylation profile. Although perinatal hypoxia alone did not affect survival, physiological or pathological parameters at baseline or at the end of the experimental period in controls, perinatal hypoxia decreased weight gain and survival rate, and increased right ventricular systolic pressure, right ventricular hypertrophy, and indices of PVD in SU5416/hypoxia rats. Perinatal hypoxia alone accelerated the proliferation and inflammation of cultured PASMCs from baseline rats, which was associated with DNA methylation. In conclusion, we established the first fatal animal model of PAH with worsening hemodynamics and occlusive PVD elicited by perinatal hypoxia, which was associated with hyperproliferative, pro-inflammatory, and epigenetic changes in cultured PASMCs. These findings provide insights into the treatment and prevention of occlusive PVD.
Collapse
Affiliation(s)
- Hironori Oshita
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.,Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.,Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Naoki Tsuboya
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Jane Chanda Kabwe
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Junko Maruyama
- Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Ali Yusuf
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiromasa Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shoichiro Otsuki
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Noriko Yodoya
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazunobu Oya
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhko Kobayashi
- Center for Molecular Biology and Genetics, Organization for the Promotion of Regional Innovation, Mie University, Mie, Japan
| | - Issei Kobayashi
- Center for Molecular Biology and Genetics, Organization for the Promotion of Regional Innovation, Mie University, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
12
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
McGrath C. OUP accepted manuscript. Genome Biol Evol 2022. [PMCID: PMC8931812 DOI: 10.1093/gbe/evac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Basak N, Thangaraj K. High-altitude adaptation: Role of genetic and epigenetic factors. J Biosci 2021. [DOI: 10.1007/s12038-021-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Childebayeva A, Goodrich JM, Chesterman N, Leon-Velarde F, Rivera-Ch M, Kiyamu M, Brutsaert TD, Bigham AW, Dolinoy DC. Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation. ENVIRONMENT INTERNATIONAL 2021; 155:106587. [PMID: 33940396 PMCID: PMC9903334 DOI: 10.1016/j.envint.2021.106587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany.
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan Chesterman
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fabiola Leon-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Rivera-Ch
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
17
|
Childebayeva A, Harman T, Weinstein J, Day T, Brutsaert TD, Bigham AW. Genome-Wide DNA Methylation Changes Associated With High-Altitude Acclimatization During an Everest Base Camp Trek. Front Physiol 2021; 12:660906. [PMID: 34262470 PMCID: PMC8273439 DOI: 10.3389/fphys.2021.660906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown. We collected a series of DNA samples from 15 participants of European ancestry trekking to Everest Base Camp to identify DNA methylation changes associated with incremental altitude ascent. We determined genome-wide DNA methylation levels using the Illumina MethylationEPIC chip comparing two altitudes: baseline 1,400 m (day 0) and elevation 4,240 m (day 7). The results of our epigenome-wide association study revealed 2,873 significant differentially methylated positions (DMPs) and 361 significant differentially methylated regions (DMRs), including significant positions and regions in hypoxia inducible factor (HIF) and the renin–angiotensin system (RAS) pathways. Our pathway enrichment analysis identified 95 significant pathways including regulation of glycolytic process (GO:0006110), regulation of hematopoietic stem cell differentiation (GO:1902036), and regulation of angiogenesis (GO:0045765). Lastly, we identified an association between the ACE gene insertion/deletion (I/D) polymorphism and oxygen saturation, as well as average ACE methylation. These findings shed light on the genes and pathways experiencing the most epigenetic change associated with short-term exposure to hypoxia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Sciences, School of Public Health, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Study of Human History, Jena, Germany
| | - Taylor Harman
- Department of Anthropology, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
|