1
|
Pyron RA, O'Connell KA, Myers EA, Beamer DA, Baños H. Complex Hybridization in a Clade of Polytypic Salamanders (Plethodontidae: Desmognathus) Uncovered by Estimating Higher-Level Phylogenetic Networks. Syst Biol 2025; 74:124-140. [PMID: 39468736 DOI: 10.1093/sysbio/syae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Reticulation between radiating lineages is a common feature of diversification. We examine these phenomena in the Pisgah clade of Desmognathus salamanders from the southern Appalachian Mountains of the eastern United States. The group contains 4-7 species exhibiting 2 discrete phenotypes, aquatic "shovel-nosed" and semi-aquatic "black-bellied" forms. These ecomorphologies are ancient and have apparently been transmitted repeatedly between lineages through introgression. Geographically proximate populations of both phenotypes exhibit admixture, and at least 2 black-bellied lineages have been produced via reticulations between shovel-nosed parentals, suggesting potential hybrid speciation dynamics. However, computational constraints currently limit our ability to reconstruct network radiations from gene-tree data. Available methods are limited to level-1 networks wherein reticulations do not share edges, and higher-level networks may be non-identifiable in many cases. We present a heuristic approach to recover information from higher-level networks across a range of potentially identifiable empirical scenarios, supported by theory and simulation. When extrinsic information indicates the location and direction of reticulations, our method can successfully estimate a reduced possible set of nonlevel-1 networks. Phylogenomic data support a single backbone topology with up to 5 overlapping hybrid edges in the Pisgah clade. These results suggest an unusual mechanism of ecomorphological hybrid speciation, wherein a binary threshold trait causes some hybrid populations to shift between microhabitat niches, promoting ecological divergence between sympatric hybrids and parentals. This contrasts with other well-known systems in which hybrids exhibit intermediate, novel, or transgressive phenotypes. The genetic basis of these phenotypes is unclear and further data are needed to clarify the evolutionary basis of morphological changes with ecological consequences.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560-0162, USA
| | - Kyle A O'Connell
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560-0162, USA
- Deloitte Consulting LLP, Health Data and AI, 1919 North Lynn St., Arlington, VA 22209, USA
| | - Edward A Myers
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560-0162, USA
- Department of Herpetology, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, 209 East 5th St., Greenville, NC 27858, USA
| | - Hector Baños
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada
- Department of Mathematics and Statistics, Faculty of Science, Dalhousie University, 6297 Castine Way, Halifax, NS B3H 4R2, Canada
- Department of Mathematics, California State University San Bernardino, 5500 University Pkwy, San Bernardino, CA, USA
| |
Collapse
|
2
|
Herrig DK, Ridenbaugh RD, Vertacnik KL, Everson KM, Sim SB, Geib SM, Weisrock DW, Linnen CR. Whole Genomes Reveal Evolutionary Relationships and Mechanisms Underlying Gene-Tree Discordance in Neodiprion Sawflies. Syst Biol 2024; 73:839-860. [PMID: 38970484 DOI: 10.1093/sysbio/syae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024] Open
Abstract
Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting (ILS) and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and single nucleotide polymorphism-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that-except for three uncertain relationships-was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that ILS, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Ryan D Ridenbaugh
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Kathryn M Everson
- Department of Natural Resources and Environmental Science, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
- Department of Integrative Biology, Oregon State University, 4575 SW Research Way, Corvallis, OR 97333, USA
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, 64 Nowelo St., Hilo, HI 96720, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, 64 Nowelo St., Hilo, HI 96720, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| |
Collapse
|
3
|
Walker JM, van der Heijden ESM, Maulana A, Rueda-M N, Näsvall K, Salazar PA, Meyer M, Meier JI. Common misconceptions of speciation. EVOLUTIONARY JOURNAL OF THE LINNEAN SOCIETY 2024; 3:kzae029. [PMID: 39600713 PMCID: PMC11590199 DOI: 10.1093/evolinnean/kzae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024]
Abstract
Speciation is a complex process that can unfold in many different ways. Speciation researchers sometimes simplify core principles in their writing in a way that implies misconceptions about the speciation process. While we think that these misconceptions are usually inadvertently implied (and not actively believed) by the researchers, they nonetheless risk warping how external readers understand speciation. Here we highlight six misconceptions of speciation that are especially widespread. First, species are implied to be clearly and consistently defined entities in nature, whereas in reality species boundaries are often fuzzy and semipermeable. Second, speciation is often implied to be 'good', which is two-fold problematic because it implies both that evolution has a goal and that speciation universally increases the chances of lineage persistence. Third, species-poor clades with species-rich sister clades are considered 'primitive' or 'basal', falsely implying a ladder of progress. Fourth, the evolution of species is assumed to be strictly tree-like, but genomic findings show widespread hybridization more consistent with network-like evolution. Fifth, a lack of association between a trait and elevated speciation rates in macroevolutionary studies is often interpreted as evidence against its relevance in speciation-even if microevolutionary case studies show that it is relevant. Sixth, obvious trait differences between species are sometimes too readily assumed to be (i) barriers to reproduction, (ii) a stepping-stone to inevitable speciation, or (iii) reflective of the species' whole divergence history. In conclusion, we call for caution, particularly when communicating science, because miscommunication of these ideas provides fertile ground for misconceptions to spread.
Collapse
Affiliation(s)
- Jonah M Walker
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
| | - Eva S M van der Heijden
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
| | - Arif Maulana
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Darwin College, University of Cambridge, Cambridge, United Kingdom
| | - Nicol Rueda-M
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Karin Näsvall
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Patricio A Salazar
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Meyer
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Joana I Meier
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Myers EA, Rautsaw RM, Borja M, Jones J, Grünwald CI, Holding ML, Grazziotin FG, Parkinson CL. Phylogenomic Discordance is Driven by Wide-Spread Introgression and Incomplete Lineage Sorting During Rapid Species Diversification Within Rattlesnakes (Viperidae: Crotalus and Sistrurus). Syst Biol 2024; 73:722-741. [PMID: 38695290 PMCID: PMC11906154 DOI: 10.1093/sysbio/syae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024] Open
Abstract
-Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here, we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like those seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - Jason Jones
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
| | - Christoph I Grünwald
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
- Biodiversa A.C., Avenida de la Ribera #203, C.P. 45900, Chapala, Jalisco, Mexico
| | - Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | |
Collapse
|
5
|
Blom MP, Peona V, Prost S, Christidis L, Benz BW, Jønsson KA, Suh A, Irestedt M. Hybridization in birds-of-paradise: Widespread ancestral gene flow despite strong sexual selection in a lek-mating system. iScience 2024; 27:110300. [PMID: 39055907 PMCID: PMC11269930 DOI: 10.1016/j.isci.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Sexual selection can directly contribute to reproductive isolation and is an important mechanism that can lead to speciation. Lek-mating is one of the most extreme forms of sexual selection, but surprisingly does not seem to preclude occasional hybridization in nature. However, hybridization among lekking species may still be trivial if selection against offspring with intermediate phenotypes prohibits introgression. Here we investigate this further by sequencing the genomes of nearly all bird-of-paradise (Paradisaeidae) species and 10 museum specimens of putative hybrid origin. We find that intergeneric hybridization indeed still takes place despite extreme differentiation in form, plumage, and behavior. In parallel, the genomes of contemporary species contain widespread signatures of past introgression, demonstrating that hybridization has repeatedly resulted in shared genetic variation despite strong sexual isolation. Our study raises important questions about extrinsic factors that modulate hybridization probability and the evolutionary consequences of introgressive hybridization between lekking species.
Collapse
Affiliation(s)
- Mozes P.K. Blom
- Department for Evolutionary Diversity Dynamics, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Research, 10115 Berlin, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Valentina Peona
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Les Christidis
- Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Brett W. Benz
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| |
Collapse
|
6
|
Reyna-Blanco CS, Caduff M, Galimberti M, Leuenberger C, Wegmann D. Inference of Locus-Specific Population Mixtures from Linked Genome-Wide Allele Frequencies. Mol Biol Evol 2024; 41:msae137. [PMID: 38958167 PMCID: PMC11255385 DOI: 10.1093/molbev/msae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Admixture between populations and species is common in nature. Since the influx of new genetic material might be either facilitated or hindered by selection, variation in mixture proportions along the genome is expected in organisms undergoing recombination. Various graph-based models have been developed to better understand these evolutionary dynamics of population splits and mixtures. However, current models assume a single mixture rate for the entire genome and do not explicitly account for linkage. Here, we introduce TreeSwirl, a novel method for inferring branch lengths and locus-specific mixture proportions by using genome-wide allele frequency data, assuming that the admixture graph is known or has been inferred. TreeSwirl builds upon TreeMix that uses Gaussian processes to estimate the presence of gene flow between diverged populations. However, in contrast to TreeMix, our model infers locus-specific mixture proportions employing a hidden Markov model that accounts for linkage. Through simulated data, we demonstrate that TreeSwirl can accurately estimate locus-specific mixture proportions and handle complex demographic scenarios. It also outperforms related D- and f-statistics in terms of accuracy and sensitivity to detect introgressed loci.
Collapse
Affiliation(s)
- Carlos S Reyna-Blanco
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Madleina Caduff
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Marco Galimberti
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| |
Collapse
|
7
|
Thawornwattana Y, Seixas F, Yang Z, Mallet J. Major patterns in the introgression history of Heliconius butterflies. eLife 2023; 12:RP90656. [PMID: 38108819 PMCID: PMC10727504 DOI: 10.7554/elife.90656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Gene flow between species, although usually deleterious, is an important evolutionary process that can facilitate adaptation and lead to species diversification. It also makes estimation of species relationships difficult. Here, we use the full-likelihood multispecies coalescent (MSC) approach to estimate species phylogeny and major introgression events in Heliconius butterflies from whole-genome sequence data. We obtain a robust estimate of species branching order among major clades in the genus, including the 'melpomene-silvaniform' group, which shows extensive historical and ongoing gene flow. We obtain chromosome-level estimates of key parameters in the species phylogeny, including species divergence times, present-day and ancestral population sizes, as well as the direction, timing, and intensity of gene flow. Our analysis leads to a phylogeny with introgression events that differ from those obtained in previous studies. We find that Heliconius aoede most likely represents the earliest-branching lineage of the genus and that 'silvaniform' species are paraphyletic within the melpomene-silvaniform group. Our phylogeny provides new, parsimonious histories for the origins of key traits in Heliconius, including pollen feeding and an inversion involved in wing pattern mimicry. Our results demonstrate the power and feasibility of the full-likelihood MSC approach for estimating species phylogeny and key population parameters despite extensive gene flow. The methods used here should be useful for analysis of other difficult species groups with high rates of introgression.
Collapse
Affiliation(s)
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
8
|
San Jose M, Doorenweerd C, Geib S, Barr N, Dupuis JR, Leblanc L, Kauwe A, Morris KY, Rubinoff D. Interspecific gene flow obscures phylogenetic relationships in an important insect pest species complex. Mol Phylogenet Evol 2023; 188:107892. [PMID: 37524217 DOI: 10.1016/j.ympev.2023.107892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
As genomic data proliferates, the prevalence of post-speciation gene flow is making species boundaries and relationships increasingly ambiguous. Although current approaches inferring fully bifurcating phylogenies based on concatenated datasets provide simple and robust answers to many species relationships, they may be inaccurate because the models ignore inter-specific gene flow and incomplete lineage sorting. To examine the potential error resulting from ignoring gene flow, we generated both a RAD-seq and a 500 protein-coding loci highly multiplexed amplicon (HiMAP) dataset for a monophyletic group of 12 species defined as the Bactrocera dorsalis sensu lato clade. With some of the world's worst agricultural pests, the taxonomy of the B. dorsalis s.l. clade is important for trade and quarantines. However, taxonomic confusion confounds resolution due to intra- and interspecific phenotypic variation and convergence, mitochondrial introgression across half of the species, and viable hybrids. We compared the topological convergence of our datasets using concatenated phylogenetic and various multispecies coalescent approaches, some of which account for gene flow. All analyses agreed on species delimitation, but there was incongruence between species relationships. Under concatenation, both datasets suggest identical species relationships with mostly high statistical support. However, multispecies coalescent and multispecies network approaches suggest markedly different hypotheses and detected significant gene flow. We suggest that the network approaches are likely more accurate because gene flow violates the assumptions of the concatenated phylogenetic analyses, but the data-reductive requirements of network approaches resulted in reduced statistical support and could not unambiguously resolve gene flow directions. Our study highlights the importance of testing for gene flow, particularly with phylogenomic datasets, even when concatenated approaches receive high statistical support.
Collapse
Affiliation(s)
- Michael San Jose
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA.
| | - Camiel Doorenweerd
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA
| | - Scott Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Center, USDA Agricultural Research Services, Hilo, HI, USA
| | - Norman Barr
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science & Technology, Insect Management and Molecular Diagnostics Laboratory, 22675 N. Moorefield Road, Edinburg, TX 78541, USA
| | - Julian R Dupuis
- University of Kentucky, Department of Entomology, S225 Ag Science Center North, 1100 South Limestone, Lexington, KY, 40546-0091, USA
| | - Luc Leblanc
- University of Idaho, Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, MS2329, Moscow, ID, 83844-2329, USA
| | - Angela Kauwe
- Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Center, USDA Agricultural Research Services, Hilo, HI, USA
| | - Kimberley Y Morris
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA; Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Center, USDA Agricultural Research Services, Hilo, HI, USA
| | - Daniel Rubinoff
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA
| |
Collapse
|
9
|
Cicconardi F, Milanetti E, Pinheiro de Castro EC, Mazo-Vargas A, Van Belleghem SM, Ruggieri AA, Rastas P, Hanly J, Evans E, Jiggins CD, Owen McMillan W, Papa R, Di Marino D, Martin A, Montgomery SH. Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. Nat Commun 2023; 14:5620. [PMID: 37699868 PMCID: PMC10497600 DOI: 10.1038/s41467-023-41412-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | | | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joseph Hanly
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, PR, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, Puerto Rico
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
10
|
Gonçalves-Dias J, Singh A, Graf C, Stetter MG. Genetic Incompatibilities and Evolutionary Rescue by Wild Relatives Shaped Grain Amaranth Domestication. Mol Biol Evol 2023; 40:msad177. [PMID: 37552934 PMCID: PMC10439364 DOI: 10.1093/molbev/msad177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Crop domestication and the subsequent expansion of crops have long been thought of as a linear process from a wild ancestor to a domesticate. However, evidence of gene flow from locally adapted wild relatives that provided adaptive alleles into crops has been identified in multiple species. Yet, little is known about the evolutionary consequences of gene flow during domestication and the interaction of gene flow and genetic load in crop populations. We study the pseudo-cereal grain amaranth that has been domesticated three times in different geographic regions of the Americas. We quantify the amount and distribution of gene flow and genetic load along the genome of the three grain amaranth species and their two wild relatives. Our results show ample gene flow between crop species and between crops and their wild relatives. Gene flow from wild relatives decreased genetic load in the three crop species. This suggests that wild relatives could provide evolutionary rescue by replacing deleterious alleles in crops. We assess experimental hybrids between the three crop species and found genetic incompatibilities between one Central American grain amaranth and the other two crop species. These incompatibilities might have created recent reproductive barriers and maintained species integrity today. Together, our results show that gene flow played an important role in the domestication and expansion of grain amaranth, despite genetic species barriers. The domestication of plants was likely not linear and created a genomic mosaic by multiple contributors with varying fitness effects for today's crops.
Collapse
Affiliation(s)
| | - Akanksha Singh
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Corbinian Graf
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus G Stetter
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Zhou W, Furey NM, Soisook P, Thong VD, Lim BK, Rossiter SJ, Mao X. Diversification and introgression in four chromosomal taxa of the Pearson's horseshoe bat (Rhinolophus pearsoni) group. Mol Phylogenet Evol 2023; 183:107784. [PMID: 37040825 DOI: 10.1016/j.ympev.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Chromosomal variation among closely related taxa is common in both plants and animals, and can reduce rates of introgression as well as promote reproductive isolation and speciation. In mammals, studies relating introgression to chromosomal variation have tended to focus on a few model systems and typically characterized levels of introgression using small numbers of loci. Here we took a genome-wide approach to examine how introgression rates vary among four closely related horseshoe bats (Rhinolophus pearsoni group) that possess different diploid chromosome numbers (2n = 42, 44, 46, and 60) resulting from Robertsonian (Rb) changes (fissions/fusions). Using a sequence capture we obtained orthologous loci for thousands of nuclear loci, as well as mitogenomes, and performed phylogenetic and population genetic analyses. We found that the taxon with 2n = 60 was the first to diverge in this group, and that the relationships among the three other taxa (2n = 42, 44 and 46) showed discordance across our different analyses. Our results revealed signatures of multiple ancient introgression events between the four taxa, with evidence of mitonuclar discordance in phylogenetic trees and reticulation events in their evolutionary history. Despite this, we found no evidence of recent and/or ongoing introgression between taxa. Overall, our results indicate that the effects of Rb changes on the reduction of introgression are complicated and that these may contribute to reproductive isolation and speciation in concert with other factors (e.g. phenotypic and genic divergence).
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Neil M Furey
- Fauna & Flora International (Cambodia), PO Box 1380, No. 19, Street 360, Boeng Keng Kong 1, Phnom Penh 12000, Cambodia
| | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Vu D Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, Viet Nam
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
12
|
Helleu Q, Roux C, Ross KG, Keller L. Radiation and hybridization underpin the spread of the fire ant social supergene. Proc Natl Acad Sci U S A 2022; 119:e2201040119. [PMID: 35969752 PMCID: PMC9407637 DOI: 10.1073/pnas.2201040119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Supergenes are clusters of tightly linked genes that jointly produce complex phenotypes. Although widespread in nature, how such genomic elements are formed and how they spread are in most cases unclear. In the fire ant Solenopsis invicta and closely related species, a "social supergene controls whether a colony maintains one or multiple queens. Here, we show that the three inversions constituting the Social b (Sb) supergene emerged sequentially during the separation of the ancestral lineages of S. invicta and Solenopsis richteri. The two first inversions arose in the ancestral population of both species, while the third one arose in the S. richteri lineage. Once completely assembled in the S. richteri lineage, the supergene first introgressed into S. invicta, and from there into the other species of the socially polymorphic group of South American fire ant species. Surprisingly, the introgression of this large and important genomic element occurred despite recent hybridization being uncommon between several of the species. These results highlight how supergenes can readily move across species boundaries, possibly because of fitness benefits they provide and/or expression of selfish properties favoring their transmission.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA 30605
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Repeated genetic adaptation to altitude in two tropical butterflies. Nat Commun 2022; 13:4676. [PMID: 35945236 PMCID: PMC9363431 DOI: 10.1038/s41467-022-32316-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/26/2022] [Indexed: 01/02/2023] Open
Abstract
Repeated evolution can provide insight into the mechanisms that facilitate adaptation to novel or changing environments. Here we study adaptation to altitude in two tropical butterflies, Heliconius erato and H. melpomene, which have repeatedly and independently adapted to montane habitats on either side of the Andes. We sequenced 518 whole genomes from altitudinal transects and found many regions differentiated between highland (~ 1200 m) and lowland (~ 200 m) populations. We show repeated genetic differentiation across replicate populations within species, including allopatric comparisons. In contrast, there is little molecular parallelism between the two species. By sampling five close relatives, we find that a large proportion of divergent regions identified within species have arisen from standing variation and putative adaptive introgression from high-altitude specialist species. Taken together our study supports a role for both standing genetic variation and gene flow from independently adapted species in promoting parallel local adaptation to the environment. Here, the authors study adaptation to altitude in 518 whole genomes from two species of tropical butterflies. They find repeated genetic differentiation within species, little molecular parallelism between these species, and introgression from closely related species, concluding that standing genetic variation promotes parallel local adaptation.
Collapse
|
14
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
15
|
Campbell EO, MacDonald ZG, Gage EV, Gage RV, Sperling FAH. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol Ecol 2022; 31:2400-2417. [PMID: 35212068 DOI: 10.1111/mec.16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mito-nuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assess their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.
Collapse
Affiliation(s)
- E O Campbell
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Z G MacDonald
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E V Gage
- Texas Museum of Entomology, Pipe Creek, TX, U.S.A
| | | | - F A H Sperling
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Pyron RA, O’Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones. Ecol Evol 2022; 12:e8574. [PMID: 35222955 PMCID: PMC8848459 DOI: 10.1002/ece3.8574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Dusky Salamanders (genus Desmognathus) currently comprise only 22 described, extant species. However, recent mitochondrial and nuclear estimates indicate the presence of up to 49 candidate species based on ecogeographic sampling. Previous studies also suggest a complex history of hybridization between these lineages. Studies in other groups suggest that disregarding admixture may affect both phylogenetic inference and clustering-based species delimitation. With a dataset comprising 233 Anchored Hybrid Enrichment (AHE) loci sequenced for 896 Desmognathus specimens from all 49 candidate species, we test three hypotheses regarding (i) species-level diversity, (ii) hybridization and admixture, and (iii) misleading phylogenetic inference. Using phylogenetic and population-clustering analyses considering gene flow, we find support for at least 47 candidate species in the phylogenomic dataset, some of which are newly characterized here while others represent combinations of previously named lineages that are collapsed in the current dataset. Within these, we observe significant phylogeographic structure, with up to 64 total geographic genetic lineages, many of which hybridize either narrowly at contact zones or extensively across ecological gradients. We find strong support for both recent admixture between terminal lineages and ancient hybridization across internal branches. This signal appears to distort concatenated phylogenetic inference, wherein more heavily admixed terminal specimens occupy apparently artifactual early-diverging topological positions, occasionally to the extent of forming false clades of intermediate hybrids. Additional geographic and genetic sampling and more robust computational approaches will be needed to clarify taxonomy, and to reconstruct a network topology to display evolutionary relationships in a manner that is consistent with their complex history of reticulation.
Collapse
Affiliation(s)
- Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Kyle A. O’Connell
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Global Genome InitiativeNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Biomedical Data Science LabDeloitte Consulting LLPArlingtonVirginiaUSA
| | | | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | - David A. Beamer
- Department of Natural SciencesNash Community CollegeRocky MountNorth CarolinaUSA
| |
Collapse
|
17
|
Abstract
Alleles that introgress between species can influence the evolutionary and ecological fate of species exposed to novel environments. Hybrid offspring of different species are often unfit, and yet it has long been argued that introgression can be a potent force in evolution, especially in plants. Over the last two decades, genomic data have increasingly provided evidence that introgression is a critically important source of genetic variation and that this additional variation can be useful in adaptive evolution of both animals and plants. Here, we review factors that influence the probability that foreign genetic variants provide long-term benefits (so-called adaptive introgression) and discuss their potential benefits. We find that introgression plays an important role in adaptive evolution, particularly when a species is far from its fitness optimum, such as when they expand their range or are subject to changing environments.
Collapse
Affiliation(s)
- Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Current affiliation: Yale Institute for Biospheric Studies and Yale School of the Environment, Yale University, New Haven, Connecticut 06511, USA;
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
18
|
Cicconardi F, Lewis JJ, Martin SH, Reed RD, Danko CG, Montgomery SH. Chromosome Fusion Affects Genetic Diversity and Evolutionary Turnover of Functional Loci but Consistently Depends on Chromosome Size. Mol Biol Evol 2021; 38:4449-4462. [PMID: 34146107 PMCID: PMC8476138 DOI: 10.1093/molbev/msab185] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Major changes in chromosome number and structure are linked to a series of evolutionary phenomena, including intrinsic barriers to gene flow or suppression of recombination due to chromosomal rearrangements. However, chromosome rearrangements can also affect the fundamental dynamics of molecular evolution within populations by changing relationships between linked loci and altering rates of recombination. Here, we build chromosome-level assembly Eueides isabella and, together with a recent chromosome-level assembly of Dryas iulia, examine the evolutionary consequences of multiple chromosome fusions in Heliconius butterflies. These assemblies pinpoint fusion points on 10 of the 20 autosomal chromosomes and reveal striking differences in the characteristics of fused and unfused chromosomes. The ten smallest autosomes in D. iulia and E. isabella, which have each fused to a longer chromosome in Heliconius, have higher repeat and GC content, and longer introns than predicted by their chromosome length. When fused, these characteristics change to become more in line with chromosome length. The fusions also led to reduced diversity, which likely reflects increased background selection and selection against introgression between diverging populations, following a reduction in per-base recombination rate. We further show that chromosome size and fusion impact turnover rates of functional loci at a macroevolutionary scale. Together these results provide further evidence that chromosome fusion in Heliconius likely had dramatic effects on population level processes shaping rates of neutral and adaptive divergence. These effects may have impacted patterns of diversification in Heliconius, a classic example of an adaptive radiation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, University of Bristol Bristol—Life Sciences Building, Bristol, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - James J Lewis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert D Reed
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol Bristol—Life Sciences Building, Bristol, United Kingdom
| |
Collapse
|
19
|
McGrath C. Highlight: How a Butterfly Tree Becomes a Web. Genome Biol Evol 2021. [PMCID: PMC8283723 DOI: 10.1093/gbe/evab143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
21
|
Loiseau O, Mota Machado T, Paris M, Koubínová D, Dexter KG, Versieux LM, Lexer C, Salamin N. Genome Skimming Reveals Widespread Hybridization in a Neotropical Flowering Plant Radiation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.668281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tropics hold at least an order of magnitude greater plant diversity than the temperate zone, yet the reasons for this difference are still subject to debate. Much of tropical plant diversity is in highly speciose genera and understanding the drivers of such high species richness will help solve the tropical diversity enigma. Hybridization has recently been shown to underlie many adaptive radiations, but its role in the evolution of speciose tropical plant genera has received little attention. Here, we address this topic in the hyperdiverse Bromeliaceae genus Vriesea using genome skimming data covering the three genomic compartments. We find evidence for hybridization in ca. 11% of the species in our dataset, both within the genus and between Vriesea and other genera, which is commensurate with hybridization underlying the hyperdiversity of Vriesea, and potentially other genera in Tillandsioideae. While additional genomic research will be needed to further clarify the contribution of hybridization to the rapid diversification of Vriesea, our study provides an important first data point suggesting its importance to the evolution of tropical plant diversity.
Collapse
|