1
|
Gomez-Gutierrrez SV, Sic-Hernandez WR, Haridas S, LaButti K, Eichenberger J, Kaur N, Lipzen A, Barry K, Goodwin SB, Gribskov M, Grigoriev IV. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1418145. [PMID: 39309730 PMCID: PMC11412873 DOI: 10.3389/ffunb.2024.1418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.
Collapse
Affiliation(s)
| | - Wily R. Sic-Hernandez
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joanne Eichenberger
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Navneet Kaur
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephen B. Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture (USDA) - Agricultural Research Service, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
2
|
Parker D, Meyling NV, De Fine Licht HH. Phenotypic variation and genomic variation in insect virulence traits reveal patterns of intraspecific diversity in a locust-specific fungal pathogen. J Evol Biol 2023; 36:1438-1454. [PMID: 37702110 DOI: 10.1111/jeb.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 04/18/2023] [Indexed: 09/14/2023]
Abstract
Intraspecific pathogen diversity is crucial for understanding the evolution and maintenance of adaptation in host-pathogen interactions. Traits associated with virulence are often a significant source of variation directly impacted by local selection pressures. The specialist fungal entomopathogen, Metarhizium acridum, has been widely implemented as a biological control agent of locust pests in tropical regions of the world. However, few studies have accounted for natural intraspecific phenotypic and genetic variation. Here, we examine the diversity of nine isolates of M. acridum spanning the known geographic distribution, in terms of (1) virulence towards two locust species, (2) growth rates on three diverse nutrient sources, and (3) comparative genomics to uncover genomic variability. Significant variability in patterns of virulence and growth was shown among the isolates, suggesting intraspecific ecological specialization. Different patterns of virulence were shown between the two locust species, indicative of potential host preference. Additionally, a high level of diversity among M. acridum isolates was observed, revealing increased variation in subtilisin-like proteases from the Pr1 family. These results culminate in the first in-depth analysis regarding multiple facets of natural variation in M. acridum, offering opportunities to understand critical evolutionary drivers of intraspecific diversity in pathogens.
Collapse
Affiliation(s)
- Dinah Parker
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai V Meyling
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik H De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Gryganskyi AP, Golan J, Muszewska A, Idnurm A, Dolatabadi S, Mondo SJ, Kutovenko VB, Kutovenko VO, Gajdeczka MT, Anishchenko IM, Pawlowska J, Tran NV, Ebersberger I, Voigt K, Wang Y, Chang Y, Pawlowska TE, Heitman J, Vilgalys R, Bonito G, Benny GL, Smith ME, Reynolds N, James TY, Grigoriev IV, Spatafora JW, Stajich JE. Sequencing the Genomes of the First Terrestrial Fungal Lineages: What Have We Learned? Microorganisms 2023; 11:1830. [PMID: 37513002 PMCID: PMC10386755 DOI: 10.3390/microorganisms11071830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Anna Muszewska
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Somayeh Dolatabadi
- Biology Department, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
| | - Vira B. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | - Volodymyr O. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | | | - Iryna M. Anishchenko
- MG Kholodny Institute of Botany, National Academy of Sciences, 01030 Kyiv, Ukraine;
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological & Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland;
| | - Ngoc Vinh Tran
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Ingo Ebersberger
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ying Chang
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore;
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Rytas Vilgalys
- Biology Department, Duke University, Durham, NC 27708, USA;
| | - Gregory Bonito
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Gerald L. Benny
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Matthew E. Smith
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Nicole Reynolds
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Joseph W. Spatafora
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 93106, USA;
| |
Collapse
|
4
|
Profiling Destruxin Synthesis by Specialist and Generalist Metarhizium Insect Pathogens during Coculture with Plants. Appl Environ Microbiol 2022; 88:e0247421. [PMID: 35638846 DOI: 10.1128/aem.02474-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metarhizium is a genus of endophytic, insect-pathogenic fungi that is used as a biological control agent. The dual lifestyles of these fungi combine the parasitism of insect pests with the symbiotic association with plant roots. A major class of secreted metabolites by Metarhizium are cyclic depsipeptides called destruxins (DTXs). As prominent insecticidal compounds, their role during plant interactions is still largely unknown. Here, we examined the metabolomic profile of Metarhizium, with special emphasis on DTX production, using untargeted, liquid chromatography-tandem mass spectrometry (LC-MS/MS). Four Metarhizium species, two insect generalists (M. robertsii and M. brunneum), and two insect specialists (M. flavoviride and M. acridum) were inoculated onto agar plate cultures containing either bean (Phaseolus vulgaris) or corn (Zea mays) and grown for four and seven days. After methanol extraction, feature-based molecular networking (FBMN) was used to obtain DTX identification as defined by the Global Natural Products Social Molecular Networking (GNPS). A total of 25 DTX analogs were identified, with several DTX-like compounds in coculture that could not be identified. Metarhizium species differed in the amount and type of DTXs they produced, with the insect specialists producing far fewer amounts and types of DTXs than the insect generalists. The production of these metabolites varied between cultures of different ages and plant hosts. Conditions that influence the production of DTXs are discussed. As the genetic arsenal of natural products relates to the lifestyle of the organism, uncovering conditions with an ecological context may reveal strategies for producing novel compounds or precursors suitable for synthetic biology. IMPORTANCE The development of an intimate and beneficial association between fungi and plants requires an exchange of a complex mixture of chemical cues. These compounds are a means of communication, promoting or limiting the interaction, but can have numerous other biological and ecological functions. Determining how the metabolome, or a subset thereof, is linked to plant host preference and colonization has implications for future functional studies and may uncover novel therapeutic compounds whose production is elicited only under cocultivation. In this study, we performed an untargeted metabolomic analysis of plate cocultures with individual plant-fungal pairs. The identification of a major group of fungal metabolites, the destruxins, was examined for their role in plant specificity. The diversity of these metabolites and the production of numerous unidentified, structural analogs are evidence of the sensitivity of the methodology and the potential for future mining of this living data set.
Collapse
|
5
|
Raymond B, Erdos Z. Passage and the evolution of virulence in invertebrate pathogens: Fundamental and applied perspectives. J Invertebr Pathol 2021; 187:107692. [PMID: 34798134 DOI: 10.1016/j.jip.2021.107692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
Understanding the ecological and genetic factors that determine the evolution of virulence has broad value for invertebrate pathology. In addition to helping us understand the fundamental biology of our study organisms this body of theory has important applications in microbial biocontrol. Experimental tests of virulence theory are often carried out in invertebrate models and yet theory rarely informs applied passage experiments that aim to increase or maintain virulence. This review summarizes recent progress in this field with a focus on work most relevant to biological control: the virulence of invertebrate pathogens that are 'obligate killers' and which require cadavers for the production of infectious propagules. We discuss recent theory and fundamental and applied experimental evolution with bacteria, fungi, baculoviruses and nematodes. While passage experiments using baculoviruses have a long history of producing isolates with increased virulence, studies with other pathogens have not been so successful. Recent passage experiments that have applied evolution of virulence frameworks based on cooperation (kin selection) have produced novel methods and promising mutants with increased killing power. Evolution of virulence theory can provide plausible explanations for the varied results of passage experiments as well as a predictive framework for improving artificial selection.
Collapse
Affiliation(s)
- Ben Raymond
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.
| | - Zoltan Erdos
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|