1
|
Monier M, Lorenzi JN, Narasimha S, Borne F, Contremoulins V, Mevel L, Petit R, El Hachem Y, Graner F, Courtier-Orgogozo V. Adhesive and mechanical properties of the glue produced by 25 Drosophila species. Sci Rep 2024; 14:23249. [PMID: 39370426 PMCID: PMC11456580 DOI: 10.1038/s41598-024-74358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Drosophila glue, a bioadhesive produced by fly larvae to attach themselves to a substrate for several days, has recently gained attention for its peculiar adhesive and mechanical properties. Although Drosophila glue production was described more than 50 years ago, a general survey of the adhesive and mechanical properties of this proteinaceous gel across Drosophila species is lacking. To measure adhesion, we present here a protocol that is robust to variations in protocol parameters, pupal age and calculation methods. We find that the glue, which covers the entire pupal surface, increases the animal rigidity and plasticity when bound to a glass slide. Our survey of pupal adhesion in 25 Drosophilidae species reveals a wide range of phenotypes, from species that produce no or little glue and adhere little, to species that produce high amounts of glue and adhere strongly. One species, D. hydei, stands out from the rest and emerges as a promising model for the development of future bioadhesives, as it has the highest detachment force per glue area and produces relatively large amounts of glue relative to its size. We also observe that species that invest more in glue tend to live in more windy and less rainy climates, suggesting that differences in pupal adhesion properties across species are shaped by ecological factors. Our present survey provides a basis for future biomimetic studies based on Drosophila glue.
Collapse
Affiliation(s)
- Manon Monier
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Jean-Noël Lorenzi
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75006, Paris, France
| | - Sunitha Narasimha
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Flora Borne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Vincent Contremoulins
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
- Inserm, B3OA, 75010, Paris, France
| | - Louis Mevel
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Romane Petit
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Youssef El Hachem
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - François Graner
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, 75013, Paris, France.
| | | |
Collapse
|
2
|
Zhang L, Muirhead KJ, Syed ZA, Dimitriadis EK, Ten Hagen KG. A novel cysteine-rich adaptor protein is required for mucin packaging and secretory granule stability in vivo. Proc Natl Acad Sci U S A 2024; 121:e2314309121. [PMID: 38285943 PMCID: PMC10861859 DOI: 10.1073/pnas.2314309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Mucins are large, highly glycosylated extracellular matrix proteins that line and protect epithelia of the respiratory, digestive, and urogenital tracts. Previous work has shown that mucins form large, interconnected polymeric networks that mediate their biological functions once secreted. However, how these large matrix molecules are compacted and packaged into much smaller secretory granules within cells prior to secretion is largely unknown. Here, we demonstrate that a small cysteine-rich adaptor protein is essential for proper packaging of a secretory mucin in vivo. This adaptor acts via cysteine bonding between itself and the cysteine-rich domain of the mucin. Loss of this adaptor protein disrupts mucin packaging in secretory granules, alters the mobile fraction within granules, and results in granules that are larger, more circular, and more fragile. Understanding the factors and mechanisms by which mucins and other highly glycosylated matrix proteins are properly packaged and secreted may provide insight into diseases characterized by aberrant mucin secretion.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
| | - Kayla J. Muirhead
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
- Ambry Genetics, Aliso Viejo, CA92656
| | - Zulfeqhar A. Syed
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Emilios K. Dimitriadis
- Trans-NIH Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
| |
Collapse
|
3
|
Monier M, Nuez I, Borne F, Courtier-Orgogozo V. Higher evolutionary dynamics of gene copy number for Drosophila glue genes located near short repeat sequences. BMC Ecol Evol 2024; 24:18. [PMID: 38308233 PMCID: PMC10835880 DOI: 10.1186/s12862-023-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/23/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND During evolution, genes can experience duplications, losses, inversions and gene conversions. Why certain genes are more dynamic than others is poorly understood. Here we examine how several Sgs genes encoding glue proteins, which make up a bioadhesive that sticks the animal during metamorphosis, have evolved in Drosophila species. RESULTS We examined high-quality genome assemblies of 24 Drosophila species to study the evolutionary dynamics of four glue genes that are present in D. melanogaster and are part of the same gene family - Sgs1, Sgs3, Sgs7 and Sgs8 - across approximately 30 millions of years. We annotated a total of 102 Sgs genes and grouped them into 4 subfamilies. We present here a new nomenclature for these Sgs genes based on protein sequence conservation, genomic location and presence/absence of internal repeats. Two types of glue genes were uncovered. The first category (Sgs1, Sgs3x, Sgs3e) showed a few gene losses but no duplication, no local inversion and no gene conversion. The second group (Sgs3b, Sgs7, Sgs8) exhibited multiple events of gene losses, gene duplications, local inversions and gene conversions. Our data suggest that the presence of short "new glue" genes near the genes of the latter group may have accelerated their dynamics. CONCLUSIONS Our comparative analysis suggests that the evolutionary dynamics of glue genes is influenced by genomic context. Our molecular, phylogenetic and comparative analysis of the four glue genes Sgs1, Sgs3, Sgs7 and Sgs8 provides the foundation for investigating the role of the various glue genes during Drosophila life.
Collapse
Affiliation(s)
- Manon Monier
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Isabelle Nuez
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Flora Borne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
- Department of Biological Sciences, Columbia University, New York city, New York, USA
| | | |
Collapse
|
4
|
Monier M, Courtier-Orgogozo V. Drosophila Glue: A Promising Model for Bioadhesion. INSECTS 2022; 13:734. [PMID: 36005360 PMCID: PMC9409817 DOI: 10.3390/insects13080734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The glue produced by Drosophila larvae to attach themselves to a substrate for several days and resist predation until the end of metamorphosis represents an attractive model to develop new adhesives for dry environments. The adhesive properties of this interesting material have been investigated recently, and it was found that it binds as well as strongly adhesive commercial tapes to various types of substrates. This glue hardens rapidly after excretion and is made of several proteins. In D. melanogaster, eight glue proteins have been identified: four are long glycosylated mucoproteins containing repeats rich in prolines, serines and threonines, and four others are shorter proteins rich in cysteines. This protein mix is produced by the salivary glands through a complex packaging process that is starting to be elucidated. Drosophila species have adapted to stick to various substrates in diverse environmental conditions and glue genes appear to evolve rapidly in terms of gene number, number of repeats and sequence of the repeat motifs. Interestingly, besides its adhesive properties, the glue may also have antimicrobial activities. We discuss future perspectives and avenues of research for the development of new bioadhesives mimicking Drosophila fly glue.
Collapse
|