1
|
Powell A, Heckenhauer J, Pauls SU, Ríos-Touma B, Kuranishi RB, Holzenthal RW, Razuri-Gonzales E, Bybee S, Frandsen PB. Evolution of Opsin Genes in Caddisflies (Insecta: Trichoptera). Genome Biol Evol 2024; 16:evae185. [PMID: 39176990 PMCID: PMC11381090 DOI: 10.1093/gbe/evae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Insects have evolved complex and diverse visual systems in which light-sensing protein molecules called "opsins" couple with a chromophore to form photopigments. Insect photopigments group into three major gene families based on wavelength sensitivity: long wavelength (LW), short wavelength (SW), and ultraviolet wavelength (UV). In this study, we identified 123 opsin sequences from whole-genome assemblies across 25 caddisfly species (Insecta: Trichoptera). We discovered the LW opsins have the most diversity across species and form two separate clades in the opsin gene tree. Conversely, we observed a loss of the SW opsin in half of the trichopteran species in this study, which might be associated with the fact that caddisflies are active during low-light conditions. Lastly, we found a single copy of the UV opsin in all the species in this study, with one exception: Athripsodes cinereus has two copies of the UV opsin and resides within a clade of caddisflies with colorful wing patterns.
Collapse
Affiliation(s)
- Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Blanca Ríos-Touma
- Facultad de Ingenierías y Ciencias Aplicadas, Ingeniería Ambiental, Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Ryoichi B Kuranishi
- Graduate School of Science, Chiba University, Chiba, Japan
- Kanagawa Institute of Technology, Kanagawa, Japan
| | | | | | - Seth Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
2
|
Yu W, Luo H, Yang J, Zhang S, Jiang H, Zhao X, Hui X, Sun D, Li L, Wei XQ, Lonardi S, Pan W. Comprehensive assessment of 11 de novo HiFi assemblers on complex eukaryotic genomes and metagenomes. Genome Res 2024; 34:326-340. [PMID: 38428994 PMCID: PMC10984382 DOI: 10.1101/gr.278232.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Pacific Biosciences (PacBio) HiFi sequencing technology generates long reads (>10 kbp) with very high accuracy (<0.01% sequencing error). Although several de novo assembly tools are available for HiFi reads, there are no comprehensive studies on the evaluation of these assemblers. We evaluated the performance of 11 de novo HiFi assemblers on (1) real data for three eukaryotic genomes; (2) 34 synthetic data sets with different ploidy, sequencing coverage levels, heterozygosity rates, and sequencing error rates; (3) one real metagenomic data set; and (4) five synthetic metagenomic data sets with different composition abundance and heterozygosity rates. The 11 assemblers were evaluated using quality assessment tool (QUAST) and benchmarking universal single-copy ortholog (BUSCO). We also used several additional criteria, namely, completion rate, single-copy completion rate, duplicated completion rate, average proportion of largest category, average distance difference, quality value, run-time, and memory utilization. Results show that hifiasm and hifiasm-meta should be the first choice for assembling eukaryotic genomes and metagenomes with HiFi data. We performed a comprehensive benchmarking study of commonly used assemblers on complex eukaryotic genomes and metagenomes. Our study will help the research community to choose the most appropriate assembler for their data and identify possible improvements in assembly algorithms.
Collapse
Affiliation(s)
- Wenjuan Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haohui Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jinbao Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengchen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Heling Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianjia Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingqi Hui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Da Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China
| | - Xiu-Qing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China;
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, California 92521, USA;
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| |
Collapse
|
3
|
Heckenhauer J, Stewart RJ, Ríos-Touma B, Powell A, Dorji T, Frandsen PB, Pauls SU. Characterization of the primary structure of the major silk gene, h-fibroin, across caddisfly (Trichoptera) suborders. iScience 2023; 26:107253. [PMID: 37529107 PMCID: PMC10387566 DOI: 10.1016/j.isci.2023.107253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Larvae of caddisflies (Trichoptera) produce silk to build various underwater structures allowing them to exploit a wide range of aquatic environments. The silk adheres to various substrates underwater and has high tensile strength, extensibility, and toughness and is of interest as a model for biomimetic adhesives. As a step toward understanding how the properties of underwater silk evolved in Trichoptera, we used genomic data to identify full-length sequences and characterize the primary structure of the major silk protein, h-fibroin, across the order. The h-fibroins have conserved termini and basic motif structure with high variation in repeating modules and variation in the percentage of amino acids, mainly proline. This finding might be linked to differences in mechanical properties related to the different silk usage and sets a starting point for future studies to screen and correlate amino acid motifs and other sequence features with quantifiable silk properties.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Hesse 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Hesse 60325, Germany
| | - Russell J. Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Blanca Ríos-Touma
- Facultad de Ingenierías y Ciencias Aplicadas, Ingeniería Ambiental, Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Quito, EC 170124, Ecuador
| | - Ashlyn Powell
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
| | - Tshering Dorji
- Department of Environment and Climate Studies, Royal University of Bhutan, Punakha 13001, Bhutan
| | - Paul B. Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Hesse 60325, Germany
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - Steffen U. Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Hesse 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Hesse 60325, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Gießen, Hesse 35392; Germany
| |
Collapse
|
4
|
Deng X, Frandsen PB, Dikow RB, Favre A, Shah DN, Shah RDT, Schneider JV, Heckenhauer J, Pauls SU. The impact of sequencing depth and relatedness of the reference genome in population genomic studies: A case study with two caddisfly species (Trichoptera, Rhyacophilidae, Himalopsyche). Ecol Evol 2022; 12:e9583. [PMID: 36523526 PMCID: PMC9745013 DOI: 10.1002/ece3.9583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Whole genome sequencing for generating SNP data is increasingly used in population genetic studies. However, obtaining genomes for massive numbers of samples is still not within the budgets of many researchers. It is thus imperative to select an appropriate reference genome and sequencing depth to ensure the accuracy of the results for a specific research question, while balancing cost and feasibility. To evaluate the effect of the choice of the reference genome and sequencing depth on downstream analyses, we used five confamilial reference genomes of variable relatedness and three levels of sequencing depth (3.5×, 7.5× and 12×) in a population genomic study on two caddisfly species: Himalopsyche digitata and H. tibetana. Using these 30 datasets (five reference genomes × three depths × two target species), we estimated population genetic indices (inbreeding coefficient, nucleotide diversity, pairwise F ST, and genome-wide distribution of F ST) based on variants and population structure (PCA and admixture) based on genotype likelihood estimates. The results showed that both distantly related reference genomes and lower sequencing depth lead to degradation of resolution. In addition, choosing a more closely related reference genome may significantly remedy the defects caused by low depth. Therefore, we conclude that population genetic studies would benefit from closely related reference genomes, especially as the costs of obtaining a high-quality reference genome continue to decrease. However, to determine a cost-efficient strategy for a specific population genomic study, a trade-off between reference genome relatedness and sequencing depth can be considered.
Collapse
Affiliation(s)
- Xi‐Ling Deng
- Senckenberg Research Institute and Natural History MuseumFrankfurt/MainGermany
- Institute of Insect BiotechnologyJustus‐Liebig‐University GießenGießenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt/MainGermany
| | - Paul B. Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt/MainGermany
- Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUtahUSA
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt/MainGermany
- Regional Nature Park of the Trient ValleySalvanSwitzerland
| | - Deep Narayan Shah
- Central Department of Environmental ScienceTribhuvan UniversityKirtipurNepal
| | - Ram Devi Tachamo Shah
- Aquatic Ecology Centre, School of ScienceKathmandu UniversityDhulikhelNepal
- Department of Life SciencesSchool of Science, Kathmandu UniversityDhulikhelNepal
| | - Julio V. Schneider
- Senckenberg Research Institute and Natural History MuseumFrankfurt/MainGermany
| | - Jacqueline Heckenhauer
- Senckenberg Research Institute and Natural History MuseumFrankfurt/MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt/MainGermany
| | - Steffen U. Pauls
- Senckenberg Research Institute and Natural History MuseumFrankfurt/MainGermany
- Institute of Insect BiotechnologyJustus‐Liebig‐University GießenGießenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt/MainGermany
| |
Collapse
|
5
|
Liu Y, Cui X, Yang R, Zhang Y, Xu Y, Liu G, Zhang B, Wang J, Wang X, Zhang W, Chen T, Zhang G. Genomic Insights into the Radiation-Resistant Capability of Sphingomonas qomolangmaensis S5-59 T and Sphingomonas glaciei S8-45 T, Two Novel Bacteria from the North Slope of Mount Everest. Microorganisms 2022; 10:microorganisms10102037. [PMID: 36296313 PMCID: PMC9611098 DOI: 10.3390/microorganisms10102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59T and S8-45T. (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59T and S8-45T were summed as feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59T and S8-45T harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59T and S8-45T strains. Additionally, strain S5-59T possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59T (=JCM 35564T =GDMCC 1.3193T) and S8-45T (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59T and S8-45T, were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Xiaowen Cui
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| | - Ruiqi Yang
- College of Urban Environment, Lanzhou City University, Lanzhou 730070, China
| | - Yiyang Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yeteng Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (T.C.); (G.Z.)
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (T.C.); (G.Z.)
| |
Collapse
|
6
|
Tang X, Li J, Liu L, Jing H, Zuo W, Zeng Y. Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life (Basel) 2022; 12:life12091337. [PMID: 36143374 PMCID: PMC9503701 DOI: 10.3390/life12091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potentilla bifurca is widely distributed in Eurasia, including the Tibetan Plateau. It is a valuable medicinal plant in the Tibetan traditional medicine system, especially for the treatment of diabetes. This study investigated the functional gene profile of Potentilla bifurca at different altitudes by RNA-sequencing technology, including de novo assembly of 222,619 unigenes from 405 million clean reads, 57.64% of which were annotated in Nr, GO, KEGG, Pfam, and Swiss-Prot databases. The most significantly differentially expressed top 50 genes in the high-altitude samples were derived from plants that responded to abiotic stress, such as peroxidase, superoxide dismutase protein, and the ubiquitin-conjugating enzyme. Pathway analysis revealed that a large number of DEGs encode key enzymes involved in secondary metabolites, including phenylpropane and flavonoids. In addition, a total of 298 potential genomic SSRs were identified in this study, which provides information on the development of functional molecular markers for genetic diversity assessment. In conclusion, this study provides the first comprehensive assessment of the Potentilla bifurca transcriptome. This provides new insights into coping mechanisms for non-model organisms surviving in harsh environments at high altitudes, as well as molecular evidence for the selection of superior medicinal plants.
Collapse
Affiliation(s)
- Xun Tang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinping Li
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Likuan Liu
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Hui Jing
- Qinghai Agricultural Technology Extension Station, Xining 810007, China
| | - Wenming Zuo
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yang Zeng
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|
7
|
Kawahara AY, Storer CG, Markee A, Heckenhauer J, Powell A, Plotkin D, Hotaling S, Cleland TP, Dikow RB, Dikow T, Kuranishi RB, Messcher R, Pauls SU, Stewart RJ, Tojo K, Frandsen PB. Long-read HiFi sequencing correctly assembles repetitive heavy fibroin silk genes in new moth and caddisfly genomes. GIGABYTE 2022; 2022:gigabyte64. [PMID: 36824508 PMCID: PMC9693786 DOI: 10.46471/gigabyte.64] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Insect silk is a versatile biomaterial. Lepidoptera and Trichoptera display some of the most diverse uses of silk, with varying strength, adhesive qualities, and elastic properties. Silk fibroin genes are long (>20 Kbp), with many repetitive motifs that make them challenging to sequence. Most research thus far has focused on conserved N- and C-terminal regions of fibroin genes because a full comparison of repetitive regions across taxa has not been possible. Using the PacBio Sequel II system and SMRT sequencing, we generated high fidelity (HiFi) long-read genomic and transcriptomic sequences for the Indianmeal moth (Plodia interpunctella) and genomic sequences for the caddisfly Eubasilissa regina. Both genomes were highly contiguous (N50 = 9.7 Mbp/32.4 Mbp, L50 = 13/11) and complete (BUSCO complete = 99.3%/95.2%), with complete and contiguous recovery of silk heavy fibroin gene sequences. We show that HiFi long-read sequencing is helpful for understanding genes with long, repetitive regions.
Collapse
Affiliation(s)
- Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Caroline G. Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Pacific Biosciences, 1305 O’Brien Dr., Menlo Park, CA 94025, USA
| | - Amanda Markee
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- School of Natural Resources and the Environment, University of Florida, Gainesville, FL 32611, USA
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - David Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Timothy P. Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD 20746, USA
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20002, USA
| | - Torsten Dikow
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Ryoichi B. Kuranishi
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Kanagawa Institute of Technology, Kanagawa 243-0292, Japan
| | - Rebeccah Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Steffen U. Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Gießen 35390, Germany
| | - Russell J. Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Koji Tojo
- Department of Biology, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Paul B. Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20002, USA
| |
Collapse
|