1
|
Lim ZH, Zheng P, Quek C, Nowrousian M, Aachmann FL, Jedd G. Diatom heterotrophy on brown algal polysaccharides emerged through horizontal gene transfer, gene duplication, and neofunctionalization. PLoS Biol 2025; 23:e3003038. [PMID: 40168346 PMCID: PMC11960938 DOI: 10.1371/journal.pbio.3003038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/27/2025] [Indexed: 04/03/2025] Open
Abstract
A major goal of evolutionary biology is to identify the genetic basis for the emergence of complex adaptive traits. Diatoms are ancestrally photosynthetic microalgae. However, in the genus Nitzschia, loss of photosynthesis led to a group of free-living secondary heterotrophs whose manner of acquiring chemical energy is unclear. Here, we sequence the genome of the non-photosynthetic diatom Nitzschia sing1 and identify the genetic basis for its catabolism of the brown algal cell wall polysaccharide alginate. N. sing1 obtained an endolytic alginate lyase enzyme by horizontal gene transfer (HGT) from a marine bacterium. Subsequent gene duplication through unequal crossing over and transposition led to 91 genes in three distinct gene families. One family retains the ancestral endolytic enzyme function. By contrast, the two others underwent domain duplication, gain, loss, rearrangement, and mutation to encode novel functions that can account for oligosaccharide import through the endomembrane system and the exolytic production of alginate monosaccharides. Together, our results show how a single HGT event followed by substantial gene duplication and neofunctionalization led to alginate catabolism and access to a new ecological niche.
Collapse
Affiliation(s)
- Zeng Hao Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peng Zheng
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, Bochum, Germany
| | - Finn L. Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Maciszewski K, Wilga G, Jagielski T, Bakuła Z, Gawor J, Gromadka R, Karnkowska A. Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes. BMC Biol 2024; 22:294. [PMID: 39696433 DOI: 10.1186/s12915-024-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Plastids are usually involved in photosynthesis, but the secondary loss of this function is a widespread phenomenon in various lineages of algae and plants. In addition to the loss of genes associated with photosynthesis, the plastid genomes of colorless algae are frequently reduced further. To understand the pathways of reductive evolution associated with the loss of photosynthesis, it is necessary to study a number of closely related strains. Prototheca, a chlorophyte genus of facultative pathogens, provides an excellent opportunity to study this process with its well-sampled array of diverse colorless strains. RESULTS We have sequenced the plastid genomes of 13 Prototheca strains and reconstructed a comprehensive phylogeny that reveals evolutionary patterns within the genus and among its closest relatives. Our phylogenomic analysis revealed three independent losses of photosynthesis among the Prototheca strains and varied protein-coding gene content in their ptDNA. Despite this diversity, all Prototheca strains retain the same key plastid functions. These include processes related to gene expression, as well as crucial roles in fatty acid and cysteine biosynthesis, and membrane transport. CONCLUSIONS The retention of vestigial genomes in colorless plastids is typically associated with the biosynthesis of secondary metabolites. In contrast, the remarkable conservation of plastid membrane transport system components in the nonphotosynthetic genera Prototheca and Helicosporidium provides an additional constraint against the loss of ptDNA in this lineage. Furthermore, these genes can potentially serve as targets for therapeutic intervention, indicating their importance beyond the evolutionary context.
Collapse
Affiliation(s)
- Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Wilga
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Open Biol 2024; 14:240022. [PMID: 39474867 PMCID: PMC11528492 DOI: 10.1098/rsob.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2,128 43, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Anežka Eliášová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| |
Collapse
|
4
|
Cooney EC, Holt CC, Hehenberger E, Adams JA, Leander BS, Keeling PJ. Investigation of heterotrophs reveals new insights in dinoflagellate evolution. Mol Phylogenet Evol 2024; 196:108086. [PMID: 38677354 DOI: 10.1016/j.ympev.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Elizabeth C Cooney
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Corey C Holt
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Elisabeth Hehenberger
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Jayd A Adams
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Brian S Leander
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200 - 6270, University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Schomaker RA, Richardson TL, Dudycha JL. Consequences of light spectra for pigment composition and gene expression in the cryptophyte Rhodomonas salina. Environ Microbiol 2023; 25:3280-3297. [PMID: 37845005 DOI: 10.1111/1462-2920.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the β-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.
Collapse
Affiliation(s)
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- School of the Earth, Ocean, & Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
6
|
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores. THE ISME JOURNAL 2023; 17:84-94. [PMID: 36207492 PMCID: PMC9751141 DOI: 10.1038/s41396-022-01326-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and ¼ of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.
Collapse
|
7
|
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. FRONTIERS IN PLANT SCIENCE 2022; 13:918543. [PMID: 35898209 PMCID: PMC9309888 DOI: 10.3389/fpls.2022.918543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Dinoflagellates possess plastids that are diverse in both pigmentation and evolutionary background. One of the plastid types found in dinoflagellates is pigmented with chlorophylls a and b (Chl a + b) and originated from the endosymbionts belonging to a small group of green algae, Pedinophyceae. The Chl a + b-containing plastids have been found in three distantly related dinoflagellates Lepidodinium spp., strain MGD, and strain TGD, and were proposed to be derived from separate partnerships between a dinoflagellate (host) and a pedinophycean green alga (endosymbiont). Prior to this study, a plastid genome sequence was only available for L. chlorophorum, which was reported to bear the features that were not found in that of the pedinophycean green alga Pedinomonas minor, a putative close relative of the endosymbiont that gave rise to the current Chl a + b-containing plastid. In this study, we sequenced the plastid genomes of strains MGD and TGD to compare with those of L. chlorophorum as well as pedinophycean green algae. The mapping of the RNA-seq reads on the corresponding plastid genome identified RNA editing on plastid gene transcripts in the three dinoflagellates. Further, the comparative plastid genomics revealed that the plastid genomes of the three dinoflagellates achieved several features, which are not found in or much less obvious than the pedinophycean plastid genomes determined to date, in parallel.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kounosuke Morita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Chihiro Sarai
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Tanifuji G, Kamikawa R, Moore CE, Mills T, Onodera NT, Kashiyama Y, Archibald JM, Inagaki Y, Hashimoto T. Comparative Plastid Genomics of Cryptomonas Species Reveals Fine-Scale Genomic Responses to Loss of Photosynthesis. Genome Biol Evol 2020; 12:3926-3937. [PMID: 31922581 PMCID: PMC7058160 DOI: 10.1093/gbe/evaa001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 01/20/2023] Open
Abstract
Loss of photosynthesis is a recurring theme in eukaryotic evolution. In organisms that have lost the ability to photosynthesize, nonphotosynthetic plastids are retained because they play essential roles in processes other than photosynthesis. The unicellular algal genus Cryptomonas contains both photosynthetic and nonphotosynthetic members, the latter having lost the ability to photosynthesize on at least three separate occasions. To elucidate the evolutionary processes underlying the loss of photosynthesis, we sequenced the plastid genomes of two nonphotosynthetic strains, Cryptomonas sp. CCAC1634B and SAG977-2f, as well as the genome of the phototroph Cryptomonas curvata CCAP979/52. These three genome sequences were compared with the previously sequenced plastid genome of the nonphotosynthetic species Cryptomonas paramecium CCAP977/2a as well as photosynthetic members of the Cryptomonadales, including C. curvata FBCC300012D. Intraspecies comparison between the two C. curvata strains showed that although their genome structures are stable, the substitution rates of their genes are relatively high. Although most photosynthesis-related genes, such as the psa and psb gene families, were found to have disappeared from the nonphotosynthetic strains, at least ten pseudogenes are retained in SAG977-2f. Although gene order is roughly shared among the plastid genomes of photosynthetic Cryptomonadales, genome rearrangements are seen more frequently in the smaller genomes of the nonphotosynthetic strains. Intriguingly, the light-independent protochlorophyllide reductase comprising chlB, L, and N is retained in nonphotosynthetic SAG977-2f and CCAC1634B. On the other hand, whereas CCAP977/2a retains ribulose-1,5-bisphosphate carboxylase/oxygenase-related genes, including rbcL, rbcS, and cbbX, the plastid genomes of the other two nonphotosynthetic strains have lost the ribulose-1,5-bisphosphate carboxylase/oxygenase protein-coding genes.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tyler Mills
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuichiro Kashiyama
- Department of Applied Chemistry and Food Science, Fukui University of Technology, Fukui, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
11
|
Optimal Growth Temperature and Intergenic Distances in Bacteria, Archaea, and Plastids of Rhodophytic Branch. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3465380. [PMID: 32025518 PMCID: PMC6991167 DOI: 10.1155/2020/3465380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023]
Abstract
The lengths of intergenic regions between neighboring genes that are convergent, divergent, or unidirectional were calculated for plastids of the rhodophytic branch and complete archaeal and bacterial genomes. Statistically significant linear relationships between any pair of the medians of these three length types have been revealed in each genomic group. Exponential relationships between the optimal growth temperature and each of the three medians have been revealed as well. The leading coefficients of the regression equations relating all pairs of the medians as well as temperature and any of the medians have the same sign and order of magnitude. The results obtained for plastids, archaea, and bacteria are also similar at the qualitative level. For instance, the medians are always low at high temperatures. At low temperatures, the medians tend to statistically significant greater values and scattering. The original model was used to test our hypothesis that the intergenic distances are optimized in particular to decrease the competition of RNA polymerases within the locus that results in transcribing shortened RNAs. Overall, this points to an effect of temperature for both remote and close genomes.
Collapse
|
12
|
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) Are Retained for tRNA-Glu-Based Organellar Heme Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:602455. [PMID: 33329672 PMCID: PMC7728698 DOI: 10.3389/fpls.2020.602455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Organisms that have lost their photosynthetic capabilities are present in a variety of eukaryotic lineages, such as plants and disparate algal groups. Most of such non-photosynthetic eukaryotes still carry plastids, as these organelles retain essential biological functions. Most non-photosynthetic plastids possess genomes with varied protein-coding contents. Such remnant plastids are known to be present in the non-photosynthetic, bacteriovorous alga Pteridomonas danica (Dictyochophyceae, Ochrophyta), which, regardless of its obligatory heterotrophic lifestyle, has been reported to retain the typically plastid-encoded gene for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (rbcL). The presence of rbcL without photosynthetic activity suggests that investigating the function of plastids in Pteridomonas spp. would likely bring unique insights into understanding the reductive evolution of plastids, their genomes, and plastid functions retained after the loss of photosynthesis. In this study, we demonstrate that two newly established strains of the non-photosynthetic genus Pteridomonas possess highly reduced plastid genomes lacking rbcL gene, in contrast to the previous report. Interestingly, we discovered that all plastid-encoded proteins in Pteridomonas spp. are involved only in housekeeping processes (e.g., transcription, translation and protein degradation), indicating that all metabolite synthesis pathways in their plastids are supported fully by nuclear genome-encoded proteins. Moreover, through an in-depth survey of the available transcriptomic data of another strain of the genus, we detected no candidate sequences for nuclear-encoded, plastid-directed Fe-S cluster assembly pathway proteins, suggesting complete loss of this pathway in the organelle, despite its widespread conservation in non-photosynthetic plastids. Instead, the transcriptome contains plastid-targeted components of heme biosynthesis, glycolysis, and pentose phosphate pathways. The retention of the plastid genomes in Pteridomonas spp. is not explained by the Suf-mediated constraint against loss of plastid genomes, previously proposed for Alveolates, as they lack Suf genes. Bearing all these findings in mind, we propose the hypothesis that plastid DNA is retained in Pteridomonas spp. for the purpose of providing glutamyl-tRNA, encoded by trnE gene, as a substrate for the heme biosynthesis pathway.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Karnkowska,
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Ryoma Kamikawa,
| |
Collapse
|
13
|
Kim JI, Jeong M, Archibald JM, Shin W. Comparative Plastid Genomics of Non-Photosynthetic Chrysophytes: Genome Reduction and Compaction. FRONTIERS IN PLANT SCIENCE 2020; 11:572703. [PMID: 33013997 PMCID: PMC7511666 DOI: 10.3389/fpls.2020.572703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 05/11/2023]
Abstract
Spumella-like heterotrophic chrysophytes are important eukaryotic microorganisms that feed on bacteria in aquatic and soil environments. They are characterized by their lack of pigmentation, naked cell surface, and extremely small size. Although Spumella-like chrysophytes have lost their photosynthetic ability, they still possess a leucoplast and retain a plastid genome. We have sequenced the plastid genomes of three non-photosynthetic chrysophytes, Spumella sp. Baeckdong012018B8, Pedospumella sp. Jangsampo120217C5 and Poteriospumella lacustris Yongseonkyo072317C3, and compared them to the previously sequenced plastid genome of "Spumella" sp. NIES-1846 and photosynthetic chrysophytes. We found the plastid genomes of Spumella-like flagellates to be generally conserved with respect to genome structure and housekeeping gene content. We nevertheless also observed lineage-specific gene rearrangements and duplication of partial gene fragments at the boundary of the inverted repeat and single copy regions. Most gene losses correspond to genes for proteins involved in photosynthesis and carbon fixation, except in the case of petF. The newly sequenced plastid genomes range from ~55.7 kbp to ~62.9 kbp in size and share a core set of 45 protein-coding genes, 3 rRNAs, and 32 to 34 tRNAs. Our results provide insight into the evolutionary history of organelle genomes via genome reduction and gene loss related to loss of photosynthesis in chrysophyte evolution.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Minseok Jeong
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, South Korea
- *Correspondence: Woongghi Shin,
| |
Collapse
|
14
|
Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev 2019; 58-59:33-39. [PMID: 31466038 DOI: 10.1016/j.gde.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Abstract
Our knowledge on the variability of the reduced forms of endosymbiotic organelles - mitochondria and plastids - is expanding rapidly, thanks to growing interest in peculiar microbial eukaryotes, along with the availability of the methods used in modern genomics and transcriptomics. The aim of this work is to highlight the most recent advances in understanding these organelles' diversity, physiology and evolution. We also outline the known mechanisms behind the convergence of traits between organelles which have undergone reduction independently, the importance of the earliest evolutionary events in determining the vestigial organelles' eventual fate, and a proposed classification of nonphotosynthetic plastids.
Collapse
|
15
|
Onyshchenko A, Ruck EC, Nakov T, Alverson AJ. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta). AMERICAN JOURNAL OF BOTANY 2019; 106:560-572. [PMID: 30958893 DOI: 10.1002/ajb2.1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Loss of photosynthesis is a common and often repeated trajectory in nearly all major groups of photosynthetic eukaryotes. One small subset of "apochloritic" diatoms in the genus Nitzschia have lost their ability to photosynthesize and require extracellular carbon for growth. Similar to other secondarily nonphotosynthetic taxa, apochloritic diatoms maintain colorless plastids with highly reduced plastid genomes. Although the narrow taxonomic breadth of apochloritic Nitzschia suggests a single loss of photosynthesis in their common ancestor, previous phylogenetic analyses suggested that photosynthesis was lost multiple times. METHODS We analyzed genes from the nuclear, plastid, and mitochondrial genomes for a broad set of taxa to test whether photosynthesis was lost one or multiple times in Bacillariales. We also sequenced and characterized the plastid genome of a nonphotosynthetic Nitzschia species. KEY RESULTS Phylogenetic analyses showed that genes from all three genetic compartments either supported or failed to reject monophyly of apochloritic Nitzschia species, consistent with a single loss of photosynthesis in this group. The plastid genomes of two apochloritic Nitzschia are highly similar in all respects, indicating streamlining of the plastid genome before the split of these two species. CONCLUSIONS A better understanding of the phylogeny and ecology of apochloritic Nitzschia, together with emerging genomic resources, will help identify the factors that have driven and maintained the loss of photosynthesis in this group of diatoms. Finally, some habitats host diverse communities of co-occurring nonphotosynthetic diatoms, reflecting resource abundance or resource partitioning in ecologically favorable habitats.
Collapse
Affiliation(s)
- Anastasiia Onyshchenko
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| |
Collapse
|
16
|
Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 2019; 116:6914-6923. [PMID: 30872488 DOI: 10.1073/pnas.1819976116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The division of life into producers and consumers is blurred by evolution. For example, eukaryotic phototrophs can lose the capacity to photosynthesize, although they may retain vestigial plastids that perform other essential cellular functions. Chrysophyte algae have undergone a particularly large number of photosynthesis losses. Here, we present a plastid genome sequence from a nonphotosynthetic chrysophyte, "Spumella" sp. NIES-1846, and show that it has retained a nearly identical set of plastid-encoded functions as apicomplexan parasites. Our transcriptomic analysis of 12 different photosynthetic and nonphotosynthetic chrysophyte lineages reveals remarkable convergence in the functions of these nonphotosynthetic plastids, along with informative lineage-specific retentions and losses. At one extreme, Cornospumella fuschlensis retains many photosynthesis-associated proteins, although it appears to have lost the reductive pentose phosphate pathway and most plastid amino acid metabolism pathways. At the other extreme, Paraphysomonas lacks plastid-targeted proteins associated with gene expression and all metabolic pathways that require plastid-encoded partners, indicating a complete loss of plastid DNA in this genus. Intriguingly, some of the nucleus-encoded proteins that once functioned in the expression of the Paraphysomonas plastid genome have been retained. These proteins were likely to have been dual targeted to the plastid and mitochondria of the chrysophyte ancestor, and are uniquely targeted to the mitochondria in Paraphysomonas Our comparative analyses provide insights into the process of functional reduction in nonphotosynthetic plastids.
Collapse
|
17
|
Matsuo E, Inagaki Y. Patterns in evolutionary origins of heme, chlorophyll a and isopentenyl diphosphate biosynthetic pathways suggest non-photosynthetic periods prior to plastid replacements in dinoflagellates. PeerJ 2018; 6:e5345. [PMID: 30083465 PMCID: PMC6078071 DOI: 10.7717/peerj.5345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Background The ancestral dinoflagellate most likely established a peridinin-containing plastid, which have been inherited in the extant photosynthetic descendants. However, kareniacean dinoflagellates and Lepidodinium species were known to bear “non-canonical” plastids lacking peridinin, which were established through haptophyte and green algal endosymbioses, respectively. For plastid function and maintenance, the aforementioned dinoflagellates were known to use nucleus-encoded proteins vertically inherited from the ancestral dinoflagellates (vertically inherited- or VI-type), and those acquired from non-dinoflagellate organisms (including the endosymbiont). These observations indicated that the proteomes of the non-canonical plastids derived from a haptophyte and a green alga were modified by “exogenous” genes acquired from non-dinoflagellate organisms. However, there was no systematic evaluation addressing how “exogenous” genes reshaped individual metabolic pathways localized in a non-canonical plastid. Results In this study, we surveyed transcriptomic data from two kareniacean species (Karenia brevis and Karlodinium veneficum) and Lepidodinium chlorophorum, and identified proteins involved in three plastid metabolic pathways synthesizing chlorophyll a (Chl a), heme and isoprene. The origins of the individual proteins of our interest were investigated, and we assessed how the three pathways were modified before and after the algal endosymbioses, which gave rise to the current non-canonical plastids. We observed a clear difference in the contribution of VI-type proteins across the three pathways. In both Karenia/Karlodinium and Lepidodinium, we observed a substantial contribution of VI-type proteins to the isoprene and heme biosynthesises. In sharp contrast, VI-type protein was barely detected in the Chl a biosynthesis in the three dinoflagellates. Discussion Pioneering works hypothesized that the ancestral kareniacean species had lost the photosynthetic activity prior to haptophyte endosymbiosis. The absence of VI-type proteins in the Chl a biosynthetic pathway in Karenia or Karlodinium is in good agreement with the putative non-photosynthetic nature proposed for their ancestor. The dominance of proteins with haptophyte origin in the Karenia/Karlodinium pathway suggests that their ancestor rebuilt the particular pathway by genes acquired from the endosymbiont. Likewise, we here propose that the ancestral Lepidodinium likely experienced a non-photosynthetic period and discarded the entire Chl a biosynthetic pathway prior to the green algal endosymbiosis. Nevertheless, Lepidodinium rebuilt the pathway by genes transferred from phylogenetically diverse organisms, rather than the green algal endosymbiont. We explore the reasons why green algal genes were barely utilized to reconstruct the Lepidodinium pathway.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Biological and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Graduate School of Biological and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Kim JI, Yoon HS, Yi G, Shin W, Archibald JM. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. BMC Genomics 2018; 19:275. [PMID: 29678149 PMCID: PMC5910586 DOI: 10.1186/s12864-018-4626-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptophytes are an ecologically important group of algae comprised of phototrophic, heterotrophic and osmotrophic species. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin. Cryptophytes have a clear phylogenetic affinity to heterotrophic eukaryotes and possess four genomes: host-derived nuclear and mitochondrial genomes, and plastid and nucleomorph genomes of endosymbiotic origin. RESULTS To gain insight into cryptophyte mitochondrial genome evolution, we sequenced the mitochondrial DNAs of five species and performed a comparative analysis of seven genomes from the following cryptophyte genera: Chroomonas, Cryptomonas, Hemiselmis, Proteomonas, Rhodomonas, Storeatula and Teleaulax. The mitochondrial genomes were similar in terms of their general architecture, gene content and presence of a large repeat region. However, gene order was poorly conserved. Characteristic features of cryptophyte mtDNAs included large syntenic clusters resembling α-proteobacterial operons that encode bacteria-like rRNAs, tRNAs, and ribosomal protein genes. The cryptophyte mitochondrial genomes retain almost all genes found in many other eukaryotes including the nad, sdh, cox, cob, and atp genes, with the exception of sdh2 and atp3. In addition, gene cluster analysis showed that cryptophytes possess a gene order closely resembling the jakobid flagellates Jakoba and Reclinomonas. Interestingly, the cox1 gene of R. salina, T. amphioxeia, and Storeatula species was found to contain group II introns encoding a reverse transcriptase protein, as did the cob gene of Storeatula species CCMP1868. CONCLUSIONS These newly sequenced genomes increase the breadth of data available from algae and will aid in the identification of general trends in mitochondrial genome evolution. While most of the genomes were highly conserved, extensive gene arrangements have shuffled gene order, perhaps due to genome rearrangements associated with hairpin-containing mobile genetic elements, tRNAs with palindromic sequences, and tandem repeat sequences. The cox1 and cob gene sequences suggest that introns have recently been acquired during cryptophyte evolution. Comparison of phylogenetic trees based on plastid and mitochondrial genome data sets underscore the different evolutionary histories of the host and endosymbiont components of present-day cryptophytes.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Gangman Yi
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
19
|
Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Sci Rep 2018; 8:940. [PMID: 29343788 PMCID: PMC5772498 DOI: 10.1038/s41598-017-18378-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/02/2022] Open
Abstract
Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis.
Collapse
|
20
|
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Genome Biol Evol 2017; 9:1859-1872. [PMID: 28854597 PMCID: PMC5534331 DOI: 10.1093/gbe/evx123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cryptophytes are an ecologically important group of largely photosynthetic unicellular eukaryotes. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin and the host cell retains four different genomes (host nuclear, mitochondrial, plastid, and red algal nucleomorph). Here, we report a comparative analysis of plastid genomes from six representative cryptophyte genera. Four newly sequenced cryptophyte plastid genomes of Chroomonas mesostigmatica, Ch. placoidea, Cryptomonas curvata, and Storeatula sp. CCMP1868 share a number of features including synteny and gene content with the previously sequenced genomes of Cryptomonas paramecium, Rhodomonas salina, Teleaulax amphioxeia, and Guillardia theta. Our analysis of these plastid genomes reveals examples of gene loss and intron insertion. In particular, the chlB/chlL/chlN genes, which encode light-independent (dark active) protochlorophyllide oxidoreductase (LIPOR) proteins have undergone recent gene loss and pseudogenization in cryptophytes. Comparison of phylogenetic trees based on plastid and nuclear genome data sets show the introduction, via secondary endosymbiosis, of a red algal derived plastid in a lineage of chlorophyll-c containing algae. This event was followed by additional rounds of eukaryotic endosymbioses that spread the red lineage plastid to diverse groups such as haptophytes and stramenopiles.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Gangman Yi
- Department of Multimedia Engineering, Dongkuk University, Seoul, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
21
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
22
|
Twyford AD, Ness RW. Strategies for complete plastid genome sequencing. Mol Ecol Resour 2017; 17:858-868. [PMID: 27790830 PMCID: PMC6849563 DOI: 10.1111/1755-0998.12626] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/01/2022]
Abstract
Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.
Collapse
Affiliation(s)
- Alex D. Twyford
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Rob W. Ness
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
| |
Collapse
|
23
|
Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes. Sci Rep 2017; 7:10101. [PMID: 28855622 PMCID: PMC5577192 DOI: 10.1038/s41598-017-10388-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022] Open
Abstract
Ancient endosymbiotic relationships have led to extreme genomic reduction in many bacterial and eukaryotic algal endosymbionts. Endosymbionts in more recent and/or facultative relationships can also experience genomic reduction to a lesser extent, but little is known about the effects of the endosymbiotic transition on the organellar genomes of eukaryotes. To understand how the endosymbiotic lifestyle has affected the organellar genomes of photosynthetic green algae, we generated the complete plastid genome (plastome) and mitochondrial genome (mitogenome) sequences from three green algal endosymbionts (Chlorella heliozoae, Chlorella variabilis and Micractinium conductrix). The mitogenomes and plastomes of the three newly sequenced endosymbionts have a standard set of genes compared with free-living trebouxiophytes, providing no evidence for functional genomic reduction. Instead, their organellar genomes are generally larger and more intron rich. Intron content is highly variable among the members of Chlorella, suggesting very high rates of gain and/or loss of introns during evolution. Phylogenetic analysis of plastid and mitochondrial genes demonstrated that the three endosymbionts do not form a monophyletic group, indicating that the endosymbiotic lifestyle has evolved multiple times in Chlorellaceae. In addition, M. conductrix is deeply nested within the Chlorella clade, suggesting that taxonomic revision is needed for one or both genera.
Collapse
|
24
|
Figueroa-Martinez F, Nedelcu AM, Reyes-Prieto A, Smith DR. The plastid genomes of nonphotosynthetic algae are not so small after all. Commun Integr Biol 2017; 10:e1283080. [PMID: 28377793 PMCID: PMC5363391 DOI: 10.1080/19420889.2017.1283080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/27/2022] Open
Abstract
The thing about plastid genomes in nonphotosynthetic plants and algae is that they are
usually very small and highly compact. This is not surprising: a heterotrophic existence
means that genes for photosynthesis can be easily discarded. But the loss of
photosynthesis cannot explain why the plastomes of heterotrophs are so often depauperate
in noncoding DNA. If plastid genomes from photosynthetic taxa can span the gamut of
compactness, why can't those of nonphotosynthetic species? Well, recently we showed
that they can. The free-living, heterotrophic green alga Polytoma uvella
has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the most
bloated plastome yet found in a heterotroph. In this addendum to the primary study, we
elaborate on why the P. uvella plastome is so inflated, discussing the
potential impact of a free-living vs. parasitic lifestyle on plastid genome expansion in
nonphotosynthetic lineages.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada; CONACyT-Research Fellow, Universidad Autónoma Metropolitana, Iztapalapa, Vicentina, Mexico City, Mexico; Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - David R Smith
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada; Biology Department, University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. The Plastid Genome of Polytoma uvella Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles. PLANT PHYSIOLOGY 2017; 173:932-943. [PMID: 27932420 PMCID: PMC5291040 DOI: 10.1104/pp.16.01628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/07/2016] [Indexed: 05/11/2023]
Abstract
The loss of photosynthesis is frequently associated with parasitic or pathogenic lifestyles, but it also can occur in free-living, plastid-bearing lineages. A common consequence of becoming nonphotosynthetic is the reduction in size and gene content of the plastid genome. In exceptional circumstances, it can even result in the complete loss of the plastid DNA (ptDNA) and its associated gene expression system, as reported recently in several lineages, including the nonphotosynthetic green algal genus Polytomella Closely related to Polytomella is the polyphyletic genus Polytoma, the members of which lost photosynthesis independently of Polytomella Species from both genera are free-living organisms that contain nonphotosynthetic plastids, but unlike Polytomella, Polytoma members have retained a genome in their colorless plastid. Here, we present the plastid genome of Polytoma uvella: to our knowledge, the first report of ptDNA from a nonphotosynthetic chlamydomonadalean alga. The P. uvella ptDNA contains 25 protein-coding genes, most of which are related to gene expression and none are connected to photosynthesis. However, despite its reduced coding capacity, the P. uvella ptDNA is inflated with short repeats and is tens of kilobases larger than the ptDNAs of its closest known photosynthetic relatives, Chlamydomonas leiostraca and Chlamydomonas applanata In fact, at approximately 230 kb, the ptDNA of P. uvella represents the largest plastid genome currently reported from a nonphotosynthetic alga or plant. Overall, the P. uvella and Polytomella plastid genomes reveal two very different evolutionary paths following the loss of photosynthesis: expansion and complete deletion, respectively. We hypothesize that recombination-based DNA-repair mechanisms are at least partially responsible for the different evolutionary outcomes observed in such closely related nonphotosynthetic algae.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.)
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.)
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.)
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.)
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| | - David R Smith
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.);
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.);
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.);
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.);
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| |
Collapse
|
26
|
Tanifuji G, Archibald JM, Hashimoto T. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Sci Rep 2016; 6:21016. [PMID: 26888293 PMCID: PMC4757882 DOI: 10.1038/srep21016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.
Collapse
Affiliation(s)
- Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario Canada
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| |
Collapse
|
27
|
Tang X, Bi G. The complete chloroplast genome of Guillardia theta strain CCMP2712. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4423-4424. [PMID: 26404017 DOI: 10.3109/19401736.2015.1089554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete chloroplast sequence of Cryptophyceae algae Guillardia theta strain CCMP2712 was determined in this study. The genome consists of 138 455 bp containing a pair of rRNA-coding invert repeats of 4973 bp. The overall GC contents of the chloroplast genome were 32.9%. A total of 159 functional genes were annotated, which included 124 protein-coding genes, 30 tRNAs, 1tmRNA and 4 rRNA genes. Short intergenic regions, no introns and some overlapping genes make this cp genome compact. Phylogenetic analysis with the related algae cp genomes revealed that G. theta strain CCMP2712 a typical Cryptophyta algae and had a close genetic relationship with Rhodomonas salina (EF508371) and another previously reported G. theta (AF041468).
Collapse
Affiliation(s)
- Xianghai Tang
- a Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China , Qingdao , China
| | - Guiqi Bi
- a Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China , Qingdao , China
| |
Collapse
|
28
|
Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia. PLoS One 2015; 10:e0129284. [PMID: 26047475 PMCID: PMC4457928 DOI: 10.1371/journal.pone.0129284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022] Open
Abstract
Teleaulax amphioxeia is a photosynthetic unicellular cryptophyte alga that is distributed throughout marine habitats worldwide. This alga is an important plastid donor to the dinoflagellate Dinophysis caudata through the ciliate Mesodinium rubrum in the marine food web. To better understand the genomic characteristics of T. amphioxeia, we have sequenced and analyzed its plastid genome. The plastid genome sequence of T. amphioxeia is similar to that of Rhodomonas salina, and they share significant synteny. This sequence exhibits less similarity to that of Guillardia theta, the representative plastid genome of photosynthetic cryptophytes. The gene content and order of the three photosynthetic cryptomonad plastid genomes studied is highly conserved. The plastid genome of T. amphioxeia is composed of 129,772 bp and includes 143 protein-coding genes, 2 rRNA operons and 30 tRNA sequences. The DNA polymerase III gene (dnaX) was most likely acquired via lateral gene transfer (LGT) from a firmicute bacterium, identical to what occurred in R. salina. On the other hand, the psbN gene was independently encoded by the plastid genome without a reverse transcriptase gene as an intron. To clarify the phylogenetic relationships of the algae with red-algal derived plastids, phylogenetic analyses of 32 taxa were performed, including three previously sequenced cryptophyte plastid genomes containing 93 protein-coding genes. The stramenopiles were found to have branched out from the Chromista taxa (cryptophytes, haptophytes, and stramenopiles), while the cryptophytes and haptophytes were consistently grouped into sister relationships with high resolution.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Gangman Yi
- Department of Computer Science, Gangneung-Wonju National University, Wonju, Korea
| | - Hyung Seop Kim
- Department of Marine Biotechnology, Kunsan National University, Kunsan, Korea
| | - Wonho Yih
- Department of Marine Biotechnology, Kunsan National University, Kunsan, Korea
- * E-mail: (WY); (WS)
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
- * E-mail: (WY); (WS)
| |
Collapse
|
29
|
Kamikawa R, Tanifuji G, Ishikawa SA, Ishii KI, Matsuno Y, Onodera NT, Ishida KI, Hashimoto T, Miyashita H, Mayama S, Inagaki Y. Proposal of a Twin Aarginine Translocator System-Mediated Constraint against Loss of ATP Synthase Genes from Nonphotosynthetic Plastid Genomes. Mol Biol Evol 2015; 32:2598-604. [DOI: 10.1093/molbev/msv134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Miller JJ, Delwiche CF. Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte-stramenopile association and a chimeric haptophyte nuclear genome. Mar Genomics 2015; 21:31-42. [PMID: 25746767 DOI: 10.1016/j.margen.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/11/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
Emiliania huxleyi is a haptophyte alga of uncertain phylogenetic affinity containing a secondarily derived, chlorophyll c containing plastid. We sought to characterize its relationships with other taxa by quantifying the bipartitions in which it was included from a group of single protein phylogenetic trees in a way that allowed for variation in taxonomic content and accounted for paralogous sequences. The largest number of sequences supported a phylogenetic relationship of E. huxleyi with the stramenopiles, in particular Aureococcus anophagefferens. Far fewer nuclear sequences gave strong support to the placement of this coccolithophorid with the cryptophyte, Guillardia theta. The majority of the sequences that did support this relationship did not have plastid related functions. These results suggest that the haptophytes may be more closely allied with the heterokonts than with the cryptophytes. Another small set of genes associated E. huxleyi with the Viridiplantae with high support. While these genes could have been acquired with a plastid, the lack of plastid related functions among the proteins for which they code and the lack of other organisms with chlorophyll c containing plastids within these bipartitions suggests other explanations may be possible. This study also identified several genes that may have been transferred from the haptophyte lineage to the dinoflagellates Karenia brevis and Karlodinium veneficum as a result of their haptophyte derived plastid, including some with non-photosynthetic functions.
Collapse
Affiliation(s)
- John J Miller
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
31
|
Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF, Martin WF. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol 2014; 5:2318-29. [PMID: 24259312 PMCID: PMC3879969 DOI: 10.1093/gbe/evt181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.
Collapse
Affiliation(s)
- Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
33
|
Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. BMC Genomics 2014; 15:374. [PMID: 24885563 PMCID: PMC4035089 DOI: 10.1186/1471-2164-15-374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution. RESULTS The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny. CONCLUSIONS We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.
Collapse
|
34
|
Gile GH, Slamovits CH. Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites. PLoS One 2014; 9:e96258. [PMID: 24797661 PMCID: PMC4010437 DOI: 10.1371/journal.pone.0096258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/06/2014] [Indexed: 12/20/2022] Open
Abstract
Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 5' end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity's most deadly parasite.
Collapse
Affiliation(s)
- Gillian H. Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H. Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
Huang YY, Matzke AJM, Matzke M. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One 2013; 8:e74736. [PMID: 24023703 PMCID: PMC3758300 DOI: 10.1371/journal.pone.0074736] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022] Open
Abstract
Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.
Collapse
Affiliation(s)
- Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Wei L, Xin Y, Wang D, Jing X, Zhou Q, Su X, Jia J, Ning K, Chen F, Hu Q, Xu J. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics 2013; 14:534. [PMID: 23915326 PMCID: PMC3750441 DOI: 10.1186/1471-2164-14-534] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/31/2013] [Indexed: 12/26/2022] Open
Abstract
Background Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes. Results Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species. Conclusion This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.
Collapse
Affiliation(s)
- Li Wei
- BioEnergy Genome Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sturm S, Engelken J, Gruber A, Vugrinec S, G Kroth P, Adamska I, Lavaud J. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 2013; 13:159. [PMID: 23899289 PMCID: PMC3750529 DOI: 10.1186/1471-2148-13-159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/22/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. RESULTS Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. CONCLUSIONS The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.
Collapse
Affiliation(s)
- Sabine Sturm
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Johannes Engelken
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona,Spain
| | - Ansgar Gruber
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sascha Vugrinec
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Peter G Kroth
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
| | - Johann Lavaud
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: UMR 7266 CNRS-ULR ’LIENSs’, CNRS/University of La Rochelle, Institute for Coastal and Environmental Research, La Rochelle Cedex, France
| |
Collapse
|
38
|
Hoef-Emden K. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case. PLoS One 2012; 7:e43652. [PMID: 22970104 PMCID: PMC3436593 DOI: 10.1371/journal.pone.0043652] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/23/2012] [Indexed: 12/23/2022] Open
Abstract
A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.
Collapse
Affiliation(s)
- Kerstin Hoef-Emden
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany.
| |
Collapse
|
39
|
Espelund M, Minge MA, Gabrielsen TM, Nederbragt AJ, Shalchian-Tabrizi K, Otis C, Turmel M, Lemieux C, Jakobsen KS. Genome fragmentation is not confined to the peridinin plastid in dinoflagellates. PLoS One 2012; 7:e38809. [PMID: 22719952 PMCID: PMC3377699 DOI: 10.1371/journal.pone.0038809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/14/2012] [Indexed: 11/28/2022] Open
Abstract
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.
Collapse
Affiliation(s)
- Mari Espelund
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marianne A. Minge
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Tove M. Gabrielsen
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Alexander J. Nederbragt
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Department of Biology, Microbial Evolution Research Group (MERG), University of Oslo, Oslo, Norway
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Kjetill S. Jakobsen
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
- Department of Biology, Microbial Evolution Research Group (MERG), University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
40
|
|
41
|
Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 2011; 28:2077-86. [PMID: 21289370 PMCID: PMC3112369 DOI: 10.1093/molbev/msr028] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ∼110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.
Collapse
Affiliation(s)
- Etienne Delannoy
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
42
|
Neves SS, Forrest LL. Plant DNA sequencing for phylogenetic analyses: from plants to sequences. Methods Mol Biol 2011; 781:183-235. [PMID: 21877283 DOI: 10.1007/978-1-61779-276-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA sequences are important sources of data for phylogenetic analysis. Nowadays, DNA sequencing is a routine technique in molecular biology laboratories. However, there are specific questions associated with project design and sequencing of plant samples for phylogenetic analysis, which may not be familiar to researchers starting in the field. This chapter gives an overview of methods and protocols involved in the sequencing of plant samples, including general recommendations on the selection of species/taxa and DNA regions to be sequenced, and field collection of plant samples. Protocols of plant sample preparation, DNA extraction, PCR and cloning, which are critical to the success of molecular phylogenetic projects, are described in detail. Common problems of sequencing (using the Sanger method) are also addressed. Possible applications of second-generation sequencing techniques in plant phylogenetics are briefly discussed. Finally, orientation on the preparation of sequence data for phylogenetic analyses and submission to public databases is also given.
Collapse
Affiliation(s)
- Susana S Neves
- Plant Cell Biotechnology Laboratory, ITQB Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | |
Collapse
|
43
|
Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 2010; 3:44-54. [PMID: 21147880 PMCID: PMC3017389 DOI: 10.1093/gbe/evq082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nucleomorphs are the remnant nuclei of algal endosymbionts that were engulfed by nonphotosynthetic host eukaryotes. These peculiar organelles are found in cryptomonad and chlorarachniophyte algae, where they evolved from red and green algal endosymbionts, respectively. Despite their independent origins, cryptomonad and chlorarachniophyte nucleomorph genomes are similar in size and structure: they are both <1 million base pairs in size (the smallest nuclear genomes known), comprised three chromosomes, and possess subtelomeric ribosomal DNA operons. Here, we report the complete sequence of one of the smallest cryptomonad nucleomorph genomes known, that of the secondarily nonphotosynthetic cryptomonad Cryptomonas paramecium. The genome is 486 kbp in size and contains 518 predicted genes, 466 of which are protein coding. Although C. paramecium lacks photosynthetic ability, its nucleomorph genome still encodes 18 plastid-associated proteins. More than 90% of the “conserved” protein genes in C. paramecium (i.e., those with clear homologs in other eukaryotes) are also present in the nucleomorph genomes of the cryptomonads Guillardia theta and Hemiselmis andersenii. In contrast, 143 of 466 predicted C. paramecium proteins (30.7%) showed no obvious similarity to proteins encoded in any other genome, including G. theta and H. andersenii. Significantly, however, many of these “nucleomorph ORFans” are conserved in position and size between the three genomes, suggesting that they are in fact homologous to one another. Finally, our analyses reveal an unexpected degree of overlap in the genes present in the independently evolved chlorarachniophyte and cryptomonad nucleomorph genomes: ∼80% of a set of 120 conserved nucleomorph genes in the chlorarachniophyte Bigelowiella natans were also present in all three cryptomonad nucleomorph genomes. This result suggests that similar reductive processes have taken place in unrelated lineages of nucleomorph-containing algae.
Collapse
Affiliation(s)
- Goro Tanifuji
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2010; 28:1057-74. [PMID: 21059789 PMCID: PMC3021791 DOI: 10.1093/molbev/msq297] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobacteria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample. Using a minimal lateral network approach, we compared LGT rates at different phylogenetic depths. In general, gene evolution by LGT within proteobacteria is very common. At least one LGT event was inferred to have occurred in at least 75% of the protein families. The average LGT rate at the species and class depth is about one LGT event per protein family, the rate doubling at the phylum level to an average of two LGT events per protein family. Hence, our results indicate that the rate of gene acquisition per protein family is similar at the level of species (by recombination) and at the level of classes (by LGT). The frequency of LGT per genome strongly depends on the species lifestyle, with endosymbionts showing far lower LGT frequencies than free-living species. Moreover, the nature of the transferred genes suggests that gene transfer in proteobacteria is frequently mediated by conjugation.
Collapse
Affiliation(s)
- Thorsten Kloesges
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|