1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Olagunju TA, Rosen BD, Neibergs HL, Becker GM, Davenport KM, Elsik CG, Hadfield TS, Koren S, Kuhn KL, Rhie A, Shira KA, Skibiel AL, Stegemiller MR, Thorne JW, Villamediana P, Cockett NE, Murdoch BM, Smith TPL. Telomere-to-telomere assemblies of cattle and sheep Y-chromosomes uncover divergent structure and gene content. Nat Commun 2024; 15:8277. [PMID: 39333471 PMCID: PMC11436988 DOI: 10.1038/s41467-024-52384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity is accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 19MYA. The centromeres also differ dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosomes have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Temitayo A Olagunju
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory (AGIL), ARS, USDA, Beltsville, MD, USA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Christine G Elsik
- Divisions of Animal Sciences and Plant Science & Technology, University of Missouri, Columbia, MO, USA
| | - Tracy S Hadfield
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen L Kuhn
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Patricia Villamediana
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Noelle E Cockett
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA.
| | - Timothy P L Smith
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA.
| |
Collapse
|
3
|
Smith T, Olagunju T, Rosen B, Neibergs H, Becker G, Davenport K, Elsik C, Hadfield T, Koren S, Kuhn K, Rhie A, Shira K, Skibiel A, Stegemiller M, Thorne J, Villamediana P, Cockett N, Murdoch B. The first complete T2T Assemblies of Cattle and Sheep Y-Chromosomes uncover remarkable divergence in structure and gene content. RESEARCH SQUARE 2024:rs.3.rs-4033388. [PMID: 38712074 PMCID: PMC11071540 DOI: 10.21203/rs.3.rs-4033388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. We assembled complete and gapless telomere to telomere (T2T) Y chromosomes for these species. The pseudo-autosomal regions were similar in length, but the total chromosome size was substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity was accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 18MYA. The centromeres also differed dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosome have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Timothy Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC)
| | | | | | | | | | | | | | | | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health
| | | | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Martí E, Larracuente AM. Genetic conflict and the origin of multigene families: implications for sex chromosome evolution. Proc Biol Sci 2023; 290:20231823. [PMID: 37909083 PMCID: PMC10618873 DOI: 10.1098/rspb.2023.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Sex chromosomes are havens for intragenomic conflicts. The absence of recombination between sex chromosomes creates the opportunity for the evolution of segregation distorters: selfish genetic elements that hijack different aspects of an individual's reproduction to increase their own transmission. Biased (non-Mendelian) segregation, however, often occurs at a detriment to their host's fitness, and therefore can trigger evolutionary arms races that can have major consequences for genome structure and regulation, gametogenesis, reproductive strategies and even speciation. Here, we review an emerging feature from comparative genomic and sex chromosome evolution studies suggesting that meiotic drive is pervasive: the recurrent evolution of paralogous sex-linked gene families. Sex chromosomes of several species independently acquire and co-amplify rapidly evolving gene families with spermatogenesis-related functions, consistent with a history of intragenomic conflict over transmission. We discuss Y chromosome features that might contribute to the tempo and mode of evolution of X/Y co-amplified gene families, as well as their implications for the evolution of complexity in the genome. Finally, we propose a framework that explores the conditions that might allow for recurrent bouts of fixation of drivers and suppressors, in a dosage-sensitive fashion, and therefore the co-amplification of multigene families on sex chromosomes.
Collapse
Affiliation(s)
- Emiliano Martí
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
5
|
Bonito M, Ravasini F, Novelletto A, D'Atanasio E, Cruciani F, Trombetta B. Disclosing complex mutational dynamics at a Y chromosome palindrome evolving through intra- and inter-chromosomal gene conversion. Hum Mol Genet 2023; 32:65-78. [PMID: 35921243 DOI: 10.1093/hmg/ddac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/17/2023] Open
Abstract
The human MSY ampliconic region is mainly composed of large duplicated sequences that are organized in eight palindromes (termed P1-P8), and may undergo arm-to-arm gene conversion. Although the importance of these elements is widely recognized, their evolutionary dynamics are still nuanced. Here, we focused on the P8 palindrome, which shows a complex evolutionary history, being involved in intra- and inter-chromosomal gene conversion. To disclose its evolutionary complexity, we performed a high-depth (50×) targeted next-generation sequencing of this element in 157 subjects belonging to the most divergent lineages of the Y chromosome tree. We found a total of 72 polymorphic paralogous sequence variants that have been exploited to identify 41 Y-Y gene conversion events that occurred during recent human history. Through our analysis, we were able to categorize P8 arms into three portions, whose molecular diversity was modelled by different evolutionary forces. Notably, the outer region of the palindrome is not involved in any gene conversion event and evolves exclusively through the action of mutational pressure. The inner region is affected by Y-Y gene conversion occurring at a rate of 1.52 × 10-5 conversions/base/year, with no bias towards the retention of the ancestral state of the sequence. In this portion, GC-biased gene conversion is counterbalanced by a mutational bias towards AT bases. Finally, the middle region of the arms, in addition to intra-chromosomal gene conversion, is involved in X-to-Y gene conversion (at a rate of 6.013 × 10-8 conversions/base/year) thus being a major force in the evolution of the VCY/VCX gene family.
Collapse
Affiliation(s)
- Maria Bonito
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 00185, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy.,Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 00185, Italy
| | - Beniamino Trombetta
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| |
Collapse
|
6
|
Nath S, Welch LA, Flanagan MK, White MA. Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes. Chromosome Res 2022; 30:429-442. [PMID: 35635635 DOI: 10.1007/s10577-022-09699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.
Collapse
Affiliation(s)
- Shivangi Nath
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Lucille A Welch
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Mary K Flanagan
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Michael A White
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Schield DR, Perry BW, Card DC, Pasquesi GIM, Westfall AK, Mackessy SP, Castoe TA. The Rattlesnake W Chromosome: A GC-Rich Retroelement Refugium with Retained Gene Function Across Ancient Evolutionary Strata. Genome Biol Evol 2022; 14:evac116. [PMID: 35867356 PMCID: PMC9447483 DOI: 10.1093/gbe/evac116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a "refugium" for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Giulia I M Pasquesi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
8
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
9
|
Sakamoto T, Innan H. Muller's ratchet of the Y chromosome with gene conversion. Genetics 2022; 220:iyab204. [PMID: 34791206 PMCID: PMC8733426 DOI: 10.1093/genetics/iyab204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Muller's ratchet is a process in which deleterious mutations are fixed irreversibly in the absence of recombination. The degeneration of the Y chromosome, and the gradual loss of its genes, can be explained by Muller's ratchet. However, most theories consider single-copy genes, and may not be applicable to Y chromosomes, which have a number of duplicated genes in many species, which are probably undergoing concerted evolution by gene conversion. We developed a model of Muller's ratchet to explore the evolution of the Y chromosome. The model assumes a nonrecombining chromosome with both single-copy and duplicated genes. We used analytical and simulation approaches to obtain the rate of gene loss in this model, with special attention to the role of gene conversion. Homogenization by gene conversion makes both duplicated copies either mutated or intact. The former promotes the ratchet, and the latter retards, and we ask which of these counteracting forces dominates under which conditions. We found that the effect of gene conversion is complex, and depends upon the fitness effect of gene duplication. When duplication has no effect on fitness, gene conversion accelerates the ratchet of both single-copy and duplicated genes. If duplication has an additive fitness effect, the ratchet of single-copy genes is accelerated by gene duplication, regardless of the gene conversion rate, whereas gene conversion slows the degeneration of duplicated genes. Our results suggest that the evolution of the Y chromosome involves several parameters, including the fitness effect of gene duplication by increasing dosage and gene conversion rate.
Collapse
Affiliation(s)
- Takahiro Sakamoto
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
10
|
Bonito M, D’Atanasio E, Ravasini F, Cariati S, Finocchio A, Novelletto A, Trombetta B, Cruciani F. New insights into the evolution of human Y chromosome palindromes through mutation and gene conversion. Hum Mol Genet 2021; 30:2272-2285. [PMID: 34244762 PMCID: PMC8600007 DOI: 10.1093/hmg/ddab189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
About one-quarter of the euchromatic portion of the male-specific region of the human Y chromosome consists of large duplicated sequences that are organized in eight palindromes (termed P1-P8), which undergo arm-to arm gene conversion, a proposed mechanism for maintaining their sequence integrity. Although the relevance of gene conversion in the evolution of palindromic sequences has been profoundly recognized, the dynamic of this mechanism is still nuanced. To shed light into the evolution of these genomic elements, we performed a high-depth (50×) targeted next-generation sequencing of the palindrome P6 in 157 subjects belonging to the most divergent evolutionary lineages of the Y chromosome. We found 118 new paralogous sequence variants, which were placed into the context of a robust Y chromosome phylogeny based on 7240 SNPs of the X-degenerate region. We mapped along the phylogeny 80 gene conversion events that shaped the diversity of P6 arms during recent human history. In contrast to previous studies, we demonstrated that arm-to-arm gene conversion, which occurs at a rate of 6.01 × 10 -6 conversions/base/year, is not biased toward the retention of the ancestral state of sequences. We also found a significantly lower mutation rate of the arms (6.18 × 10-10 mutations/base/year) compared with the spacer (9.16 × 10-10 mutations/base/year), a finding that may explain the observed higher inter-species conservation of arms, without invoking any bias of conversion. Finally, by formally testing the mutation/conversion balance in P6, we found that the arms of this palindrome reached a steady-state equilibrium between mutation and gene conversion.
Collapse
Affiliation(s)
- Maria Bonito
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Eugenia D’Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 0185, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Selene Cariati
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Andrea Finocchio
- Department of Biology, University of Rome Tor Vergata, Rome 0133, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome Tor Vergata, Rome 0133, Italy
| | - Beniamino Trombetta
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome 0185, Italy
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 0185, Italy
| |
Collapse
|
11
|
Oldrieve G, Verney M, Jaron KS, Hébert L, Matthews KR. Monomorphic Trypanozoon: towards reconciling phylogeny and pathologies. Microb Genom 2021; 7. [PMID: 34397347 PMCID: PMC8549356 DOI: 10.1099/mgen.0.000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.
Collapse
Affiliation(s)
- Guy Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mylène Verney
- Unité PhEED, Laboratoire de Santé Animale, Site de Normandie, ANSES, RD675, 1443012 Goustranville, France
| | - Kamil S Jaron
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Laurent Hébert
- Unité PhEED, Laboratoire de Santé Animale, Site de Normandie, ANSES, RD675, 1443012 Goustranville, France
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
12
|
Vegesna R, Tomaszkiewicz M, Ryder OA, Campos-Sánchez R, Medvedev P, DeGiorgio M, Makova KD. Ampliconic Genes on the Great Ape Y Chromosomes: Rapid Evolution of Copy Number but Conservation of Expression Levels. Genome Biol Evol 2021; 12:842-859. [PMID: 32374870 PMCID: PMC7313670 DOI: 10.1093/gbe/evaa088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Multicopy ampliconic gene families on the Y chromosome play an important role in spermatogenesis. Thus, studying their genetic variation in endangered great ape species is critical. We estimated the sizes (copy number) of nine Y ampliconic gene families in population samples of chimpanzee, bonobo, and orangutan with droplet digital polymerase chain reaction, combined these estimates with published data for human and gorilla, and produced genome-wide testis gene expression data for great apes. Analyzing this comprehensive data set within an evolutionary framework, we, first, found high inter- and intraspecific variation in gene family size, with larger families exhibiting higher variation as compared with smaller families, a pattern consistent with random genetic drift. Second, for four gene families, we observed significant interspecific size differences, sometimes even between sister species—chimpanzee and bonobo. Third, despite substantial variation in copy number, Y ampliconic gene families’ expression levels did not differ significantly among species, suggesting dosage regulation. Fourth, for three gene families, size was positively correlated with gene expression levels across species, suggesting that, given sufficient evolutionary time, copy number influences gene expression. Our results indicate high variability in size but conservation in gene expression levels in Y ampliconic gene families, significantly advancing our understanding of Y-chromosome evolution in great apes.
Collapse
Affiliation(s)
- Rahulsimham Vegesna
- Bioinformatics and Genomics Graduate Program, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park
| | | | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California
| | | | - Paul Medvedev
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park.,Department of Computer Science and Engineering, Pennsylvania State University, University Park.,Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park.,Center for Medical Genomics, Pennsylvania State University, University Park
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University, University Park.,Institute for Computational and Data Science, Pennsylvania State University, University Park
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park.,Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park.,Center for Medical Genomics, Pennsylvania State University, University Park
| |
Collapse
|
13
|
Rogers TF, Pizzari T, Wright AE. Multi-Copy Gene Family Evolution on the Avian W Chromosome. J Hered 2021; 112:250-259. [PMID: 33758922 DOI: 10.1093/jhered/esab016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The sex chromosomes often follow unusual evolutionary trajectories. In particular, the sex-limited chromosomes frequently exhibit a small but unusual gene content in numerous species, where many genes have undergone massive gene amplification. The reasons for this remain elusive with a number of recent studies implicating meiotic drive, sperm competition, genetic drift, and gene conversion in the expansion of gene families. However, our understanding is primarily based on Y chromosome studies as few studies have systematically tested for copy number variation on W chromosomes. Here, we conduct a comprehensive investigation into the abundance, variability, and evolution of ampliconic genes on the avian W. First, we quantified gene copy number and variability across the duck W chromosome. We find a limited number of gene families as well as conservation in W-linked gene copy number across duck breeds, indicating that gene amplification may not be such a general feature of sex chromosome evolution as Y studies would initially suggest. Next, we investigated the evolution of HINTW, a prominent ampliconic gene family hypothesized to play a role in female reproduction and oogenesis. In particular, we investigated the factors driving the expansion of HINTW using contrasts between modern chicken and duck breeds selected for different female-specific selection regimes and their wild ancestors. Although we find the potential for selection related to fecundity in explaining small-scale gene amplification of HINTW in the chicken, purifying selection seems to be the dominant mode of evolution in the duck. Together, this challenges the assumption that HINTW is key for female fecundity across the avian phylogeny.
Collapse
Affiliation(s)
- Thea F Rogers
- Department of Animal and Plant Sciences, University of Sheffield, UK
| | - Tommaso Pizzari
- Department of Animal and Plant Sciences, University of Sheffield, UK
| | - Alison E Wright
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| |
Collapse
|
14
|
Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M, Schwander T. Genomic Features of Parthenogenetic Animals. J Hered 2021; 112:19-33. [PMID: 32985658 PMCID: PMC7953838 DOI: 10.1093/jhered/esaa031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Evolution without sex is predicted to impact genomes in numerous ways. Case studies of individual parthenogenetic animals have reported peculiar genomic features that were suggested to be caused by their mode of reproduction, including high heterozygosity, a high abundance of horizontally acquired genes, a low transposable element load, or the presence of palindromes. We systematically characterized these genomic features in published genomes of 26 parthenogenetic animals representing at least 18 independent transitions to asexuality. Surprisingly, not a single feature was systematically replicated across a majority of these transitions, suggesting that previously reported patterns were lineage-specific rather than illustrating the general consequences of parthenogenesis. We found that only parthenogens of hybrid origin were characterized by high heterozygosity levels. Parthenogens that were not of hybrid origin appeared to be largely homozygous, independent of the cellular mechanism underlying parthenogenesis. Overall, despite the importance of recombination rate variation for the evolution of sexual animal genomes, the genome-wide absence of recombination does not appear to have had the dramatic effects which are expected from classical theoretical models. The reasons for this are probably a combination of lineage-specific patterns, the impact of the origin of parthenogenesis, and a survivorship bias of parthenogenetic lineages.
Collapse
Affiliation(s)
- Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
- Reuben W. Nowell is now at the Department of Zoology, University of Oxford, Oxford, UK
| | | | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Abstract
The male-specific Y chromosome harbors genes important for sperm production. Because Y is repetitive, its DNA sequence was deciphered for only a few species, and its evolution remains elusive. Here we compared the Y chromosomes of great apes (human, chimpanzee, bonobo, gorilla, and orangutan) and found that many of their repetitive sequences and multicopy genes were likely already present in their common ancestor. Y repeats had increased intrachromosomal contacts, which might facilitate preservation of genes and gene regulatory elements. Chimpanzee and bonobo, experiencing high sperm competition, underwent many DNA changes and gene losses on the Y. Our research is significant for understanding the role of the Y chromosome in reproduction of nonhuman great apes, all of which are endangered. The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle: their gene content is more similar between human and gorilla than between human and chimpanzee, even though human and chimpanzee share a more recent common ancestor. To solve this puzzle, here we constructed a dataset including Ys from all extant great ape genera. We generated assemblies of bonobo and orangutan Ys from short and long sequencing reads and aligned them with the publicly available human, chimpanzee, and gorilla Y assemblies. Analyzing this dataset, we found that the genus Pan, which includes chimpanzee and bonobo, experienced accelerated substitution rates. Pan also exhibited elevated gene death rates. These observations are consistent with high levels of sperm competition in Pan. Furthermore, we inferred that the great ape common ancestor already possessed multicopy sequences homologous to most human and chimpanzee palindromes. Nonetheless, each species also acquired distinct ampliconic sequences. We also detected increased chromatin contacts between and within palindromes (from Hi-C data), likely facilitating gene conversion and structural rearrangements. Our results highlight the dynamic mode of Y chromosome evolution and open avenues for studies of male-specific dispersal in endangered great ape species.
Collapse
|
16
|
Dujon AM, Gatenby RA, Bramwell G, MacDonald N, Dohrmann E, Raven N, Schultz A, Hamede R, Gérard AL, Giraudeau M, Thomas F, Ujvari B. Transmissible Cancers in an Evolutionary Perspective. iScience 2020; 23:101269. [PMID: 32592998 PMCID: PMC7327844 DOI: 10.1016/j.isci.2020.101269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Inter-individual transmission of cancer cells represents an intriguing and unexplored host-pathogen system, with significant ecological and evolutionary ramifications. The pathogen consists of clonal malignant cell lines that spread horizontally as allografts and/or xenografts. Although only nine transmissible cancer lineages in eight host species from both terrestrial and marine environments have been investigated, they exhibit evolutionary dynamics that may provide novel insights into tumor-host interactions particularly in the formation of metastases. Here we present an overview of known transmissible cancers, discuss the necessary and sufficient conditions for cancer transmission, and provide a comprehensive review on the evolutionary dynamics between transmissible cancers and their hosts.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Georgina Bramwell
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nick MacDonald
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Erin Dohrmann
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nynke Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Aaron Schultz
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Anne-Lise Gérard
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
17
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
18
|
Wilson J, Staley JM, Wyckoff GJ. Extinction of chromosomes due to specialization is a universal occurrence. Sci Rep 2020; 10:2170. [PMID: 32034231 PMCID: PMC7005762 DOI: 10.1038/s41598-020-58997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
The human X and Y chromosomes evolved from a pair of autosomes approximately 180 million years ago. Despite their shared evolutionary origin, extensive genetic decay has resulted in the human Y chromosome losing 97% of its ancestral genes while gene content and order remain highly conserved on the X chromosome. Five 'stratification' events, most likely inversions, reduced the Y chromosome's ability to recombine with the X chromosome across the majority of its length and subjected its genes to the erosive forces associated with reduced recombination. The remaining functional genes are ubiquitously expressed, functionally coherent, dosage-sensitive genes, or have evolved male-specific functionality. It is unknown, however, whether functional specialization is a degenerative phenomenon unique to sex chromosomes, or if it conveys a potential selective advantage aside from sexual antagonism. We examined the evolution of mammalian orthologs to determine if the selective forces that led to the degeneration of the Y chromosome are unique in the genome. The results of our study suggest these forces are not exclusive to the Y chromosome, and chromosomal degeneration may have occurred throughout our evolutionary history. The reduction of recombination could additionally result in rapid fixation through isolation of specialized functions resulting in a cost-benefit relationship during times of intense selective pressure.
Collapse
Affiliation(s)
- Jason Wilson
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.
| | - Joshua M Staley
- Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA
| | - Gerald J Wyckoff
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.,Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA.,University of Missouri-Kansas City School of Biological and Chemical Sciences, Department of Molecular Biology and Biochemistry, Kansas City, 64108, Missouri, USA
| |
Collapse
|
19
|
Hasan AR, Duggal JK, Ness RW. Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2019; 224:1339-1348. [PMID: 31222749 DOI: 10.1111/nph.16003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jaspreet K Duggal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
20
|
Role of recombination and faithfulness to partner in sex chromosome degeneration. Sci Rep 2018; 8:8978. [PMID: 29895905 PMCID: PMC5997740 DOI: 10.1038/s41598-018-27219-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
Abstract
Sex determination in mammals is strongly linked to sex chromosomes. In most cases, females possess two copies of X chromosome while males have one X and one Y chromosome. It is assumed that these chromosomes originated from a pair of homologous autosomes, which diverged when recombination between them was suppressed. However, it is still debated why the sex chromosomes stopped recombining and how this process spread out over most part of the chromosomes. To study this problem, we developed a simulation model, in which the recombination rate between the sex chromosomes can freely evolve. We found that the suppression of recombination between the X and Y is spontaneous and proceeds very quickly during the evolution of population, which leads to the degeneration of the Y in males. Interestingly, the degeneration happens only when mating pairs are unfaithful. This evolutionary strategy purifies the X chromosome from defective alleles and leads to the larger number of females than males in the population. In consequence, the reproductive potential of the whole population increases. Our results imply that both the suppression of recombination and the degeneration of Y chromosome may be associated with reproductive strategy and favoured in polygamous populations with faithless mating partners.
Collapse
|
21
|
Ye D, Zaidi AA, Tomaszkiewicz M, Anthony K, Liebowitz C, DeGiorgio M, Shriver MD, Makova KD. High Levels of Copy Number Variation of Ampliconic Genes across Major Human Y Haplogroups. Genome Biol Evol 2018; 10:1333-1350. [PMID: 29718380 PMCID: PMC6007357 DOI: 10.1093/gbe/evy086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
Because of its highly repetitive nature, the human male-specific Y chromosome remains understudied. It is important to investigate variation on the Y chromosome to understand its evolution and contribution to phenotypic variation, including infertility. Approximately 20% of the human Y chromosome consists of ampliconic regions which include nine multi-copy gene families. These gene families are expressed exclusively in testes and usually implicated in spermatogenesis. Here, to gain a better understanding of the role of the Y chromosome in human evolution and in determining sexually dimorphic traits, we studied ampliconic gene copy number variation in 100 males representing ten major Y haplogroups world-wide. Copy number was estimated with droplet digital PCR. In contrast to low nucleotide diversity observed on the Y in previous studies, here we show that ampliconic gene copy number diversity is very high. A total of 98 copy-number-based haplotypes were observed among 100 individuals, and haplotypes were sometimes shared by males from very different haplogroups, suggesting homoplasies. The resulting haplotypes did not cluster according to major Y haplogroups. Overall, only two gene families (RBMY and TSPY) showed significant differences in copy number among major Y haplogroups, and the haplogroup of a male could not be predicted based on his ampliconic gene copy numbers. Finally, we did not find significant correlations either between copy number variation and individual's height, or between the former and facial masculinity/femininity. Our results suggest rapid evolution of ampliconic gene copy numbers on the human Y, and we discuss its causes.
Collapse
Affiliation(s)
- Danling Ye
- Department of Biology, Pennsylvania State University, University Park
| | - Arslan A Zaidi
- Department of Biology, Pennsylvania State University, University Park
| | | | - Kate Anthony
- Department of Biology, Pennsylvania State University, University Park
| | - Corey Liebowitz
- Department of Anthropology, Pennsylvania State University, University Park
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University, University Park
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, University Park
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park
| |
Collapse
|
22
|
Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, Wimmer EA, van de Zande L, Robinson MD, Beukeboom LW, Bopp D. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science 2018; 356:642-645. [PMID: 28495751 DOI: 10.1126/science.aam5498] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 01/23/2023]
Abstract
Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the chromosomes. We identified a gene, Musca domesticamale determiner (Mdmd), as the M-factor. Mdmd originated from a duplication of the spliceosomal factor gene CWC22 (nucampholin). Targeted Mdmd disruption results in complete sex reversal to fertile females because of a shift from male to female expression of the downstream genes transformer and doublesex The presence of Mdmd on different chromosomes indicates that Mdmd translocated to different genomic sites. Thus, an instructive signal in sex determination can arise by duplication and neofunctionalization of an essential splicing regulator.
Collapse
Affiliation(s)
- Akash Sharma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands.,Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Svenia D Heinze
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Yanli Wu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands.,Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Goettingen, Göttingen, Germany
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ian Morilla
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Claudia Brunner
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Goettingen, Göttingen, Germany
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
23
|
Trombetta B, D'Atanasio E, Cruciani F. Patterns of Inter-Chromosomal Gene Conversion on the Male-Specific Region of the Human Y Chromosome. Front Genet 2017; 8:54. [PMID: 28515739 PMCID: PMC5413550 DOI: 10.3389/fgene.2017.00054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) is characterized by the lack of meiotic recombination and it has long been considered an evolutionary independent region of the human genome. In recent years, however, the idea that human MSY did not have an independent evolutionary history begun to emerge with the discovery that inter-chromosomal gene conversion (ICGC) can modulate the genetic diversity of some portions of this genomic region. Despite the study of the dynamics of this molecular mechanism in humans is still in its infancy, some peculiar features and consequences of it can be summarized. The main effect of ICGC is to increase the allelic diversity of MSY by generating a significant excess of clustered single nucleotide polymorphisms (SNPs) (defined as groups of two or more SNPs occurring in close proximity and on the same branch of the Y phylogeny). On the human MSY, 13 inter-chromosomal gene conversion hotspots (GCHs) have been identified so far, involving donor sequences mainly from the X-chromosome and, to a lesser extent, from autosomes. Most of the GCHs are evolutionary conserved and overlap with regions involved in aberrant X–Y crossing-over. This review mainly focuses on the dynamics and the current knowledge concerning the recombinational landscape of the human MSY in the form of ICGC, on how this molecular mechanism may influence the evolution of the MSY, and on how it could affect the information enclosed within a genomic region which, until recently, appeared to be an evolutionary independent unit.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR),Rome, Italy
| |
Collapse
|
24
|
Y chromosome palindromes and gene conversion. Hum Genet 2017; 136:605-619. [PMID: 28303348 DOI: 10.1007/s00439-017-1777-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023]
Abstract
The presence of large and near-identical inverted repeat sequences (called palindromes) is a common feature of the constitutively haploid sex chromosomes of different species. Despite the fact palindromes originated in a non-recombining context, they have evolved a strong recombinational activity in the form of abundant arm-to-arm gene conversion. Their independent appearance in different species suggests they can have a profound biological significance that has yet to be fully clarified. It has been theorized that natural selection may have favored palindromic organization of male-specific genes and that the establishment of intra-palindrome gene conversion has strong adaptive significance. Arm-to-arm gene conversion allows the efficient removal of deleterious mutations, increases the fixation rate of beneficial mutations and has played an important role in modulating the equilibrium between gene loss and acquisition during Y chromosome evolution. Additionally, a palindromic organization of duplicates could favor the formation of unusual chromatin structures and could optimize the use of gene conversion as a mechanism to maintain the structural integrity of male-specific genes. In this review, we describe the structural features of palindromes on mammalian sex chromosomes and summarize different hypotheses regarding palindrome evolution and the functional benefits of arm-to-arm gene conversion on the unique haploid portion of the nuclear genome.
Collapse
|
25
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
26
|
Sriswasdi S, Takashima M, Manabe RI, Ohkuma M, Sugita T, Iwasaki W. Global deceleration of gene evolution following recent genome hybridizations in fungi. Genome Res 2016; 26:1081-90. [PMID: 27440871 PMCID: PMC4971771 DOI: 10.1101/gr.205948.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/17/2016] [Indexed: 11/27/2022]
Abstract
Polyploidization events such as whole-genome duplication and inter-species hybridization are major evolutionary forces that shape genomes. Although long-term effects of polyploidization have been well-characterized, early molecular evolutionary consequences of polyploidization remain largely unexplored. Here, we report the discovery of two recent and independent genome hybridizations within a single clade of a fungal genus, Trichosporon. Comparative genomic analyses revealed that redundant genes are experiencing decelerations, not accelerations, of evolutionary rates. We identified a relationship between gene conversion and decelerated evolution suggesting that gene conversion may improve the genome stability of young hybrids by restricting gene functional divergences. Furthermore, we detected large-scale gene losses from transcriptional and translational machineries that indicate a global compensatory mechanism against increased gene dosages. Overall, our findings illustrate counteracting mechanisms during an early phase of post-genome hybridization and fill a critical gap in existing theories on genome evolution.
Collapse
Affiliation(s)
- Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8568, Japan; Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
27
|
Ghenu AH, Bolker BM, Melnick DJ, Evans BJ. Multicopy gene family evolution on primate Y chromosomes. BMC Genomics 2016; 17:157. [PMID: 26925773 PMCID: PMC4772468 DOI: 10.1186/s12864-015-2187-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background The primate Y chromosome is distinguished by a lack of inter-chromosomal recombination along most of its length, extensive gene loss, and a prevalence of repetitive elements. A group of genes on the male-specific portion of the Y chromosome known as the “ampliconic genes” are present in multiple copies that are sometimes part of palindromes, and that undergo a form of intra-chromosomal recombination called gene conversion, wherein the nucleotides of one copy are homogenized by those of another. With the aim of further understanding gene family evolution of these genes, we collected nucleotide sequence and gene copy number information for several species of papionin monkey. We then tested for evidence of gene conversion, and developed a novel statistical framework to evaluate alternative models of gene family evolution using our data combined with other information from a human, a chimpanzee, and a rhesus macaque. Results Our results (i) recovered evidence for several novel examples of gene conversion in papionin monkeys and indicate that (ii) ampliconic gene families evolve faster than autosomal gene families and than single-copy genes on the Y chromosome and that (iii) Y-linked singleton and autosomal gene families evolved faster in humans and chimps than they do in the other Old World Monkey lineages we studied. Conclusions Rapid evolution of ampliconic genes cannot be attributed solely to residence on the Y chromosome, nor to variation between primate lineages in the rate of gene family evolution. Instead other factors, such as natural selection and gene conversion, appear to play a role in driving temporal and genomic evolutionary heterogeneity in primate gene families. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2187-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana-Hermina Ghenu
- Biology Department, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada.
| | - Benjamin M Bolker
- Biology Department, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada.,Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Don J Melnick
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, New York, 10027, USA
| | - Ben J Evans
- Biology Department, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada.
| |
Collapse
|
28
|
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. FUNGAL BIOL REV 2015; 29:220-229. [PMID: 26688691 PMCID: PMC4680991 DOI: 10.1016/j.fbr.2015.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, VIC 3010, Australia
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
29
|
Wright AE, Harrison PW, Montgomery SH, Pointer MA, Mank JE. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome. Evolution 2014; 68:3281-95. [PMID: 25066800 PMCID: PMC4278454 DOI: 10.1111/evo.12493] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness.
Collapse
Affiliation(s)
- Alison E Wright
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom; Department of Genetics, Evolution and Environment, University College, London, London, WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Mank JE, Hosken DJ, Wedell N. Conflict on the sex chromosomes: cause, effect, and complexity. Cold Spring Harb Perspect Biol 2014; 6:a017715. [PMID: 25280765 DOI: 10.1101/cshperspect.a017715] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
31
|
Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario. G3-GENES GENOMES GENETICS 2014; 4:1479-89. [PMID: 24906640 PMCID: PMC4132178 DOI: 10.1534/g3.114.012435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interlocus gene conversion is a major evolutionary force that drives the concerted evolution of duplicated genomic regions. Theoretical models successfully have addressed the effects of interlocus gene conversion and the importance of crossover in the evolutionary fate of gene families and duplications but have not considered complex recombination scenarios, such as the presence of hotspots. To study the interplay between interlocus gene conversion and crossover, we have developed a forward-time simulator that allows the exploration of a wide range of interlocus gene conversion rates under different crossover models. Using it, we have analyzed patterns of nucleotide variation and linkage disequilibrium within and between duplicate regions, focusing on a neutral scenario with constant population size and validating our results with the existing theoretical models. We show that the interaction of gene conversion and crossover is nontrivial and that the location of crossover junctions is a fundamental determinant of levels of variation and linkage disequilibrium in duplicated regions. We also show that if crossover activity between duplications is strong enough, recurrent interlocus gene conversion events can break linkage disequilibrium within duplicates. Given the complex nature of interlocus gene conversion and crossover, we provide a framework to explore their interplay to help increase knowledge on molecular evolution within segmental duplications under more complex scenarios, such as demographic changes or natural selection.
Collapse
|
32
|
Trombetta B, Sellitto D, Scozzari R, Cruciani F. Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes. Mol Biol Evol 2014; 31:2108-23. [PMID: 24817545 PMCID: PMC4104316 DOI: 10.1093/molbev/msu155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, Italy
| | | | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, ItalyIstituto di Biologia e Patologia Molecolari, CNR, Roma, ItalyIstituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
33
|
Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grützner F, Kaessmann H. Origins and functional evolution of Y chromosomes across mammals. Nature 2014; 508:488-93. [DOI: 10.1038/nature13151] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/17/2014] [Indexed: 12/25/2022]
|
34
|
Wilson Sayres MA, Lohmueller KE, Nielsen R. Natural selection reduced diversity on human y chromosomes. PLoS Genet 2014; 10:e1004064. [PMID: 24415951 PMCID: PMC3886894 DOI: 10.1371/journal.pgen.1004064] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 11/12/2013] [Indexed: 01/11/2023] Open
Abstract
The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. The human Y chromosome is found only in males, and exhibits surprisingly low levels of genetic diversity. This low diversity could result from neutral processes, for example, if there are fewer males successfully mating (and thus fewer Y chromosomes being inherited) relative to the number of females who successfully mate. Alternatively, natural selection may act on mutations on the Y chromosome to reduce genetic diversity. Because there is no recombination across most of the Y chromosome all sites on the Y are effectively linked together. Thus, selection acting on any one site will affect all sites on the Y indirectly. Here, studying the X, Y, autosomal and mitochondrial DNA, in combination with population genetic simulations, we show that low observed Y chromosome variability is consistent with models of purifying selection removing deleterious mutations and linked variation, although positive selection may also be acting. We further infer that the number of sites affected by selection likely includes some proportion of the highly repetitive ampliconic regions on the Y. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area.
Collapse
Affiliation(s)
- Melissa A. Wilson Sayres
- Statistics Department, University of California-Berkeley, Berkeley, California, United States of America
- Integrative Biology Department, University of California-Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Kirk E. Lohmueller
- Integrative Biology Department, University of California-Berkeley, Berkeley, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rasmus Nielsen
- Statistics Department, University of California-Berkeley, Berkeley, California, United States of America
- Integrative Biology Department, University of California-Berkeley, Berkeley, California, United States of America
| |
Collapse
|
35
|
Hallast P, Balaresque P, Bowden GR, Ballereau S, Jobling MA. Recombination dynamics of a human Y-chromosomal palindrome: rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions. PLoS Genet 2013; 9:e1003666. [PMID: 23935520 PMCID: PMC3723533 DOI: 10.1371/journal.pgen.1003666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9–8.4×10−4 events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages. The sex-determining role of the human Y chromosome makes it male-specific, and always present in only a single copy. This solo lifestyle has endowed it with some bizarre features, among which are eight large DNA units constituting about a quarter of the chromosome's length, and containing many genes important for sperm production. These units are called palindromes, since, taking into account the polarity of the DNA strands, the sequence is the same read from either end of the unit. We investigated the details of a process (gene conversion) that transfers sequence variants in one half of a palindrome into the other, thereby maintaining >99.9% similarity between the halves. We analysed patterns of sequence variants within one palindrome in a set of Y chromosomes whose evolutionary relationships are known. This allowed us to identify past gene conversion events, and to demonstrate a bias towards events that eliminate new variants, and retain old ones. Gene conversion has therefore acted during human evolution to retard sequence change in these regions. Analysis of the chimpanzee and gorilla versions of the palindrome shows that the dynamic processes we see in human Y chromosomes have a deep evolutionary history.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Georgina R. Bowden
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Stéphane Ballereau
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Mark A. Jobling
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 2013; 14:113-24. [PMID: 23329112 DOI: 10.1038/nrg3366] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
Collapse
|
37
|
Blaser O, Grossen C, Neuenschwander S, Perrin N. SEX-CHROMOSOME TURNOVERS INDUCED BY DELETERIOUS MUTATION LOAD. Evolution 2012; 67:635-45. [DOI: 10.1111/j.1558-5646.2012.01810.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Sun S, Heitman J. Should Y stay or should Y go: the evolution of non-recombining sex chromosomes. Bioessays 2012; 34:938-42. [PMID: 22948853 DOI: 10.1002/bies.201200064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gradual degradation seems inevitable for non-recombining sex chromosomes. This has been supported by the observation of degenerated non-recombining sex chromosomes in a variety of species. The human Y chromosome has also degenerated significantly during its evolution, and theories have been advanced that the Y chromosome could disappear within the next ~5 million years, if the degeneration rate it has experienced continues. However, recent studies suggest that this is unlikely. Conservative evolutionary forces such as strong purifying selection and intrachromosomal repair through gene conversion balance the degeneration tendency of the Y chromosome and maintain its integrity after an initial period of faster degeneration. We discuss the evidence both for and against the extinction of the Y chromosome. We also discuss potential insights gained on the evolution of sex-determining chromosomes by studying simpler sex-determining chromosomal regions of unicellular and multicellular microorganisms.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
39
|
Why chromosome palindromes? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:207958. [PMID: 22844637 PMCID: PMC3403216 DOI: 10.1155/2012/207958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
We look at sex-limited chromosome (Y or W) evolution with particular emphasis on the importance of palindromes. Y chromosome palindromes consist of inverted duplicates that allow for local recombination in an otherwise nonrecombining chromosome. Since palindromes enable intrachromosomal gene conversion that can help eliminate deleterious mutations, they are often highlighted as mechanisms to protect against Y degeneration. However, the adaptive significance of recombination resides in its ability to decouple the evolutionary fates of linked mutations, leading to both a decrease in degeneration rate and an increase in adaptation rate. Our paper emphasizes the latter, that palindromes may exist to accelerate adaptation by increasing the potential targets and fixation rates of incoming beneficial mutations. This hypothesis helps reconcile two enigmatic features of the “palindromes as protectors” view: (1) genes that are not located in palindromes have been retained under purifying selection for tens of millions of years, and (2) under models that only consider deleterious mutations, gene conversion benefits duplicate gene maintenance but not initial fixation. We conclude by looking at ways to test the hypothesis that palindromes enhance the rate of adaptive evolution of Y-linked genes and whether this effect can be extended to palindromes on other chromosomes.
Collapse
|
40
|
Gene conversion occurs within the mating-type locus of Cryptococcus neoformans during sexual reproduction. PLoS Genet 2012; 8:e1002810. [PMID: 22792079 PMCID: PMC3390403 DOI: 10.1371/journal.pgen.1002810] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/23/2012] [Indexed: 12/30/2022] Open
Abstract
Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi. Recombination has been thought to be repressed within sex chromosomes, as well as within the mating-type (MAT) loci in many fungi, due to the highly diverged and rearranged nature between alleles defining opposite sexes or mating-types. However, it has long been appreciated that recombination can occur within these presumptive recombinational “cold spots,” and recent studies reveal that recombination, including gene conversion, can occur at a frequency higher than previously appreciated and could play important roles in shaping evolution of these chromosomal regions. Here, we provide evidence that, during sexual reproduction of the human pathogenic fungus Cryptococcus neoformans, recombination (gene conversion) occurs across a GC-rich intergenic region within the MAT locus. The frequency of this gene conversion is comparable to those of typical meiotic recombination events observed in other chromosomal regions. This is in accord with population genetics analyses, which indicate homogenization between alleles of opposite mating-types within the intergenic region. Gene conversion within these highly rearranged chromosomal regions may serve to ensure proper meiosis and/or rejuvenate genes/chromosomal regions within MAT that are otherwise facing irreversible evolutionary decay. In conclusion, our study provides further experimental evidence that at least some recombinational “cold spots” are not that cold, after all.
Collapse
|
41
|
Abstract
On August 31, 2011 at the 18th International Chromosome Conference in Manchester, Jenny Graves took on Jenn Hughes to debate the demise (or otherwise) of the mammalian Y chromosome. Sex chromosome evolution is an example of convergence; there are numerous examples of XY and ZW systems with varying degrees of differentiation and isolated examples of the Y disappearing in some lineages. It is agreed that the Y was once genetically identical to its partner and that the present-day human sex chromosomes retain only traces of their shared ancestry. The euchromatic portion of the male-specific region of the Y is ~1/6 of the size of the X and has only ~1/12 the number of genes. The big question however is whether this degradation will continue or whether it has reached a point of equilibrium. Jenny Graves argued that the Y chromosome is subject to higher rates of variation and inefficient selection and that Ys (and Ws) degrade inexorably. She argued that there is evidence that the Y in other mammals has undergone lineage-specific degradation and already disappeared in some rodent lineages. She also pointed out that there is practically nothing left of the original human Y and the added part of the human Y is degrading rapidly. Jenn Hughes on the other hand argued that the Y has not disappeared yet and it has been around for hundreds of millions of years. She stated that it has shown that it can outsmart genetic decay in the absence of "normal" recombination and that most of its genes on the human Y exhibit signs of purifying selection. She noted that it has added at least eight different genes, many of which have subsequently expanded in copy number, and that it has not lost any genes since the human and chimpanzee diverged ~6 million years ago. The issue was put to the vote with an exact 50/50 split among the opinion of the audience; an interesting (though perhaps not entirely unexpected) skew however was noted in the sex ratio of those for and against the notion.
Collapse
|
42
|
Grossen C, Neuenschwander S, Perrin N. The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load. Evolution 2012; 66:3155-66. [PMID: 23025605 DOI: 10.1111/j.1558-5646.2012.01661.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the "fountain-of-youth" model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via "demasculinization" of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the "fountain of youth" as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.
Collapse
Affiliation(s)
- Christine Grossen
- Department of Ecology & Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
43
|
Navarro-Costa P. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1851-63. [PMID: 22542510 DOI: 10.1016/j.bbadis.2012.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/27/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
|
44
|
Revay T, King WA. Sister chromatid exchange assessment by chromosome orientation-fluorescence in situ hybridization on the bovine sex chromosomes and autosomes 16 and 26. Cytogenet Genome Res 2012; 136:107-16. [PMID: 22286126 DOI: 10.1159/000335749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
Mammalian genome replication and maintenance are intimately coupled with the mechanisms that ensure cohesion between the resultant sister chromatids and the repair of DNA breaks. Although a sister chromatid exchange (SCE) is an error-free swapping of precisely matched and identical DNA strands, repetitive elements adjacent to the break site can act as alternative template sites and an unequal sister chromatid exchange can result, leading to structural variations and copy number change. Here we test the vulnerability for SCEs of the repeat-rich bovine Y chromosome in comparison with X, 16 and 26 chromosomes, using chromosome orientation-fluorescence in situ hybridization. The mean SCE rate of the Y chromosome (0.065 ± 0.029) was similar to that of BTA16 and BTA26 (0.065, 0.055), but was only approximately half of that of the X chromosome (0.142). As the chromosomal length affects the number of SCE events, we adjusted the SCE rates of the Y, 16, and 26 chromosomes to the length of the largest chromosome X resulting in very similar adjusted SCE (SCE(adj)) rates in all categories. Our results - based on 3 independent bulls - show that, although the cattle Y chromosome is a chest full of repeated elements, their presence and the documented activity of repeats in SCE formation does not manifest in significantly higher SCE(adj) rates and suggest the importance of the structural organization of the Y chromosome and the role of alternative mitotic DNA repair mechanisms.
Collapse
Affiliation(s)
- T Revay
- Department of Biomedical Sciences, University of Guelph, Guelph, Ont., Canada
| | | |
Collapse
|
45
|
Abstract
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Edward Grey Institute, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
46
|
Karhunen M. Dynamics of a sex-linked deleterious mutation in populations subject to sex reversal. PLoS One 2011; 6:e25362. [PMID: 22016765 PMCID: PMC3189978 DOI: 10.1371/journal.pone.0025362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 09/02/2011] [Indexed: 11/19/2022] Open
Abstract
The heterogametic sex chromosomes (i.e. mammalian Y and avian W) do not usually recombine with the homogametic sex chromosomes which is known to lead into rapid degeneration of Y and W due to accumulation of deleterious mutations. On the other hand, some 96% of amphibian species have homomorphic, i.e. non-degenerate Y chromosomes. Nicolas Perrin's fountain-of-youth hypothesis states that this is a result of recombination between X and Y chromosomes in sex-reversed individuals. In this study, I model the consequences of such recombination for the dynamics of a deleterious mutation occurring in Y chromosomes. As expected, even relatively low levels of sex reversal help to purge deleterious mutations. However, the population-dynamic consequences of this depend on the type of selection that operates on the population undergoing sex reversal. Under fecundity selection, sex reversal can be beneficial for some parameter values, whereas under survival selection, it seems to be always harmful.
Collapse
Affiliation(s)
- Markku Karhunen
- Department of Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
47
|
Méndez-Lago M, Bergman CM, de Pablos B, Tracey A, Whitehead SL, Villasante A. A large palindrome with interchromosomal gene duplications in the pericentromeric region of the D. melanogaster Y chromosome. Mol Biol Evol 2011; 28:1967-71. [PMID: 21297157 PMCID: PMC4202384 DOI: 10.1093/molbev/msr034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The non-recombining Y chromosome is expected to degenerate over evolutionary time, however, gene gain is a common feature of Y chromosomes of mammals and Drosophila. Here, we report that a large palindrome containing interchromosomal segmental duplications is located in the vicinity of the first amplicon detected in the Y chromosome of D. melanogaster. The recent appearance of such amplicons suggests that duplications to the Y chromosome, followed by the amplification of the segmental duplications, are a mechanism for the continuing evolution of Drosophila Y chromosomes.
Collapse
Affiliation(s)
- María Méndez-Lago
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Casey M. Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Beatriz de Pablos
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alan Tracey
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Alfredo Villasante
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
48
|
Fawcett JA, Innan H. Neutral and non-neutral evolution of duplicated genes with gene conversion. Genes (Basel) 2011; 2:191-209. [PMID: 24710144 PMCID: PMC3924837 DOI: 10.3390/genes2010191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/20/2011] [Accepted: 02/12/2011] [Indexed: 01/11/2023] Open
Abstract
Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | - Hideki Innan
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
49
|
Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet 2011; 12:157-66. [PMID: 21301475 DOI: 10.1038/nrg2948] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvgen 18D, SE752 36 Uppsala, Sweden.
| |
Collapse
|
50
|
Genomic and Population-Level Effects of Gene Conversion in Caenorhabditis Paralogs. Genes (Basel) 2010; 1:452-68. [PMID: 24710096 PMCID: PMC3966223 DOI: 10.3390/genes1030452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 12/06/2010] [Indexed: 11/17/2022] Open
|