1
|
Adams JC, Tucker RP. The evolution of tenascins. BMC Ecol Evol 2024; 24:121. [PMID: 39277743 PMCID: PMC11401434 DOI: 10.1186/s12862-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The evolution of extracellular matrix is tightly linked to the evolution of organogenesis in metazoans. Tenascins are extracellular matrix glycoproteins of chordates that participate in integrin-signaling and morphogenetic events. Single tenascins are encoded by invertebrate chordates, and multiple tenascin paralogs are found in vertebrates (designated tenascin-C, tenascin-R, tenascin-W and tenascin-X) yet, overall, the evolution of this family has remained unclear. RESULTS This study examines the genomes of hemichordates, cephalochordates, tunicates, agnathans, cartilaginous fishes, lobe-finned fishes, ray-finned fishes and representative tetrapods to identify predicted tenascin proteins. We comprehensively assess their evolutionary relationships by sequence conservation, molecular phylogeny and examination of conservation of synteny of the encoding genes. The resulting new evolutionary model posits the origin of tenascin in an ancestral chordate, with tenascin-C-like and tenascin-R-like paralogs emerging after a whole genome duplication event in an ancestral vertebrate. Tenascin-X appeared following a second round of whole genome duplication in an ancestral gnathostome, most likely from duplication of the gene encoding the tenascin-R homolog. The fourth gene, encoding tenascin-W (also known as tenascin-N), apparently arose from a local duplication of tenascin-R. CONCLUSIONS The diversity of tenascin paralogs observed in agnathans and gnathostomes has evolved through selective retention of novel genes that arose from a combination of whole genome and local duplication events. The evolutionary appearance of specific tenascin paralogs coincides with the appearance of vertebrate-specific cell and tissue types where the paralogs are abundantly expressed, such as the endocranium and facial skeleton (tenascin-C), an expanded central nervous system (tenascin-R), and bone (tenascin-W).
Collapse
Affiliation(s)
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Costagli S, Abenaim L, Rosini G, Conti B, Giovannoni R. De Novo Genome Assembly at Chromosome-Scale of Hermetia illucens (Diptera Stratiomyidae) via PacBio and Omni-C Proximity Ligation Technology. INSECTS 2024; 15:133. [PMID: 38392552 PMCID: PMC10889594 DOI: 10.3390/insects15020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Hermetia illucens is a species of great interest for numerous industrial applications. A high-quality reference genome is already available for H. illucens. However, the worldwide maintenance of numerous captive populations of H. illucens, each with its own genotypic and phenotypic characteristics, made it of interest to perform a de novo genome assembly on one population of H. illucens to define a chromosome-scale genome assembly. By combining the PacBio and the Omni-C proximity ligation technologies, a new H. illucens chromosome-scale genome of 888.59 Mb, with a scaffold N50 value of 162.19 Mb, was assembled. The final chromosome-scale assembly obtained a BUSCO completeness of 89.1%. By exploiting the Omni-C proximity ligation technology, topologically associated domains and other topological features that play a key role in the regulation of gene expression were identified. Further, 65.62% of genomic sequences were masked as repeated sequences, and 32,516 genes were annotated using the MAKER pipeline. The H. illucens Lsp-2 genes that were annotated were further characterized, and the three-dimensional organization of the encoded proteins was predicted. A new chromosome-scale genome assembly of good quality for H. illucens was assembled, and the genomic annotation phase was initiated. The availability of this new chromosome-scale genome assembly enables the further characterization, both genotypically and phenotypically, of a species of interest for several biotechnological applications.
Collapse
Affiliation(s)
- Simone Costagli
- Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giulia Rosini
- Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Center, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy
- CIRSEC, Center for Climate Change Impact, Centro di Ricerche Agro-Ambientali, University of Pisa, 56126 Pisa, Italy
| | - Roberto Giovannoni
- Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
- Nutrafood Center, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy
| |
Collapse
|
3
|
Vohnoutová M, Sedláková A, Symonová R. Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish. Int J Mol Sci 2023; 24:13167. [PMID: 37685974 PMCID: PMC10487504 DOI: 10.3390/ijms241713167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.
Collapse
Affiliation(s)
- Marta Vohnoutová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370-05 České Budějovice, Czech Republic;
| | - Anastázie Sedláková
- Faculty of Science, University of Hradec Králové, Hradecká 1285, 500-03 Hradec Králové, Czech Republic;
| | - Radka Symonová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370-05 České Budějovice, Czech Republic;
- Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, 370-05 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
5
|
Card DC, Van Camp AG, Santonastaso T, Jensen-Seaman MI, Anthony NM, Edwards SV. Structure and evolution of the squamate major histocompatibility complex as revealed by two Anolis lizard genomes. Front Genet 2022; 13:979746. [PMID: 36425073 PMCID: PMC9679377 DOI: 10.3389/fgene.2022.979746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole (Anolis carolinensis) and brown anole (A. sagrei), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2β gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1, many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.
Collapse
Affiliation(s)
- Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Daren C. Card,
| | - Andrew G. Van Camp
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| | - Trenten Santonastaso
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | | | - Nicola M. Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Novel genome reveals susceptibility of popular gamebird, the red-legged partridge (Alectoris rufa, Phasianidae), to climate change. Genomics 2021; 113:3430-3438. [PMID: 34400239 DOI: 10.1016/j.ygeno.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023]
Abstract
We produced a high-quality de novo genome assembly of the red-legged partridge A. rufa, the first reference genome of its genus, by utilising novel 10× Chromium technology. The estimated genome size was 1.19 Gb with an overall genome heterozygosity of 0.0022; no runs of homozygosity were observed. In total, 21,589 protein coding genes were identified and assigned to 16,772 orthologs. Of these, 201 emerged as unique to Alectoris and were enriched for positive regulation of epithelial cell migration, viral genome integration and maturation. Using PSMC analysis, we inferred a major demographic decline commencing ~140,000 years ago, consistent with forest expansion and reduction of open habitats during the Eemian interglacial. Present-day populations exhibit the historically lowest genetic diversity. Besides implications for management and conservation, this genome also promises key insights into the physiology of these birds with a view to improving poultry husbandry practices.
Collapse
|
7
|
Lewis JJ, Cicconardi F, Martin SH, Reed RD, Danko CG, Montgomery SH. The Dryas iulia Genome Supports Multiple Gains of a W Chromosome from a B Chromosome in Butterflies. Genome Biol Evol 2021; 13:evab128. [PMID: 34117762 PMCID: PMC8290107 DOI: 10.1093/gbe/evab128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
In butterflies and moths, which exhibit highly variable sex determination mechanisms, the homogametic Z chromosome is deeply conserved and is featured in many genome assemblies. The evolution and origin of the female W sex chromosome, however, remains mostly unknown. Previous studies have proposed that a ZZ/Z0 sex determination system is ancestral to Lepidoptera, and that W chromosomes may originate from sex-linked B chromosomes. Here, we sequence and assemble the female Dryas iulia genome into 32 highly contiguous ordered and oriented chromosomes, including the Z and W sex chromosomes. We then use sex-specific Hi-C, ATAC-seq, PRO-seq, and whole-genome DNA sequence data sets to test if features of the D. iulia W chromosome are consistent with a hypothesized B chromosome origin. We show that the putative W chromosome displays female-associated DNA sequence, gene expression, and chromatin accessibility to confirm the sex-linked function of the W sequence. In contrast with expectations from studies of homologous sex chromosomes, highly repetitive DNA content on the W chromosome, the sole presence of domesticated repetitive elements in functional DNA, and lack of sequence homology with the Z chromosome or autosomes is most consistent with a B chromosome origin for the W, although it remains challenging to rule out extensive sequence divergence. Synteny analysis of the D. iulia W chromosome with other female lepidopteran genome assemblies shows no homology between W chromosomes and suggests multiple, independent origins of the W chromosome from a B chromosome likely occurred in butterflies.
Collapse
Affiliation(s)
- James J Lewis
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, United Kingdom
- Department of Zoology, University of Cambridge, United Kingdom
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
8
|
Schield DR, Pasquesi GIM, Perry BW, Adams RH, Nikolakis ZL, Westfall AK, Orton RW, Meik JM, Mackessy SP, Castoe TA. Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9. Mol Biol Evol 2021; 37:1272-1294. [PMID: 31926008 DOI: 10.1093/molbev/msaa003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions-a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions-a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | | | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, TX.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL
| | | | | | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
9
|
Karin BR, Gamble T, Jackman TR. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol Biol Evol 2020; 37:904-922. [PMID: 31710677 PMCID: PMC7038749 DOI: 10.1093/molbev/msz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA
| |
Collapse
|
10
|
Bourgeois Y, Ruggiero RP, Manthey JD, Boissinot S. Recent Secondary Contacts, Linked Selection, and Variable Recombination Rates Shape Genomic Diversity in the Model Species Anolis carolinensis. Genome Biol Evol 2019; 11:2009-2022. [PMID: 31134281 PMCID: PMC6681179 DOI: 10.1093/gbe/evz110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Gaining a better understanding on how selection and neutral processes affect genomic diversity is essential to gain better insights into the mechanisms driving adaptation and speciation. However, the evolutionary processes affecting variation at a genomic scale have not been investigated in most vertebrate lineages. Here, we present the first population genomics survey using whole genome resequencing in the green anole (Anolis carolinensis). Anoles have been intensively studied to understand mechanisms underlying adaptation and speciation. The green anole in particular is an important model to study genome evolution. We quantified how demography, recombination, and selection have led to the current genetic diversity of the green anole by using whole-genome resequencing of five genetic clusters covering the entire species range. The differentiation of green anole's populations is consistent with a northward expansion from South Florida followed by genetic isolation and subsequent gene flow among adjacent genetic clusters. Dispersal out-of-Florida was accompanied by a drastic population bottleneck followed by a rapid population expansion. This event was accompanied by male-biased dispersal and/or selective sweeps on the X chromosome. We show that the interaction between linked selection and recombination is the main contributor to the genomic landscape of differentiation in the anole genome.
Collapse
Affiliation(s)
| | | | - Joseph D Manthey
- New York University Abu Dhabi, United Arab Emirates
- Department of Biological Sciences, Texas Tech University
| | | |
Collapse
|
11
|
Schield DR, Card DC, Hales NR, Perry BW, Pasquesi GM, Blackmon H, Adams RH, Corbin AB, Smith CF, Ramesh B, Demuth JP, Betrán E, Tollis M, Meik JM, Mackessy SP, Castoe TA. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res 2019; 29:590-601. [PMID: 30898880 PMCID: PMC6442385 DOI: 10.1101/gr.240952.118] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/15/2019] [Indexed: 01/28/2023]
Abstract
Here we use a chromosome-level genome assembly of a prairie rattlesnake (Crotalus viridis), together with Hi-C, RNA-seq, and whole-genome resequencing data, to study key features of genome biology and evolution in reptiles. We identify the rattlesnake Z Chromosome, including the recombining pseudoautosomal region, and find evidence for partial dosage compensation driven by an evolutionary accumulation of a female-biased up-regulation mechanism. Comparative analyses with other amniotes provide new insight into the origins, structure, and function of reptile microchromosomes, which we demonstrate have markedly different structure and function compared to macrochromosomes. Snake microchromosomes are also enriched for venom genes, which we show have evolved through multiple tandem duplication events in multiple gene families. By overlaying chromatin structure information and gene expression data, we find evidence for venom gene-specific chromatin contact domains and identify how chromatin structure guides precise expression of multiple venom gene families. Further, we find evidence for venom gland-specific transcription factor activity and characterize a complement of mechanisms underlying venom production and regulation. Our findings reveal novel and fundamental features of reptile genome biology, provide insight into the regulation of snake venom, and broadly highlight the biological insight enabled by chromosome-level genome assemblies.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Giulia M Pasquesi
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA
| | - Balan Ramesh
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| | - Marc Tollis
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, Texas 76402, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76010, USA
| |
Collapse
|
12
|
Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol 2018; 16:40. [PMID: 29661185 PMCID: PMC5901865 DOI: 10.1186/s12915-018-0509-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Background Conventionally, comparison among amniotes – birds, mammals, and reptiles – has often been approached through analyses of mammals and, for comparison, birds. However, birds are morphologically and physiologically derived and, moreover, some parts of their genomes are recognized as difficult to sequence and/or assemble and are thus missing in genome assemblies. Therefore, sequencing the genomes of reptiles would aid comparative studies on amniotes by providing more comprehensive coverage to help understand the molecular mechanisms underpinning evolutionary changes. Results Herein, we present the whole genome sequences of the Madagascar ground gecko (Paroedura picta), a promising study system especially in developmental biology, and used it to identify changes in gene repertoire across amniotes. The genome-wide analysis of the Madagascar ground gecko allowed us to reconstruct a comprehensive set of gene phylogenies comprising 13,043 ortholog groups from diverse amniotes. Our study revealed 469 genes retained by some reptiles but absent from available genome-wide sequence data of both mammals and birds. Importantly, these genes, herein collectively designated as ‘elusive’ genes, exhibited high nucleotide substitution rates and uneven intra-genomic distribution. Furthermore, the genomic regions flanking these elusive genes exhibited distinct characteristics that tended to be associated with increased gene density, repeat element density, and GC content. Conclusion This highly continuous and nearly complete genome assembly of the Madagascar ground gecko will facilitate the use of this species as an experimental animal in diverse fields of biology. Gene repertoire comparisons across amniotes further demonstrated that the fate of a duplicated gene can be affected by the intrinsic properties of its genomic location, which can persist for hundreds of millions of years. Electronic supplementary material The online version of this article (10.1186/s12915-018-0509-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Putative Independent Evolutionary Reversals from Genotypic to Temperature-Dependent Sex Determination are Associated with Accelerated Evolution of Sex-Determining Genes in Turtles. J Mol Evol 2017; 86:11-26. [DOI: 10.1007/s00239-017-9820-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022]
|
14
|
Lisachov AP, Trifonov VA, Giovannotti M, Ferguson-Smith MA, Borodin PM. Immunocytological analysis of meiotic recombination in two anole lizards (Squamata, Dactyloidae). COMPARATIVE CYTOGENETICS 2017; 11:129-141. [PMID: 28919954 PMCID: PMC5599703 DOI: 10.3897/compcytogen.v11i1.10916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 05/13/2023]
Abstract
Although the evolutionary importance of meiotic recombination is not disputed, the significance of interspecies differences in the recombination rates and recombination landscapes remains under-appreciated. Recombination rates and distribution of chiasmata have been examined cytologically in many mammalian species, whereas data on other vertebrates are scarce. Immunolocalization of the protein of the synaptonemal complex (SYCP3), centromere proteins and the mismatch-repair protein MLH1 was used, which is associated with the most common type of recombination nodules, to analyze the pattern of meiotic recombination in the male of two species of iguanian lizards, Anolis carolinensis Voigt, 1832 and Deiroptyx coelestinus (Cope, 1862). These species are separated by a relatively long evolutionary history although they retain the ancestral iguanian karyotype. In both species similar and extremely uneven distributions of MLH1 foci along the macrochromosome bivalents were detected: approximately 90% of crossovers were located at the distal 20% of the chromosome arm length. Almost total suppression of recombination in the intermediate and proximal regions of the chromosome arms contradicts the hypothesis that "homogenous recombination" is responsible for the low variation in GC content across the anole genome. It also leads to strong linkage disequilibrium between the genes located in these regions, which may benefit conservation of co-adaptive gene arrays responsible for the ecological adaptations of the anoles.
Collapse
Affiliation(s)
- Artem P. Lisachov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Massimo Giovannotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | |
Collapse
|
15
|
Chung JW. Spot the difference: Solving the puzzle of hidden pictures in the lizard genome for identification of regeneration factors. BMB Rep 2017; 49:249-54. [PMID: 26949021 PMCID: PMC5070703 DOI: 10.5483/bmbrep.2016.49.5.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
All living things share some common life processes, such as growth and reproduction, and have the ability to respond to their environment. However, each type of organism has its own specialized way of managing biological events. Genetic sequences determine phenotypic and physiological traits. Based on genetic information, comparative genomics has been used to delineate the differences and similarities between various genomes, and significant progress has been made in understanding regenerative biology by comparing the genomes of a variety of lower animal models of regeneration, such as planaria, zebra fish, and newts. However, the genome of lizards has been relatively ignored until recently, even though lizards have been studied as an excellent amniote model of tissue regeneration. Very recently, whole genome sequences of lizards have been uncovered, and several attempts have been made to find regeneration factors based on genetic information. In this article, recent advances in comparative analysis of the lizard genome are introduced, and their biological implications and putative applications for regenerative medicine and stem cell biology are discussed. [BMB Reports 2016; 49(5): 249-254]
Collapse
Affiliation(s)
- Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan 49315, Korea
| |
Collapse
|
16
|
Symonová R, Majtánová Z, Arias-Rodriguez L, Mořkovský L, Kořínková T, Cavin L, Pokorná MJ, Doležálková M, Flajšhans M, Normandeau E, Ráb P, Meyer A, Bernatchez L. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:607-619. [DOI: 10.1002/jez.b.22719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Radka Symonová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
- Research Institute for Limnology; University of Innsbruck; Mondsee Austria
| | - Zuzana Majtánová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco (UJAT); Villahermosa Tabasco México
| | - Libor Mořkovský
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Tereza Kořínková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Lionel Cavin
- Muséum d'Histoire Naturelle; Geneva 6 Switzerland
| | - Martina Johnson Pokorná
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Ecology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Marie Doležálková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters; South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses; University of South Bohemia in České Budějovice; Vodňany Czech Republic
| | - Eric Normandeau
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| | - Petr Ráb
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| | - Louis Bernatchez
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| |
Collapse
|
17
|
Costantini M, Greif G, Alvarez-Valin F, Bernardi G. The Anolis Lizard Genome: An Amniote Genome without Isochores? Genome Biol Evol 2016; 8:1048-55. [PMID: 26992416 PMCID: PMC4860688 DOI: 10.1093/gbe/evw056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes).
Collapse
Affiliation(s)
- Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gonzalo Greif
- Unidad de Biología Molecular, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Giorgio Bernardi
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy Science Department, Roma Tre University, Rome, Italy
| |
Collapse
|
18
|
Cozzi P, Milanesi L, Bernardi G. Segmenting the Human Genome into Isochores. Evol Bioinform Online 2015; 11:253-61. [PMID: 26640363 PMCID: PMC4662427 DOI: 10.4137/ebo.s27693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
The human genome is a mosaic of isochores, which are long (>200 kb) DNA sequences that are fairly homogeneous in base composition and can be assigned to five families comprising 33%–59% of GC composition. Although the compartmentalized organization of the mammalian genome has been investigated for more than 40 years, no satisfactory automatic procedure for segmenting the genome into isochores is available so far. We present a critical discussion of the currently available methods and a new approach called isoSegmenter which allows segmenting the genome into isochores in a fast and completely automatic manner. This approach relies on two types of experimentally defined parameters, the compositional boundaries of isochore families and an optimal window size of 100 kb. The approach represents an improvement over the existing methods, is ideally suited for investigating long-range features of sequenced and assembled genomes, and is publicly available at https://github.com/bunop/isoSegmenter.
Collapse
Affiliation(s)
- Paolo Cozzi
- National Research Council, Institute for Biomedical Technologies, Segrate, Milan, Italy. ; Parco Tecnologico Padano, Lodi, Italy
| | - Luciano Milanesi
- National Research Council, Institute for Biomedical Technologies, Segrate, Milan, Italy
| | - Giorgio Bernardi
- National Research Council, Institute for Biomedical Technologies, Segrate, Milan, Italy. ; Science Department, Rome 3 University, Rome, Italy
| |
Collapse
|
19
|
Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z, Zhang P, Fujita M, Patel HR, Holleley CE, Zhou Y, Zhang X, Matsubara K, Waters P, Graves JAM, Sarre SD, Zhang G. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 2015; 4:45. [PMID: 26421146 PMCID: PMC4585809 DOI: 10.1186/s13742-015-0085-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. Findings The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. Conclusions The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au. Electronic supplementary material The online version of this article (doi:10.1186/s13742-015-0085-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Qiye Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350 Denmark
| | - Jinmin Lian
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Janine Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Zongji Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Pei Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Matthew Fujita
- Department of Biology, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX 76019 USA
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Yang Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Xiuwen Zhang
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Kazumi Matsubara
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Paul Waters
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia ; School of Life Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China ; Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Abstract
The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.
Collapse
Affiliation(s)
- Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation;
| | | | | |
Collapse
|
21
|
Figuet E, Ballenghien M, Romiguier J, Galtier N. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol 2014; 7:240-50. [PMID: 25527834 PMCID: PMC4316630 DOI: 10.1093/gbe/evu277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Collapse
Affiliation(s)
- Emeric Figuet
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Marion Ballenghien
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Jonathan Romiguier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - Nicolas Galtier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| |
Collapse
|
22
|
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, McCormack J, Burgess SC, Edwards SV, Lyons E, Williams C, Breen M, Howard JT, Gresham CR, Peterson DG, Schmitz J, Pollock DD, Haussler D, Triplett EW, Zhang G, Irie N, Jarvis ED, Brochu CA, Schmidt CJ, McCarthy FM, Faircloth BC, Hoffmann FG, Glenn TC, Gabaldón T, Paten B, Ray DA. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 2014; 346:1254449. [PMID: 25504731 PMCID: PMC4386873 DOI: 10.1126/science.1254449] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
Collapse
Affiliation(s)
- Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Dent Earl
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Ngan Nguyen
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Glenn Hickey
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John A St John
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Colin Kern
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | - Kenji K Kojima
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | | | | | - Arian F Smit
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christine A Lavoie
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Meganathan P Ramakodi
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Sally R Isberg
- Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia
| | - Lee Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda Y Chong
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher Moran
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - John McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Shane C Burgess
- College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jason T Howard
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cathy R Gresham
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Erich D Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
23
|
Card DC, Schield DR, Reyes-Velasco J, Fujita MK, Andrew AL, Oyler-McCance SJ, Fike JA, Tomback DF, Ruggiero RP, Castoe TA. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies. PLoS One 2014; 9:e106649. [PMID: 25192061 PMCID: PMC4156343 DOI: 10.1371/journal.pone.0106649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/07/2014] [Indexed: 12/04/2022] Open
Abstract
As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.
Collapse
Affiliation(s)
- Daren C. Card
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Drew R. Schield
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Jacobo Reyes-Velasco
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Matthew K. Fujita
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Audra L. Andrew
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Sara J. Oyler-McCance
- United States Geological Survey – Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Jennifer A. Fike
- United States Geological Survey – Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Diana F. Tomback
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, United States of America
| | - Robert P. Ruggiero
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Todd A. Castoe
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
24
|
Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3-GENES GENOMES GENETICS 2014; 4:2107-13. [PMID: 25172916 PMCID: PMC4232536 DOI: 10.1534/g3.114.014084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The green anole, Anolis carolinensis (ACA), is the model reptile for a vast array of biological disciplines. It was the first nonavian reptile to have its genome fully sequenced. During the genome project, the XX/XY system of sex chromosomes homologous to chicken chromosome 15 (GGA15) was revealed, and 106 X-linked genes were identified. We selected 38 genes located on eight scaffolds in ACA and having orthologs located on GGA15, then tested their linkage to ACA X chromosome by using comparative quantitative fluorescent real-time polymerase chain reaction applied to male and female genomic DNA. All tested genes appeared to be X-specific and not present on the Y chromosome. Assuming that all genes located on these scaffolds should be localized to the ACA X chromosome, we more than doubled the number of known X-linked genes in ACA, from 106 to 250. While demonstrating that the gene content of chromosome X in ACA and GGA15 is largely conserved, we nevertheless showed that numerous interchromosomal rearrangements had occurred since the splitting of the chicken and anole evolutionary lineages. The presence of many ACA X-specific genes localized to distinct contigs indicates that the ACA Y chromosome should be highly degenerated, having lost a large amount of its original gene content during evolution. The identification of novel genes linked to the X chromosome and absent on the Y chromosome in the model lizard species contributes to ongoing research as to the evolution of sex determination in reptiles and provides important information for future comparative and functional genomics.
Collapse
|
25
|
Chaiprasertsri N, Uno Y, Peyachoknagul S, Prakhongcheep O, Baicharoen S, Charernsuk S, Nishida C, Matsuda Y, Koga A, Srikulnath K. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota). J Hered 2014; 104:798-806. [PMID: 24129994 DOI: 10.1093/jhered/est061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two novel repetitive DNA sequences, VSAREP1 and VSAREP2, were isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) and characterized using molecular cytogenetics. The respective lengths and guanine-cytosine (GC) contents of the sequences were 190 bp and 57.5% for VSAREP1 and 185 bp and 59.7% for VSAREP2, and both elements were tandemly arrayed as satellite DNA in the genome. VSAREP1 and VSAREP2 were each located at the C-positive heterochromatin in the pericentromeric region of chromosome 2q, the centromeric region of chromosome 5, and 3 pairs of microchromosomes. This suggests that genomic compartmentalization between macro- and microchromosomes might not have occurred in the centromeric repetitive sequences of V. salvator macromaculatus. These 2 sequences did only hybridize to genomic DNA of V. salvator macromaculatus, but no signal was observed even for other squamate reptiles, including Varanus exanthematicus, which is a closely related species of V. salvator macromaculatus. These results suggest that these sequences were differentiated rapidly or were specifically amplified in the V. salvator macromaculatus genome.
Collapse
Affiliation(s)
- Nampech Chaiprasertsri
- the Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A 2013; 110:20645-50. [PMID: 24297902 DOI: 10.1073/pnas.1314475110] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.
Collapse
|
27
|
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| |
Collapse
|
28
|
Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosome Res 2013; 21:361-74. [PMID: 23703235 DOI: 10.1007/s10577-013-9362-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/12/2013] [Accepted: 04/27/2013] [Indexed: 12/20/2022]
Abstract
Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n = 32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any non-avian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by mapping 18S rDNA and Ag-NOR staining. We identified interstitial telomeric sequences in two microchromosome pairs and the W chromosome, indicating that microchromosome fusion has been a mechanism of karyotypic evolution in Australian agamids within the last 21 to 19 million years. Orthology searches against the chicken genome revealed an intrachromosomal rearrangement of P. vitticeps 1q, identified regions orthologous to chicken Z on P. vitticeps 2q, snake Z on P. vitticeps 6q and the autosomal microchromosome pair in P. vitticeps orthologous to turtle Pelodiscus sinensis ZW and lizard Anolis carolinensis XY. This cytogenetic map will be a valuable reference tool for future gene mapping studies and will provide the framework for the work currently underway to physically anchor genome sequences to chromosomes for this model Australian squamate.
Collapse
|
29
|
Gharib WH, Robinson-Rechavi M. The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol Biol Evol 2013; 30:1675-86. [PMID: 23558341 PMCID: PMC3684852 DOI: 10.1093/molbev/mst062] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio ω. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the ω ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to ∼80%) and low GC (∼30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.
Collapse
Affiliation(s)
- Walid H Gharib
- Department of Ecology and Evolution, Biophore, Lausanne University, Lausanne, Switzerland
| | | |
Collapse
|
30
|
Bradley Shaffer H, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SV, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hernandez O, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning APJ, Li Y, Literman R, McGaugh SE, Mork L, O'Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 2013; 14:R28. [PMID: 23537068 PMCID: PMC4054807 DOI: 10.1186/gb-2013-14-3-r28] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. RESULTS Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. CONCLUSIONS Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| | - Andrew M Shedlock
- College of Charleston Biology Department and Grice Marine Laboratory, Charleston, SC 29424, USA
- Medical University of South Carolina College of Graduate Studies and Center for Marine Biomedicine and Environmental Sciences, Charleston, SC 29412, USA
| | - Robert C Thomson
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - John Abramyan
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA
| | - Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kyle K Biggar
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Glen M Borchert
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biological Sciences, Life Sciences Building, University of South Alabama, Mobile, AL 36688-0002, USA
| | | | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5, Canada
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mike Czerwinski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kim D Delehaunty
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catrina C Fronick
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tina A Graves
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard E Green
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Ramkumar Hariharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
| | - Omar Hernandez
- FUDECI, Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales. Av, Universidad, Bolsa a San Francisco, Palacio de Las Academias, Caracas, Venezuela
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Alisha K Holloway
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Daniel Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Cyriac Kandoth
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Lesheng Kong
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - AP Jason de Koning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yang Li
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - Lindsey Mork
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michelle O'Laughlin
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Brian J Raney
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - John St John
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Tonia Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Arun Sethuraman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Phillip Q Spinks
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Nay Thane
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tomas Vinar
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava 84248, Slovakia
| | - Laura M Zimmerman
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Elaine R Mardis
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
31
|
Backström N, Zhang Q, Edwards SV. Evidence from a House Finch (Haemorhous mexicanus) Spleen Transcriptome for Adaptive Evolution and Biased Gene Conversion in Passerine Birds. Mol Biol Evol 2013; 30:1046-50. [DOI: 10.1093/molbev/mst033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Rands CM, Darling A, Fujita M, Kong L, Webster MT, Clabaut C, Emes RD, Heger A, Meader S, Hawkins MB, Eisen MB, Teiling C, Affourtit J, Boese B, Grant PR, Grant BR, Eisen JA, Abzhanov A, Ponting CP. Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics 2013; 14:95. [PMID: 23402223 PMCID: PMC3575239 DOI: 10.1186/1471-2164-14-95] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.
Collapse
Affiliation(s)
- Chris M Rands
- Department of Physiology, Anatomy, and Genetics, MRC Functional Genomics Unit, University of Oxford, Oxford, OX1 3PT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ, Lindblad-Toh K, Di Palma F, Alföldi J, Huentelman MJ, Kusumi K. Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 2013; 14:49. [PMID: 23343042 PMCID: PMC3561122 DOI: 10.1186/1471-2164-14-49] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 01/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The green anole lizard, Anolis carolinensis, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced, A. carolinesis is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies. RESULTS Here we provide an annotation of the A. carolinensis genome based on de novo assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR) sequences, with 79% and 59% of transcripts containing 5' and 3' UTRs, respectively. Gaps in genome sequence from the current A. carolinensis build (Anocar2.0) are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage. CONCLUSIONS Incorporation of tissue-specific transcriptome sequence into the A. carolinensis genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.
Collapse
Affiliation(s)
- Walter L Eckalbar
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 2012; 7:e53027. [PMID: 23300852 PMCID: PMC3534110 DOI: 10.1371/journal.pone.0053027] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022] Open
Abstract
Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.
Collapse
|
35
|
Matsubara K, Kuraku S, Tarui H, Nishimura O, Nishida C, Agata K, Kumazawa Y, Matsuda Y. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake. BMC Genomics 2012; 13:604. [PMID: 23140509 PMCID: PMC3549455 DOI: 10.1186/1471-2164-13-604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. RESULTS Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). CONCLUSION Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Campbell-Staton SC, Goodman RM, Backström N, Edwards SV, Losos JB, Kolbe JJ. Out of Florida: mtDNA reveals patterns of migration and Pleistocene range expansion of the Green Anole lizard (Anolis carolinensis). Ecol Evol 2012; 2:2274-84. [PMID: 23139885 PMCID: PMC3488677 DOI: 10.1002/ece3.324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/09/2012] [Accepted: 06/18/2012] [Indexed: 11/09/2022] Open
Abstract
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigorous account of intraspecific population structure and relatedness is needed. Here, we present the most extensive phylogeographic study of this species to date. Phylogenetic analyses of mitochondrial DNA sequence data support the previous hypothesis of a western Cuban origin of the species. We found five well-supported, geographically distinct mitochondrial haplotype clades throughout the southeastern United States. Most Florida populations fall into one of three divergent clades, whereas the vast majority of populations outside Florida belong to a single, shallowly diverged clade. Genetic boundaries do not correspond to major rivers, but may reflect effects of Pleistocene glaciation events and the Appalachian Mountains on migration and expansion of the species. Phylogeographic signal should be examined using nuclear loci to complement these findings.
Collapse
Affiliation(s)
- Shane C Campbell-Staton
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University Cambridge, MA, 02138
| | | | | | | | | | | |
Collapse
|
37
|
Tollis M, Ausubel G, Ghimire D, Boissinot S. Multi-locus phylogeographic and population genetic analysis of Anolis carolinensis: historical demography of a genomic model species. PLoS One 2012; 7:e38474. [PMID: 22685573 PMCID: PMC3369884 DOI: 10.1371/journal.pone.0038474] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range.
Collapse
Affiliation(s)
- Marc Tollis
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
- Biology Program: Ecology, Evolutionary Biology and Behavior, Graduate Center, City University of New York, New York, New York, United States of America
| | - Gavriel Ausubel
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
| | - Dhruba Ghimire
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
| | - Stéphane Boissinot
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
- Biology Program: Ecology, Evolutionary Biology and Behavior, Graduate Center, City University of New York, New York, New York, United States of America
| |
Collapse
|
38
|
St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed'hom B, Abzhanov A, Burgess SC, Cooksey AM, Castoe TA, Crawford NG, Densmore LD, Drew JC, Edwards SV, Faircloth BC, Fujita MK, Greenwold MJ, Hoffmann FG, Howard JM, Iguchi T, Janes DE, Khan SY, Kohno S, de Koning AJ, Lance SL, McCarthy FM, McCormack JE, Merchant ME, Peterson DG, Pollock DD, Pourmand N, Raney BJ, Roessler KA, Sanford JR, Sawyer RH, Schmidt CJ, Triplett EW, Tuberville TD, Venegas-Anaya M, Howard JT, Jarvis ED, Guillette LJ, Glenn TC, Green RE, Ray DA. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 2012; 13:415. [PMID: 22293439 PMCID: PMC3334581 DOI: 10.1186/gb-2012-13-1-415] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.
Collapse
|