1
|
Said I, McGurk MP, Clark AG, Barbash DA. Patterns of piRNA Regulation in Drosophila Revealed through Transposable Element Clade Inference. Mol Biol Evol 2022; 39:msab336. [PMID: 34921315 PMCID: PMC8788220 DOI: 10.1093/molbev/msab336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are self-replicating "genetic parasites" ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Ben Amara W, Djebbi S, Ben Lazhar-Ajroud W, Naccache C, Mezghani MK. Insights on mauritiana-like Elements Diversity in Mayetiola destructor and M. hordei (Diptera: Cecidomyiidae). Genome 2021; 65:165-181. [PMID: 34780303 DOI: 10.1139/gen-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mariner-like elements (MLEs) are class II transposons belonging to the Tc1-mariner family, that have successfully invaded many insect genomes. In the current study, the availability of the Hessian fly Mayetiola destructor genome has enabled us to perform in silico analysis of MLEs using as query the previously described mariner element (Desmar1) belonging to mauritiana subfamily. Eighteen mauritiana-like elements were detected and were clustered into three main groups named Desmar1-like, MauCons1 and MauCons2. Subsequently, in vitro analysis was carried out to investigate mauritiana-like elements in M. destructor as well as in Mayetiola hordei using primers designed from TIRs of the previously identified MLEs. PCR amplifications were successful and a total of 12 and 17 mauritiana-like elements were discovered in M. destructor and M. hordei, respectively. Sequence analyses of mauritiana-like elements obtained in silico and in vitro have showed that MauCons1 and MauCons2 elements share low similarity with Desmar1 ranging from 50% to 55% suggesting different groups under mauritiana subfamily have invaded the genomes of M. destructor and M. hordei. These groups are likely inherited by vertical transmission that subsequently underwent different evolutionary histories. This work describes new mauritiana-like elements in M. destructor that are distinct from the previouslydiscovered Desmar1 and provides the first evidence of MLEs belonging to mauritiana subfamily in M. hordei.
Collapse
Affiliation(s)
- Wiem Ben Amara
- University of Tunis El Manar Faculty of Sciences of Tunis, 155529, Laboratory of Biochemistry and Biotechnology (LR01ES05), Tunis, Tunisia;
| | - Salma Djebbi
- University of Tunis El Manar Faculty of Sciences of Tunis, 155529, Laboratory of Biochemistry and Biotechnology (LR01ES05), Tunis, Tunisia;
| | - Wafa Ben Lazhar-Ajroud
- University of Tunis El Manar Faculty of Sciences of Tunis, 155529, Laboratory of Biochemistry and Biotechnology (LR01ES05), Tunis, Tunisia;
| | | | - Maha Khemakhem Mezghani
- University of Tunis El Manar Faculty of Sciences of Tunis, 155529, Laboratory of Biochemistry and Biotechnology (LR01ES05), Tunis, Tunisia;
| |
Collapse
|
3
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
4
|
LeBien J, McCollam G, Atallah J. An in silico model of LINE-1-mediated neoplastic evolution. Bioinformatics 2020; 36:4144-4153. [PMID: 32365170 DOI: 10.1093/bioinformatics/btaa279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Recent research has uncovered roles for transposable elements (TEs) in multiple evolutionary processes, ranging from somatic evolution in cancer to putatively adaptive germline evolution across species. Most models of TE population dynamics, however, have not incorporated actual genome sequence data. The effect of site integration preferences of specific TEs on evolutionary outcomes and the effects of different selection regimes on TE dynamics in a specific genome are unknown. We present a stochastic model of LINE-1 (L1) transposition in human cancer. This system was chosen because the transposition of L1 elements is well understood, the population dynamics of cancer tumors has been modeled extensively, and the role of L1 elements in cancer progression has garnered interest in recent years. RESULTS Our model predicts that L1 retrotransposition (RT) can play either advantageous or deleterious roles in tumor progression, depending on the initial lesion size, L1 insertion rate and tumor driver genes. Small changes in the RT rate or set of driver tumor-suppressor genes (TSGs) were observed to alter the dynamics of tumorigenesis. We found high variation in the density of L1 target sites across human protein-coding genes. We also present an analysis, across three cancer types, of the frequency of homozygous TSG disruption in wild-type hosts compared to those with an inherited driver allele. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/atallah-lab/neoplastic-evolution. CONTACT jlebien@uno.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jack LeBien
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| | - Gerald McCollam
- Advanced Academic Programs, John Hopkins University, Baltimore, MD 21218, USA
| | - Joel Atallah
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
5
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Legrand S, Caron T, Maumus F, Schvartzman S, Quadrana L, Durand E, Gallina S, Pauwels M, Mazoyer C, Huyghe L, Colot V, Hanikenne M, Castric V. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA 2019; 10:30. [PMID: 31346350 PMCID: PMC6636163 DOI: 10.1186/s13100-019-0171-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri. Results Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either 'recent' or 'old' insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes. Conclusion Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.
Collapse
Affiliation(s)
- Sylvain Legrand
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Thibault Caron
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Florian Maumus
- 2URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Sol Schvartzman
- 3InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Leandro Quadrana
- 4IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Eléonore Durand
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maxime Pauwels
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Clément Mazoyer
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Lucie Huyghe
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Colot
- 4IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Marc Hanikenne
- 3InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Vincent Castric
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
7
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
8
|
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, De Oliveira R, Mayer KFX, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 2018; 19:103. [PMID: 30115100 PMCID: PMC6097303 DOI: 10.1186/s13059-018-1479-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/11/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) are major components of large plant genomes and main drivers of genome evolution. The most recent assembly of hexaploid bread wheat recovered the highly repetitive TE space in an almost complete chromosomal context and enabled a detailed view into the dynamics of TEs in the A, B, and D subgenomes. RESULTS The overall TE content is very similar between the A, B, and D subgenomes, although we find no evidence for bursts of TE amplification after the polyploidization events. Despite the near-complete turnover of TEs since the subgenome lineages diverged from a common ancestor, 76% of TE families are still present in similar proportions in each subgenome. Moreover, spacing between syntenic genes is also conserved, even though syntenic TEs have been replaced by new insertions over time, suggesting that distances between genes, but not sequences, are under evolutionary constraints. The TE composition of the immediate gene vicinity differs from the core intergenic regions. We find the same TE families to be enriched or depleted near genes in all three subgenomes. Evaluations at the subfamily level of timed long terminal repeat-retrotransposon insertions highlight the independent evolution of the diploid A, B, and D lineages before polyploidization and cases of concerted proliferation in the AB tetraploid. CONCLUSIONS Even though the intergenic space is changed by the TE turnover, an unexpected preservation is observed between the A, B, and D subgenomes for features like TE family proportions, gene spacing, and TE enrichment near genes.
Collapse
Affiliation(s)
- Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Heidrun Gundlach
- PGSB Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- PGSB Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Philippa Borrill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | | | - Romain De Oliveira
- GDEC, INRA, UCA (Université Clermont Auvergne), Clermont-Ferrand, France
| | - Klaus F X Mayer
- PGSB Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Munich, Germany
| | - Etienne Paux
- GDEC, INRA, UCA (Université Clermont Auvergne), Clermont-Ferrand, France
| | - Frédéric Choulet
- GDEC, INRA, UCA (Université Clermont Auvergne), Clermont-Ferrand, France.
| |
Collapse
|
9
|
Banuelos M, Sindi S. Modeling transposable element dynamics with fragmentation equations. Math Biosci 2018; 302:46-66. [DOI: 10.1016/j.mbs.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
|
10
|
Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, Reyes-Velasco J, Ruggiero RP, Vandewege MW, Shortt JA, Castoe TA. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 2018; 9:2774. [PMID: 30018307 PMCID: PMC6050309 DOI: 10.1038/s41467-018-05279-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25–73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny. Large-scale patterns of genomic repeat element evolution have been studied mainly in birds and mammals. Here, the authors analyze the genomes of over 60 squamate reptiles and show high variation in repeat elements compared to mammals and birds, and particularly high microsatellite seeding in snakes.
Collapse
Affiliation(s)
- Giulia I M Pasquesi
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Robert P Ruggiero
- Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Jonathan A Shortt
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA.
| |
Collapse
|
11
|
Roy SW. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions. Mol Biol Evol 2016; 33:3088-3094. [DOI: 10.1093/molbev/msw172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Payen T, Murat C, Martin F. Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). MYCORRHIZA 2016; 26:553-563. [PMID: 27025914 DOI: 10.1007/s00572-016-0692-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Truffles are ascomycete fungi belonging to genus Tuber, and they form ectomycorrhizal associations with trees and shrubs. Transposable elements constitute more than 50 % of the black Périgord truffle (Tuber melanosporum) genome, which are mainly class 1 gypsy retrotransposons, but their impact on its genome is unknown. The aims of this study are to investigate the diversity of gypsy retrotransposons in this species and their evolutionary history by analysing the reference genome and six resequenced genomes of different geographic accessions. Using the reverse transcriptase sequences, six different gypsy retrotransposon clades were identified. Tmt1 and Tmt6 are the most abundant transposable elements, representing 14 and 13 % of the T. melanosporum genome, respectively. Tmt6 showed a major burst of proliferation between 1 and 4 million years ago, but evidence of more recent transposition was observed. Except for Tmt2, the other clades tend to aggregate, and their mode of transposition excluded the master copy model. This suggests that each new copy has the same probability of transposing as other copies. This study provides a better view of the diversity and dynamic nature of gypsy retrotransposons in T. melanosporum. Even if the major gypsy retrotransposon bursts are old, some elements seem to have transposed recently, suggesting that they may continue to model the truffle genomes.
Collapse
Affiliation(s)
- Thibaut Payen
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France
| | - Claude Murat
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France.
| | - Francis Martin
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France
| |
Collapse
|
13
|
Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications. Naturwissenschaften 2016; 103:64. [DOI: 10.1007/s00114-016-1391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022]
|
14
|
Kim NH, Lee G, Sherer NA, Martini KM, Goldenfeld N, Kuhlman TE. Real-time transposable element activity in individual live cells. Proc Natl Acad Sci U S A 2016; 113:7278-83. [PMID: 27298350 PMCID: PMC4932956 DOI: 10.1073/pnas.1601833113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE's orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells.
Collapse
Affiliation(s)
- Neil H Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gloria Lee
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Nicholas A Sherer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - K Michael Martini
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Institute for Universal Biology NASA Astrobiology Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
| | - Thomas E Kuhlman
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
15
|
Maumus F, Quesneville H. Impact and insights from ancient repetitive elements in plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:41-6. [PMID: 26874965 DOI: 10.1016/j.pbi.2016.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 05/13/2023]
Abstract
Transposable elements and other repeated sequences are predominant contributors to most plant genomes. The vast majority of repeated elements accumulate mutations to the extent of becoming anonymous sequences, also known as 'genomic dark matter' which is also thought to contribute significantly to the composition of plant genomes. This review aims to highlight recent methods and analyses suggesting that ancient repeats have profound effects on plant genome biology.
Collapse
Affiliation(s)
- Florian Maumus
- INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France.
| | - Hadi Quesneville
- INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France
| |
Collapse
|
16
|
Wallau GL, Capy P, Loreto E, Le Rouzic A, Hua-Van A. VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the Mariner Family within Drosophila. Mol Biol Evol 2015; 33:1094-109. [PMID: 26685176 PMCID: PMC4776708 DOI: 10.1093/molbev/msv341] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package "vhica" that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil Departamento de Entomologia, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ-CPqAM, Recife, PE, Brazil
| | - Pierre Capy
- Laboratoire Évolution, Génomes, Comportement, Écologie; CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elgion Loreto
- Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, Écologie; CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Hua-Van
- Laboratoire Évolution, Génomes, Comportement, Écologie; CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Filée J, Rouault JD, Harry M, Hua-Van A. Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus. BMC Genomics 2015; 16:1061. [PMID: 26666222 PMCID: PMC4678618 DOI: 10.1186/s12864-015-2060-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/10/2015] [Indexed: 11/30/2022] Open
Abstract
Background The Triatomine bug Rhodnius prolixus is a vector of Trypanosoma cruzi, which causes the Chagas disease in Latin America. R. prolixus can also transfer transposable elements horizontally across a wide range of species. We have taken advantage of the availability of the 700 Mbp complete genome sequence of R. prolixus to study the dynamics of invasion and persistence of transposable elements in this species. Results Using both library-based and de novo methods of transposon detection, we found less than 6 % of transposable elements in the R. prolixus genome, a relatively low percentage compared to other insect genomes with a similar genome size. DNA transposons are surprisingly abundant and elements belonging to the mariner family are by far the most preponderant components of the mobile part of this genome with 11,015 mariner transposons that could be clustered in 89 groups (75 % of the mobilome). Our analysis allowed the detection of a new mariner clade in the R. prolixus genome, that we called nosferatis. We demonstrated that a large diversity of mariner elements invaded the genome and expanded successfully over time via three main processes. (i) several families experienced recent and massive expansion, for example an explosive burst of a single mariner family led to the generation of more than 8000 copies. These recent expansion events explain the unusual prevalence of mariner transposons in the R. prolixus genome. Other families expanded via older bursts of transposition demonstrating the long lasting permissibility of mariner transposons in the R. prolixus genome. (ii) Many non-autonomous families generated by internal deletions were also identified. Interestingly, two non autonomous families were generated by atypical recombinations (5' part replacement with 3' part). (iii) at least 10 cases of horizontal transfers were found, supporting the idea that host/vector relationships played a pivotal role in the transmission and subsequent persistence of transposable elements in this genome. Conclusion These data provide a new insight into the evolution of transposons in the genomes of hematophagous insects and bring additional evidences that lateral exchanges of mobile genetics elements occur frequently in the R. prolixus genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2060-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire Evolution, Génome, Comportement, Ecologie UMR9191 CNRS, IRD Université Paris-Sud, Gif-sur-Yvette, France.
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génome, Comportement, Ecologie UMR9191 CNRS, IRD Université Paris-Sud, Gif-sur-Yvette, France
| | - Myriam Harry
- Laboratoire Evolution, Génome, Comportement, Ecologie UMR9191 CNRS, IRD Université Paris-Sud, Gif-sur-Yvette, France.,UFR de Sciences, Université Paris Sud, Orsay, France
| | - Aurélie Hua-Van
- Laboratoire Evolution, Génome, Comportement, Ecologie UMR9191 CNRS, IRD Université Paris-Sud, Gif-sur-Yvette, France.,UFR de Sciences, Université Paris Sud, Orsay, France
| |
Collapse
|
18
|
Bardil A, Tayalé A, Parisod C. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:621-31. [PMID: 25823965 DOI: 10.1111/tpj.12837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 05/21/2023]
Abstract
Long terminal repeat retrotransposons (LTR-RTs) represent a major fraction of plant genomes, but processes leading to transposition bursts remain elusive. Polyploidy expectedly leads to LTR-RT proliferation, as the merging of divergent diploids provokes a genome shock activating LTR-RTs and/or genetic redundancy supports the accumulation of active LTR-RTs through relaxation of selective constraints. Available evidence supports interspecific hybridization as the main trigger of genome dynamics, but few studies have addressed the consequences of intraspecific polyploidy (i.e. autopolyploidy), where the genome shock is expectedly minimized. The dynamics of LTR-RTs was thus here evaluated through low coverage 454 sequencing of three closely related diploid progenitors and three independent autotetraploids from the young Biscutella laevigata species complex. Genomes from this early diverging Brassicaceae lineage presented a minimum of 40% repeats and a large diversity of transposable elements. Differential abundances and patterns of sequence divergence among genomes for 37 LTR-RT families revealed contrasted dynamics during species diversification. Quiescent LTR-RT families with limited genetic variation among genomes were distinguished from active families (37.8%) having proliferated in specific taxa. Specific families proliferated in autopolyploids only, but most transpositionally active families in polyploids were also differentiated among diploids. Low expression levels of transpositionally active LTR-RT families in autopolyploids further supported that genome shock and redundancy are non-mutually exclusive triggers of LTR-RT proliferation. Although reputed stable, autopolyploid genomes show LTR-RT fractions presenting analogies with polyploids between widely divergent genomes.
Collapse
Affiliation(s)
- Amélie Bardil
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Alexandre Tayalé
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Christian Parisod
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| |
Collapse
|
19
|
Modolo L, Picard F, Lerat E. A new genome-wide method to track horizontally transferred sequences: application to Drosophila. Genome Biol Evol 2015; 6:416-32. [PMID: 24497602 PMCID: PMC3942030 DOI: 10.1093/gbe/evu026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of methodological breakthroughs and the availability of an increasing amount of whole-genome sequence data, horizontal transfers (HTs) in eukaryotes have received much attention recently. Contrary to similar analyses in prokaryotes, most studies in eukaryotes usually investigate particular sequences corresponding to transposable elements (TEs), neglecting the other components of the genome. We present a new methodological framework for the genome-wide detection of all putative horizontally transferred sequences between two species that requires no prior knowledge of the transferred sequences. This method provides a broader picture of HTs in eukaryotes by fully exploiting complete-genome sequence data. In contrast to previous genome-wide approaches, we used a well-defined statistical framework to control for the number of false positives in the results, and we propose two new validation procedures to control for confounding factors. The first validation procedure relies on a comparative analysis with other species of the phylogeny to validate HTs for the nonrepeated sequences detected, whereas the second one built upon the study of the dynamics of the detected TEs. We applied our method to two closely related Drosophila species, Drosophila melanogaster and D. simulans, in which we discovered 10 new HTs in addition to all the HTs previously detected in different studies, which underscores our method’s high sensitivity and specificity. Our results favor the hypothesis of multiple independent HTs of TEs while unraveling a small portion of the network of HTs in the Drosophila phylogeny.
Collapse
Affiliation(s)
- Laurent Modolo
- Université de Lyon, France, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, VIlleurbanne, France
| | | | | |
Collapse
|
20
|
Sarilar V, Bleykasten-Grosshans C, Neuvéglise C. Evolutionary dynamics of hAT DNA transposon families in Saccharomycetaceae. Genome Biol Evol 2014; 7:172-90. [PMID: 25532815 PMCID: PMC4316626 DOI: 10.1093/gbe/evu273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences.
Collapse
Affiliation(s)
- Véronique Sarilar
- INRA, UMR 1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Claudine Bleykasten-Grosshans
- CNRS, UMR 7156, Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, Strasbourg, France
| | - Cécile Neuvéglise
- INRA, UMR 1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| |
Collapse
|
21
|
Kundu S, Ghosh SK. Trend of different molecular markers in the last decades for studying human migrations. Gene 2014; 556:81-90. [PMID: 25510397 DOI: 10.1016/j.gene.2014.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022]
Abstract
Anatomically modern humans are known to have widely migrated throughout history. Different scientific evidences suggest that the entire human population descended from just several thousand African migrants. About 85,000 years ago, the first wave of human migration was out of Africa, that followed the coasts through the Middle East, into Southern Asia via Sri Lanka, and in due course around Indonesia and into Australia. Another wave of migration between 40,000 and 12,000 years ago brought humans northward into Europe. However, the frozen north limited human expansion in Europe, and created a land bridge, "Bering land bridge", connecting Asia with North America about 25,000 years ago. Although fossil data give the most direct information about our past, it has certain anomalies. So, molecular archeologists are now using different molecular markers to trace the "most recent common ancestor" and also the migration pattern of modern humans. In this study, we have studied the trend of molecular markers and also the methodologies implemented in the last decades (2003-2014). From our observation, we can say that D-loop region of mtDNA and Y chromosome based markers are predominant. Nevertheless, mtDNA, especially the D-loop region, has some unique features, which makes it a more effective marker for tracing prehistoric footprints of modern human populations. Although, natural selection should also be taken into account in studying mtDNA based human migration. As per technology is concerned, Sanger sequencing is the major technique that is being used in almost all studies. But, the emergence of different cost-effective-and-easy-to-handle NGS platforms has increased its popularity over Sanger sequencing in studying human migration.
Collapse
Affiliation(s)
- Sharbadeb Kundu
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India
| | - Sankar Kumar Ghosh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India.
| |
Collapse
|
22
|
Wallau GL, Capy P, Loreto E, Hua-Van A. Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 2014; 15:727. [PMID: 25163909 PMCID: PMC4161770 DOI: 10.1186/1471-2164-15-727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes. RESULTS We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies. CONCLUSIONS This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all "life cycle" stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós-Graduaíão em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brasil.
| | | | | | | |
Collapse
|
23
|
Cruz GMQ, Metcalfe CJ, de Setta N, Cruz EAO, Vieira AP, Medina R, Van Sluys MA. Virus-like attachment sites and plastic CpG islands:landmarks of diversity in plant Del retrotransposons. PLoS One 2014; 9:e97099. [PMID: 24849372 PMCID: PMC4029996 DOI: 10.1371/journal.pone.0097099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Full-length Del elements from ten angiosperm genomes, 5 monocot and 5 dicot, were retrieved and putative attachment (att) sites were identified. In the 2432 Del elements, two types of U5 att sites and a single conserved type of U3 att site were identified. Retroviral att sites confer specificity to the integration process, different att sites types therefore implies lineage specificity. While some features are common to all Del elements, CpG island patterns within the LTRs were particular to lineage specific clusters. All eudicot copies grouped into one single clade while the monocots harbour a more diverse collection of elements. Furthermore, full-length Del elements and truncated copies were unevenly distributed amongst chromosomes. Elements of Del lineage are organized in plants into three clusters and each cluster is composed of elements with distinct LTR features. Our results suggest that the Del lineage efficiently amplified in the monocots and that one branch is probably a newly emerging sub-lineage. Finally, sequences in all groups are under purifying selection. These results show the LTR region is dynamic and important in the evolution of LTR-retrotransposons, we speculate that it is a trigger for retrotransposon diversification.
Collapse
Affiliation(s)
- Guilherme M. Q. Cruz
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Cushla J. Metcalfe
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | | | - Edgar A. O. Cruz
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Andréia Prata Vieira
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Rosario Medina
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|