1
|
Gour P, Kansal S, Agarwal P, Mishra BS, Sharma D, Mathur S, Raghuvanshi S. Variety-specific transcript accumulation during reproductive stage in drought-stressed rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13585. [PMID: 34652858 DOI: 10.1111/ppl.13585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The divergence of natural stress tolerance mechanisms between species is an intriguing phenomenon. To study it in rice, a comparative transcriptome analysis was carried out in 'heading' stage tissue (flag leaf, panicles and roots) of Nagina 22 (N22; drought-tolerant) and IR64 (drought-sensitive) plants subjected to field drought. Interestingly, N22 showed almost double the number of differentially expressed genes (DEGs) than IR64. Many DEGs colocalized within drought-related QTLs responsible for grain yield and drought tolerance and also associated with drought tolerance and critical drought-related plant traits such as leaf rolling, trehalose content, sucrose and cellulose content. Besides, co-expression analysis of the DEGs revealed several 'hub' genes known to actively regulate drought stress response. Strikingly, 1366 DEGs, including 21 'hub' genes, showed a distinct opposite regulation in the two rice varieties under similar drought conditions. Annotation of these variety-specific DEGs (VS-DEGs) revealed that they are distributed in various biological pathways. Furthermore, 103 VS-DEGs were found to physically interact with over 1300 genes, including 32 that physically interact with other VS-DEGs as well. The promoter region of these genes has sequence variations among the two rice varieties, which might be in part responsible for their unique expression pattern.
Collapse
Affiliation(s)
- Pratibha Gour
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Priyanka Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Deepika Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
2
|
Ding X, Zhang T, Ma L. Rapidly evolving genetic features for desert adaptations in Stipagrostis pennata. BMC Genomics 2021; 22:846. [PMID: 34814836 PMCID: PMC8609760 DOI: 10.1186/s12864-021-08124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stipagrostis pennata is distributed in the mobile and semi-mobile sand dunes which can adapt well to extreme environments such as drought and high temperature. It is a pioneer plant species with potential for stabilizing sand dunes and ecological restoration. It can settle on moving sand dunes earlier than other desert plants. It can effectively improve the stability of sand dunes and help more plants settle down and increase plant diversity. However, despite its important ecological value, the genetic resources available for this species are limited. RESULTS We used single-molecule real-time sequencing technology to obtain the complete full-length transcriptome of Stipagrostis pennata, including 90,204 unigenes with an average length of 2624 bp. In addition, the 5436 transcription factors identified in these unigenes are rich in stress resistance genes, such as MYB-related, C3H, bHLH, GRAS and HSF, etc., which may play a role in adapting to desert drought and strong wind stress. Intron retention events are abundant alternative splicing events. Stipagrostis pennata has experienced stronger positive selection, accelerating the fixation of advantageous variants. Thirty-eight genes, such as CPP/TSO1-like gene, have evolved rapidly and may play a role in material transportation, flowering and seed formation. CONCLUSIONS The present study captures the complete full-length transcriptome of Stipagrostis pennata and reveals its rapid evolution. The desert adaptation in Stipagrostis pennata is reflected in the regulation of gene expression and the adaptability of gene function. Our findings provide a wealth of knowledge for the evolutionary adaptability of desert grass species.
Collapse
Affiliation(s)
- Xixu Ding
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China
| | - Tingting Zhang
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China.
| | - Lei Ma
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China.
| |
Collapse
|
3
|
Jiang SY, Ma A, Ramachandran S. Plant-based release system of negative air ions and its application on particulate matter removal. INDOOR AIR 2021; 31:574-586. [PMID: 32767792 DOI: 10.1111/ina.12729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM, especially PM2.5 with diameter 2.5 microns) has been regarded as the major air pollutant. Negative air ions (NAIs) could electrically charge PM and remove it much more efficiently. In this study, a bio-generator of NAIs has been developed, which helps plants to generate NAIs at around 100 × 106 ions/cm3 under pulsed electrical field (PEF) treatment. By using the bio-generator, PM2.5 concentration in a growth chamber could be reduced from around 500 to near 0 µg/m3 within 5 minutes. It could also be used to remove continuously generated PM. Upon PEF treatment, genes encoding oxidoreductases and other enzymes were up-regulated, some of which might contribute to the generation of superoxide anions (one of NAIs). On the other hand, the emission of large numbers of electrons from the surface/edge of plant leaves has been detected upon PEF treatment and these electrons might be captured by surrounding air molecules to generate high concentration of NAIs.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Ali Ma
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
4
|
Buti M, Baldoni E, Formentin E, Milc J, Frugis G, Lo Schiavo F, Genga A, Francia E. A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. Int J Mol Sci 2019; 20:E5662. [PMID: 31726733 PMCID: PMC6888222 DOI: 10.3390/ijms20225662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Several environmental factors, such as drought, salinity, and extreme temperatures, negatively affect plant growth and development, which leads to yield losses. The tolerance or sensitivity to abiotic stressors are the expression of a complex machinery involving molecular, biochemical, and physiological mechanisms. Here, a meta-analysis on previously published RNA-Seq data was performed to identify the genes conferring tolerance to chilling, osmotic, and salt stresses, by comparing the transcriptomic changes between tolerant and susceptible rice genotypes. Several genes encoding transcription factors (TFs) were identified, suggesting that abiotic stress tolerance involves upstream regulatory pathways. A gene co-expression network defined the metabolic and signalling pathways with a prominent role in the differentiation between tolerance and susceptibility: (i) the regulation of endogenous abscisic acid (ABA) levels, through the modulation of genes that are related to its biosynthesis/catabolism, (ii) the signalling pathways mediated by ABA and jasmonic acid, (iii) the activity of the "Drought and Salt Tolerance" TF, involved in the negative regulation of stomatal closure, and (iv) the regulation of flavonoid biosynthesis by specific MYB TFs. The identified genes represent putative key players for conferring tolerance to a broad range of abiotic stresses in rice; a fine-tuning of their expression seems to be crucial for rice plants to cope with environmental cues.
Collapse
Affiliation(s)
- Matteo Buti
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
- Present address: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Elide Formentin
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| | - Giovanna Frugis
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| |
Collapse
|
5
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/28/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
6
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
7
|
Luo W, Zhang C, Zhang J, Jiang D, Guo W, Wan D. Transcriptome analysis of four poplars exposed to continuous salinity stress. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics 2016; 17:69-83. [PMID: 27848097 DOI: 10.1007/s10142-016-0529-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/02/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Salinity is one of the major environmental factors affecting the growth and yield of rice crop. Salinity stress response is a multigenic trait and numerous approaches have been used to dissect out the key determinants of complex salt tolerance trait and their regulation in plant. In the current study, we have investigated expression dynamics of the genes encoding transcription factors (SalTFs) localized within a major salinity tolerance related QTL-'Saltol' in the contrasting cultivars of rice. SalTFs were found to be differentially regulated between the contrasting genotypes of rice, with higher constitutive expression in the salt tolerant landrace, Pokkali than the cultivar IR64. Moreover, SalTFs were found to exhibit inducibility in the salt sensitive cultivar at late duration (after 24 h) of salinity stress. Further, the transcript abundance analysis of these SalTFs at various developmental stages of rice revealed that low expressing genes may be involved in developmental responses, while high expressing genes can be linked with the salt stress response. Grouping of these genes was well supported by in silico protein-protein interaction studies and distribution of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) in the promoter and genic regions of these genes. Taken together, we propose that out of 14 SalTFs, eight members are strongly correlated with the salinity stress tolerance in rice and six are involved in plant growth and development.
Collapse
|
9
|
Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2016; 201:85-94. [PMID: 27448724 DOI: 10.1016/j.jplph.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot City, Daklak Province, Viet Nam
| | - Than Zaw Tun Sai
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ghazala Nawaz
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
10
|
Sakina A, Ahmed I, Shahzad A, Iqbal M, Asif M. Genetic Variation for Salinity Tolerance in Pakistani Rice ( Oryza sativa L.) Germplasm. JOURNAL OF AGRONOMY AND CROP SCIENCE 2016; 202:25-36. [DOI: 10.1111/jac.12117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AbstractSoil salinity is one of the major production constraints. Development and planting of salt‐tolerant varieties can reduce yield losses due to salinity. We screened 185 rice genotypes at germination stage in petri dishes under control, 50, 100 and 150 mm salt stress, and at seedling stage in Yoshida's hydroponic nutrient solution under control, 50 and 100 mm salt stress. At germination stage, 15 genotypes including Nona Bokra, Sonahri Kangni, 7421, 7423 and 7467, whereas at seedling stage, 28 genotypes including Nona Bokra, Jajai‐77, KSK‐133, KSK‐282, Fakhr‐e‐Malakand, Pakhal, IR‐6, Khushboo‐95, Shahkar and Shua‐92 were found salt tolerant. Basmati‐370, Mushkan, Homo‐46 and accessions 7436, 7437 and 7720 were sensitive to salinity at both germination and seedling stage. We further screened a subset of 33 salt‐tolerant and salt‐sensitive genotypes with SSR markers. Four SSR markers (RM19, RM171, RM172 and RM189) showed significant association with two or more of the studied traits under 50, 100 and 150 mm salt stress. These markers may be further tested for their potential in marker‐assisted selection. The salt‐tolerant genotypes identified in this study may prove useful in the development of salt‐tolerant rice varieties in adapted genetic background.
Collapse
Affiliation(s)
- A. Sakina
- Department of Plant Genomics and Biotechnology PARC Institute of Advanced Studies in Agriculture National Agricultural Research Centre Islamabad Pakistan
| | - I. Ahmed
- Department of Plant Genomics and Biotechnology PARC Institute of Advanced Studies in Agriculture National Agricultural Research Centre Islamabad Pakistan
- National Institute for Genomics and Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan
| | - A. Shahzad
- Department of Plant Genomics and Biotechnology PARC Institute of Advanced Studies in Agriculture National Agricultural Research Centre Islamabad Pakistan
- National Institute for Genomics and Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan
| | - M. Iqbal
- Department of Plant Genomics and Biotechnology PARC Institute of Advanced Studies in Agriculture National Agricultural Research Centre Islamabad Pakistan
- National Institute for Genomics and Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan
- Department of Agricultural Food and Nutritional Science University of Alberta Edmonton Alberta Canada
| | - M. Asif
- Department of Agricultural Food and Nutritional Science University of Alberta Edmonton Alberta Canada
| |
Collapse
|
11
|
Comparative transcriptome analysis highlights the crucial roles of photosynthetic system in drought stress adaptation in upland rice. Sci Rep 2016; 6:19349. [PMID: 26777777 PMCID: PMC4726002 DOI: 10.1038/srep19349] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
Drought stress is one of the major adverse environmental factors reducing plant growth. With the aim to elucidate the underlying molecular basis of rice response to drought stress, comparative transcriptome analysis was conducted between drought susceptible rice cultivar Zhenshan97 and tolerant cultivar IRAT109 at the seedling stage. 436 genes showed differential expression and mainly enriched in the Gene Ontology (GO) terms of stress defence. A large number of variations exist between these two genotypes including 2564 high-quality insertion and deletions (INDELs) and 70,264 single nucleotide polymorphism (SNPs). 1041 orthologous gene pairs show the ratio of nonsynonymous nucleotide substitution rate to synonymous nucleotide substitutions rate (Ka/Ks) larger than 1.5, indicating the rapid adaptation to different environments during domestication. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of positive selection genes suggested that photosynthesis represents the most significant category. The collocation of positively selected genes with the QTLs of photosynthesis and the different photosynthesis performance of these two cultivars further illuminate the crucial function of photosynthesis in rice adaptation to drought stress. Our results also provide fruitful functional markers and candidate genes for future genetic research and improvement of drought tolerance in rice.
Collapse
|
12
|
Jangam AP, Pathak RR, Raghuram N. Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold. FRONTIERS IN PLANT SCIENCE 2016; 7:11. [PMID: 26858735 PMCID: PMC4729950 DOI: 10.3389/fpls.2016.00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
The genome-wide role of heterotrimeric G-proteins in abiotic stress response in rice has not been examined from a functional genomics perspective, despite the availability of mutants and evidences involving individual genes/processes/stresses. Our rice whole transcriptome microarray analysis (GSE 20925 at NCBI GEO) using the G-alpha subunit (RGA1) null mutant (Daikoku 1 or d1) and its corresponding wild type (Oryza sativa Japonica Nipponbare) identified 2270 unique differentially expressed genes (DEGs). Out of them, we mined for all the potentially abiotic stress-responsive genes using Gene Ontology terms, STIFDB2.0 and Rice DB. The first two approaches produced smaller subsets of the 1886 genes found at Rice DB. The GO approach revealed similar regulation of several families of stress-responsive genes in RGA1 mutant. The Genevestigator analysis of the stress-responsive subset of the RGA1-regulated genes from STIFDB revealed cold and drought-responsive clusters. Meta data analysis at Rice DB revealed large stress-response categories such as cold (878 up/810 down), drought (882 up/837 down), heat (913 up/777 down), and salt stress (889 up/841 down). One thousand four hundred ninety-eight of them are common to all the four abiotic stresses, followed by fewer genes common to smaller groups of stresses. The RGA1-regulated genes that uniquely respond to individual stresses include 111 in heat stress, eight each in cold only and drought only stresses, and two genes in salt stress only. The common DEGs (1498) belong to pathways such as the synthesis of polyamine, glycine-betaine, proline, and trehalose. Some of the common DEGs belong to abiotic stress signaling pathways such as calcium-dependent pathway, ABA independent and dependent pathway, and MAP kinase pathway in the RGA1 mutant. Gene ontology of the common stress responsive DEGs revealed 62 unique molecular functions such as transporters, enzyme regulators, transferases, hydrolases, carbon and protein metabolism, binding to nucleotides, carbohydrates, receptors and lipids, morphogenesis, flower development, and cell homeostasis. We also mined 63 miRNAs that bind to the stress responsive transcripts identified in this study, indicating their post-transcriptional regulation. Overall, these results indicate the potentially extensive role of RGA1 in the regulation of multiple abiotic stresses in rice for further validation.
Collapse
|
13
|
Sucrose metabolism gene families and their biological functions. Sci Rep 2015; 5:17583. [PMID: 26616172 PMCID: PMC4663468 DOI: 10.1038/srep17583] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 01/30/2023] Open
Abstract
Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.
Collapse
|
14
|
|
15
|
Pires IS, Negrão S, Oliveira MM, Purugganan MD. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. PHYSIOLOGIA PLANTARUM 2015; 155:43-54. [PMID: 26082319 DOI: 10.1111/ppl.12356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 05/08/2023]
Abstract
Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop's response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K(+) /Na(+) ratio is the most important trait in salinity tolerance, we found that the K(+) concentration was not significantly affected by salt stress in rice, which puts in question the importance of K(+) /Na(+) when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.
Collapse
Affiliation(s)
- Inês S Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, and, IBET, 2781-901, Oeiras, Portugal
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Sónia Negrão
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, and, IBET, 2781-901, Oeiras, Portugal
| | - Michael D Purugganan
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
16
|
Integrating omics analysis of salt stress-responsive genes in rice. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Jiang SY, Vanitha J, Bai Y, Ramachandran S. Identification and molecular characterization of tissue-preferred rice genes and their upstream regularly sequences on a genome-wide level. BMC PLANT BIOLOGY 2014; 14:331. [PMID: 25428432 PMCID: PMC4248441 DOI: 10.1186/s12870-014-0331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/11/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gene upstream regularly sequences (URSs) can be used as one of the tools to annotate the biological functions of corresponding genes. In addition, tissue-preferred URSs are frequently used to drive the transgene expression exclusively in targeted tissues during plant transgenesis. Although many rice URSs have been molecularly characterized, it is still necessary and valuable to identify URSs that will benefit plant transformation and aid in analyzing gene function. RESULTS In this study, we identified and characterized root-, seed-, leaf-, and panicle-preferred genes on a genome-wide level in rice. Subsequently, their expression patterns were confirmed through quantitative real-time RT-PCR (qRT-PCR) by randomly selecting 9candidate tissue-preferred genes. In addition, 5 tissue-preferred URSs were characterized by investigating the URS::GUS transgenic plants. Of these URS::GUS analyses, the transgenic plants harboring LOC_Os03g11350 URS::GUS construct showed the GUS activity only in young pollen. In contrast, when LOC_Os10g22450 URS was used to drive the reporter GUS gene, the GUS activity was detected only in mature pollen. Interestingly, the LOC_Os10g34360 URS was found to be vascular bundle preferred and its activities were restricted only to vascular bundles of leaves, roots and florets. In addition, we have also identified two URSs from genes LOC_Os02G15090 and LOC_Os06g31070 expressed in a seed-preferred manner showing the highest expression levels of GUS activities in mature seeds. CONCLUSION By genome-wide analysis, we have identified tissue-preferred URSs, five of which were further characterized using transgenic plants harboring URS::GUS constructs. These data might provide some evidence for possible functions of the genes and be a valuable resource for tissue-preferred candidate URSs for plant transgenesis.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Jeevanandam Vanitha
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Yanan Bai
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Srinivasan Ramachandran
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|
18
|
Comparative transcriptional profiling of two wheat genotypes, with contrasting levels of minerals in grains, shows expression differences during grain filling. PLoS One 2014; 9:e111718. [PMID: 25364903 PMCID: PMC4218811 DOI: 10.1371/journal.pone.0111718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. To identify the candidate genes for mineral accumulation, it is important to examine differential transcriptome between wheat genotypes, with contrasting levels of minerals in grains. A transcriptional comparison of developing grains was carried out between two wheat genotypes- Triticum aestivum Cv. WL711 (low grain mineral), and T. aestivum L. IITR26 (high grain mineral), using Affymetrix GeneChip Wheat Genome Array. The study identified a total of 580 probe sets as differentially expressed (with log2 fold change of ≥2 at p≤0.01) between the two genotypes, during grain filling. Transcripts with significant differences in induction or repression between the two genotypes included genes related to metal homeostasis, metal tolerance, lignin and flavonoid biosynthesis, amino acid and protein transport, vacuolar-sorting receptor, aquaporins, and stress responses. Meta-analysis revealed spatial and temporal signatures of a majority of the differentially regulated transcripts.
Collapse
|
19
|
Zhang J, Feng J, Lu J, Yang Y, Zhang X, Wan D, Liu J. Transcriptome differences between two sister desert poplar species under salt stress. BMC Genomics 2014; 15:337. [PMID: 24886148 PMCID: PMC4035067 DOI: 10.1186/1471-2164-15-337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 04/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Populus euphratica Oliv and P. pruinosa Schrenk (Salicaceae) both grow in dry desert areas with high summer temperatures. However, P. euphratica is distributed in dry deserts with deep underground water whereas P. pruinosa occurs in deserts in which there is underground water close to the surface. We therefore hypothesized that these two sister species may have evolved divergent regulatory and metabolic pathways during their interaction with different salt habitats and other stresses. To test this hypothesis, we compared transcriptomes from callus exposed to 24 h of salt stress and control callus samples from both species and identified differentially expressed genes (DEGs) and alternative splicing (AS) events that had occurred under salt stress. RESULTS A total of 36,144 transcripts were identified and 1430 genes were found to be differentially expressed in at least one species in response to salt stress. Of these DEGs, 884 and 860 were identified in P. euphratica and P. pruinosa, respectively, while 314 DEGs were common to both species. On the basis of parametric analysis of gene set enrichment, GO enrichment in P. euphratica was found to be significantly different from that in P. pruinosa. Numerous genes involved in hormone biosynthesis, transporters and transcription factors showed clear differences between the two species in response to salt stress. We also identified 26,560 AS events which were mapped to 8380 poplar genomic loci from four libraries. GO enrichments for genes undergoing AS events in P. euphratica differed significantly from those in P. pruinosa. CONCLUSIONS A number of salt-responsive genes in both P. euphratica and P. pruinosa were identified and candidate genes with potential roles in the salinity adaptation were proposed. Transcriptome comparisons of two sister desert poplar species under salt stress suggest that these two species may have developed different genetic pathways in order to adapt to different desert salt habitats. The DEGs that were found to be common to both species under salt stress may be especially important for future genetic improvement of cultivated poplars or other crops through transgenic approaches in order to increase tolerance of saline soil conditions.
Collapse
Affiliation(s)
- Jian Zhang
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Jianju Feng
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
- />Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Science, Tarim University, Alar 843300 Xinjiang, China
| | - Jing Lu
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Yongzhi Yang
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Xu Zhang
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Dongshi Wan
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Jianquan Liu
- />State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| |
Collapse
|