1
|
Reference Genes across Nine Brain Areas of Wild Type and Prader-Willi Syndrome Mice: Assessing Differences in Igfbp7, Pcsk1, Nhlh2 and Nlgn3 Expression. Int J Mol Sci 2022; 23:ijms23158729. [PMID: 35955861 PMCID: PMC9369261 DOI: 10.3390/ijms23158729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.
Collapse
|
2
|
Kummerfeld DM, Raabe CA, Brosius J, Mo D, Skryabin BV, Rozhdestvensky TS. A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research. Int J Mol Sci 2021; 22:3613. [PMID: 33807162 PMCID: PMC8037846 DOI: 10.3390/ijms22073613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.
Collapse
Affiliation(s)
- Delf-Magnus Kummerfeld
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Juergen Brosius
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingding Mo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| |
Collapse
|
3
|
Mo D, Li X, Raabe CA, Rozhdestvensky TS, Skryabin BV, Brosius J. Circular RNA Encoded Amyloid Beta peptides-A Novel Putative Player in Alzheimer's Disease. Cells 2020; 9:E2196. [PMID: 33003364 PMCID: PMC7650678 DOI: 10.3390/cells9102196] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related detrimental dementia. Amyloid beta peptides (Aβ) play a crucial role in the pathology of AD. In familial AD, Aβ are generated from the full-length amyloid beta precursor protein (APP) via dysregulated proteolytic processing; however, in the case of sporadic AD, the mechanism of Aβ biogenesis remains elusive. circRNAs are a class of transcripts preferentially expressed in brain. We identified a circRNA harboring the Aβ-coding region of the APP gene termed circAβ-a. This circular RNA was detected in the brains of AD patients and non-dementia controls. With the aid of our recently established approach for analysis of circRNA functions, we demonstrated that circAβ-a is efficiently translated into a novel Aβ-containing Aβ175 polypeptide (19.2 KDa) in both cultured cells and human brain. Furthermore, Aβ175 was shown to be processed into Aβ peptides-a hallmark of AD. In summary, our analysis revealed an alternative pathway of Aβ biogenesis. Consequently, circAβ-a and its corresponding translation product could potentially represent novel therapeutic targets for AD treatment. Importantly, our data point to yet another evolutionary route for potentially increasing proteome complexity by generating additional polypeptide variants using back-splicing of primary transcripts that yield circular RNA templates.
Collapse
Affiliation(s)
- Dingding Mo
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany;
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, O&N IV Herestraat 49—box 602, 3000 Leuven, Belgium
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (T.S.R.); (B.V.S.)
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany;
| | - Carsten A. Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (C.A.R.); (J.B.)
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (T.S.R.); (B.V.S.)
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (T.S.R.); (B.V.S.)
| | - Juergen Brosius
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (C.A.R.); (J.B.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
| |
Collapse
|
4
|
Ectopic expression of Snord115 in choroid plexus interferes with editing but not splicing of 5-Ht2c receptor pre-mRNA in mice. Sci Rep 2019; 9:4300. [PMID: 30862860 PMCID: PMC6414643 DOI: 10.1038/s41598-019-39940-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Serotonin 5-HT2C receptor is a G-protein coupled excitatory receptor that regulates several biochemical pathways and has been implicated in obesity, mental state, sleep cycles, autism, neuropsychiatric disorders and neurodegenerative diseases. The activity of 5-HT2CR is regulated via alternative splicing and A to I editing of exon Vb of its pre-mRNA. Snord115 is a small nucleolar RNA that is expressed in mouse neurons and displays an 18-nucleotide base complementary to exon Vb of 5-HT2CR pre-mRNA. For almost two decades this putative guide element of Snord115 has wandered like a ghost through the literature in attempts to elucidate the biological significance of this complementarity. In mice, Snord115 is expressed in neurons and absent in the choroid plexus where, in contrast, 5-Ht2cr mRNA is highly abundant. Here we report the analysis of 5-Ht2cr pre-mRNA posttranscriptional processing via RNA deep sequencing in a mouse model that ectopically expresses Snord115 in the choroid plexus. In contrast to previous reports, our analysis demonstrated that Snord115 does not control alternative splicing of 5-Ht2cr pre-mRNA in vivo. We identified a modest, yet statistically significant reduction of 5-Ht2cr pre-mRNA A to I editing at the major A, B, C and D sites. We suggest that Snord115 and exon Vb of 5Ht2cr pre-mRNA form a double-stranded structure that is subject to ADAR-mediated A to I editing. To the best of our knowledge, this is the first comprehensive Snord115 gain-of-function analysis based on in vivo mouse models.
Collapse
|
5
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
6
|
Patra Bhattacharya D, Canzler S, Kehr S, Hertel J, Grosse I, Stadler PF. Phylogenetic distribution of plant snoRNA families. BMC Genomics 2016; 17:969. [PMID: 27881081 PMCID: PMC5122169 DOI: 10.1186/s12864-016-3301-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. Results In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. Conclusions The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3301-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deblina Patra Bhattacharya
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany.,Institut für Informatik, Halle (Saale), D-06120, Germany
| | - Sebastian Canzler
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany
| | - Jana Hertel
- Young Investigators Group Bioinformatics & Transcriptomics, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig, D-04318, Germany
| | - Ivo Grosse
- Institut für Informatik, Halle (Saale), D-06120, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig, D-04103, Germany. .,Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, Leipzig, A-1090, Germany. .,Center for RNA in Technology and Health, Univ. Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Copenhagen, Denmark. .,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA. .,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
BC1 RNA motifs required for dendritic transport in vivo. Sci Rep 2016; 6:28300. [PMID: 27350115 PMCID: PMC4923876 DOI: 10.1038/srep28300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022] Open
Abstract
BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo.
Collapse
|
8
|
Agrisani A, Tafer H, Stadler PF, Furia M. Unusual Novel SnoRNA-Like RNAs in Drosophila melanogaster. Noncoding RNA 2015; 1:139-150. [PMID: 29861420 PMCID: PMC5932544 DOI: 10.3390/ncrna1020139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
A computational screen for novel small nucleolar RNAs in Drosophila melanogaster uncovered 15 novel snoRNAs and snoRNA-like long non-coding RNAs. In contrast to earlier surverys, the novel sequences are mostly poorly conserved and originate from unusual genomic locations. The majority derive from precurors antisense to well-known protein-coding genes, and four of the candidates are produced from exon-coding regions. Only a minority of the new sequences appears to have canonical target sites in ribosomal or small nuclear RNAs. Taken together, these evolutionary young, poorly conserved, and genomically atypical sequences point at a class of snoRNA-like transcripts with predominantly regulatory functions in the fruit fly genome.
Collapse
Affiliation(s)
- Alberto Agrisani
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, I-80126 Napoli, Italy.
| | - Hakim Tafer
- Institut für Biotechnologie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria.
| | - Peter F Stadler
- Bioinformatics Group, Department Computer Science, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig; University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany.
- Department of Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| | - Maria Furia
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, I-80126 Napoli, Italy.
| |
Collapse
|
9
|
Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. Evidence for a Novel Mechanism of Influenza Virus-Induced Type I Interferon Expression by a Defective RNA-Encoded Protein. PLoS Pathog 2015; 11:e1004924. [PMID: 26024522 PMCID: PMC4449196 DOI: 10.1371/journal.ppat.1004924] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 04/29/2015] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) defective RNAs are generated as byproducts of error-prone viral RNA replication. They are commonly derived from the larger segments of the viral genome and harbor deletions of various sizes resulting in the generation of replication incompatible viral particles. Furthermore, small subgenomic RNAs are known to be strong inducers of pattern recognition receptor RIG-I-dependent type I interferon (IFN) responses. The present study identifies a novel IAV-induced defective RNA derived from the PB2 segment of A/Thailand/1(KAN-1)/2004 (H5N1). It encodes a 10 kDa protein (PB2∆) sharing the N-terminal amino acid sequence of the parental PB2 protein followed by frame shift after internal deletion. PB2∆ induces the expression of IFNβ and IFN-stimulated genes by direct interaction with the cellular adapter protein MAVS, thereby reducing viral replication of IFN-sensitive viruses such as IAV or vesicular stomatitis virus. This induction of IFN is completely independent of the defective RNA itself that usually serves as pathogen-associated pattern and thus does not require the cytoplasmic sensor RIG-I. These data suggest that not only defective RNAs, but also some defective RNA-encoded proteins can act immunostimulatory. In this particular case, the KAN-1-induced defective RNA-encoded protein PB2∆ enhances the overwhelming immune response characteristic for highly pathogenic H5N1 viruses, leading to a more severe phenotype in vivo. Error-prone polymerase function of RNA viruses can result in expression of defective RNAs harboring internal deletions of various sizes. Small subgenomic RNAs are strong inducers of the antiviral response by serving as pathogen-associated patterns that are predominantly detected by cellular sensors. Recently, it has been shown that influenza A virus defective RNAs are not only generated upon passages in cell culture, but also in infected humans, indicating that these subgenomic RNAs may also be relevant in infections in vivo. Here, we characterize a novel defective RNA derived from the PB2 segment of a highly pathogenic H5N1 influenza A virus. This RNA encodes a 10 kDa peptide (PB2Δ) which activates type I interferon (IFN) responses through direct interaction with the adapter protein MAVS, a key component of the RIG-I-dependent IFN induction. This is the first time that such a function was described for a defective RNA-encoded protein, a finding that has several important implications with regard to deciphering viral protein functions and options for immunostimulatory approaches. Furthermore, this is an example of how influenza viruses may acquire novel polypeptides with altered functions from its limited genome.
Collapse
Affiliation(s)
- Yvonne Boergeling
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Timofey S. Rozhdestvensky
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Mirco Schmolke
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Patricia Resa-Infante
- Viral Zoonosis and Adaptation, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Robeck
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Gerrit Randau
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Gülsah Gabriel
- Viral Zoonosis and Adaptation, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
- Institute of Evolutionary and Medical Genomics, Brandenburg Medical School (MHB), Neuruppin, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Medical Faculty, University of Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
10
|
Galiveti CR, Raabe CA, Konthur Z, Rozhdestvensky TS. Differential regulation of non-protein coding RNAs from Prader-Willi Syndrome locus. Sci Rep 2014; 4:6445. [PMID: 25246219 PMCID: PMC4171697 DOI: 10.1038/srep06445] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurogenetic disorder caused by the deletion of imprinted genes on the paternally inherited human chromosome 15q11-q13. This locus harbours a long non-protein-coding RNA (U-UBE3A-ATS) that contains six intron-encoded snoRNAs, including the SNORD116 and SNORD115 repetitive clusters. The 3′-region of U-UBE3A-ATS is transcribed in the cis-antisense direction to the ubiquitin-protein ligase E3A (UBE3A) gene. Deletion of the SNORD116 region causes key characteristics of PWS. There are few indications that SNORD115 might regulate serotonin receptor (5HT2C) pre-mRNA processing. Here we performed quantitative real-time expression analyses of RNAs from the PWS locus across 20 human tissues and combined it with deep-sequencing data derived from Cap Analysis of Gene Expression (CAGE-seq) libraries. We found that the expression profiles of SNORD64, SNORD107, SNORD108 and SNORD116 are similar across analyzed tissues and correlate well with SNORD116 embedded U-UBE3A-ATS exons (IPW116). Notable differences in expressions between the aforementioned RNAs and SNORD115 together with the host IPW115 and UBE3A cis-antisense exons were observed. CAGE-seq analysis revealed the presence of potential transcriptional start sites originated from the U-UBE3A-ATS spanning region. Our findings indicate novel aspects for the expression regulation in the PWS locus.
Collapse
Affiliation(s)
- Chenna R Galiveti
- 1] Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany [2] Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Zoltán Konthur
- 1] Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timofey S Rozhdestvensky
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
11
|
Brosius J. The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harb Perspect Biol 2014; 6:a016089. [PMID: 25081515 DOI: 10.1101/cshperspect.a016089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| |
Collapse
|