1
|
Gozashti L, Nakamoto A, Russell S, Corbett-Detig R. Horizontal transmission of functionally diverse transposons is a major source of new introns. Proc Natl Acad Sci U S A 2025; 122:e2414761122. [PMID: 40402243 DOI: 10.1073/pnas.2414761122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/28/2025] [Indexed: 05/23/2025] Open
Abstract
Since the discovery of spliceosomal introns in eukaryotic genomes, the proximate molecular and evolutionary processes that generate new introns have remained a critical mystery. Specialized transposable elements (TEs), introners, are thought to be one of the major drivers of intron gain in diverse eukaryotes. However, the molecular mechanism(s) and evolutionary processes driving introner propagation within and between lineages remain elusive. Here, we analyze 8,716 genomes, revealing 1,093 introner families in 201 species spanning 1.7 billion years of evolution. Introners are derived from functionally diverse TEs including families of terminal-inverted-repeat DNA TEs, retrotransposons, cryptons, and helitrons as well as mobile elements with unknown molecular mechanisms. We identify eight cases where introners recently transferred between divergent host species and show that giant viruses that integrate into genomes may facilitate introner transfer across lineages. We propose that ongoing intron gain is primarily a consequence of TE activity in eukaryotes, thereby resolving a key mystery of genome structure evolution.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Anne Nakamoto
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Shelbi Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
2
|
Gozashti L, Roy SW, Thornlow B, Kramer A, Ares M, Corbett-Detig R. Transposable elements drive intron gain in diverse eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2209766119. [PMID: 36417430 PMCID: PMC9860276 DOI: 10.1073/pnas.2209766119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
There is massive variation in intron numbers across eukaryotic genomes, yet the major drivers of intron content during evolution remain elusive. Rapid intron loss and gain in some lineages contrast with long-term evolutionary stasis in others. Episodic intron gain could be explained by recently discovered specialized transposons called Introners, but so far Introners are only known from a handful of species. Here, we performed a systematic search across 3,325 eukaryotic genomes and identified 27,563 Introner-derived introns in 175 genomes (5.2%). Species with Introners span remarkable phylogenetic diversity, from animals to basal protists, representing lineages whose last common ancestor dates to over 1.7 billion years ago. Aquatic organisms were 6.5 times more likely to contain Introners than terrestrial organisms. Introners exhibit mechanistic diversity but most are consistent with DNA transposition, indicating that Introners have evolved convergently hundreds of times from nonautonomous transposable elements. Transposable elements and aquatic taxa are associated with high rates of horizontal gene transfer, suggesting that this combination of factors may explain the punctuated and biased diversity of species containing Introners. More generally, our data suggest that Introners may explain the episodic nature of intron gain across the eukaryotic tree of life. These results illuminate the major source of ongoing intron creation in eukaryotic genomes.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| | - Scott W. Roy
- Department of Biology, San Francisco State University, San Francisco, CA94117
| | - Bryan Thornlow
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| | - Alexander Kramer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA95064
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| |
Collapse
|
3
|
Abstract
BACKGROUND The evolution of spliceosomal introns has been widely studied among various eukaryotic groups. Researchers nearly reached the consensuses on the pattern and the mechanisms of intron losses and gains across eukaryotes. However, according to previous studies that analyzed a few genes or genomes, Nematoda seems to be an eccentric group. RESULTS Taking advantage of the recent accumulation of sequenced genomes, we extensively analyzed the intron losses and gains using 104 nematode genomes across all the five Clades of the phylum. Nematodes have a wide range of intron density, from less than one to more than nine per kbp coding sequence. The rates of intron losses and gains exhibit significant heterogeneity both across different nematode lineages and across different evolutionary stages of the same lineage. The frequency of intron losses far exceeds that of intron gains. Five pieces of evidence supporting the model of cDNA-mediated intron loss have been observed in ten Caenorhabditis species, the dominance of the precise intron losses, frequent loss of adjacent introns, high-level expression of the intron-lost genes, preferential losses of short introns, and the preferential losses of introns close to 3'-ends of genes. Like studies in most eukaryotic groups, we cannot find the source sequences for the limited number of intron gains detected in the Caenorhabditis genomes. CONCLUSIONS These results indicate that nematodes are a typical eukaryotic group rather than an outlier in intron evolution.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Ji Xia
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kun-Xian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
4
|
Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. J Fungi (Basel) 2021; 7:jof7090710. [PMID: 34575748 PMCID: PMC8469720 DOI: 10.3390/jof7090710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Spliceosomal introns are pervasive in eukaryotes. Intron gains and losses have occurred throughout evolution, but the origin of new introns is unclear. Stwintrons are complex intervening sequences where one of the sequence elements (5′-donor, lariat branch point element or 3′-acceptor) necessary for excision of a U2 intron (external intron) is itself interrupted by a second (internal) U2 intron. In Hypoxylaceae, a family of endophytic fungi, we uncovered scores of donor-disrupted stwintrons with striking sequence similarity among themselves and also with canonical introns. Intron–exon structure comparisons suggest that these stwintrons have proliferated within diverging taxa but also give rise to proliferating canonical introns in some genomes. The proliferated (stw)introns have integrated seamlessly at novel gene positions. The recently proliferated (stw)introns appear to originate from a conserved ancestral stwintron characterised by terminal inverted repeats (45–55 nucleotides), a highly symmetrical structure that may allow the formation of a double-stranded intron RNA molecule. No short tandem duplications flank the putatively inserted intervening sequences, which excludes a DNA transposition-based mechanism of proliferation. It is tempting to suggest that this highly symmetrical structure may have a role in intron proliferation by (an)other mechanism(s).
Collapse
|
5
|
Patthy L. Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes (Basel) 2021; 12:382. [PMID: 33800339 PMCID: PMC8001218 DOI: 10.3390/genes12030382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Division of labor and establishment of the spatial pattern of different cell types of multicellular organisms require cell type-specific transcription factor modules that control cellular phenotypes and proteins that mediate the interactions of cells with other cells. Recent studies indicate that, although constituent protein domains of numerous components of the genetic toolkit of the multicellular body plan of Metazoa were present in the unicellular ancestor of animals, the repertoire of multidomain proteins that are indispensable for the arrangement of distinct body parts in a reproducible manner evolved only in Metazoa. We have shown that the majority of the multidomain proteins involved in cell-cell and cell-matrix interactions of Metazoa have been assembled by exon shuffling, but there is no evidence for a similar role of exon shuffling in the evolution of proteins of metazoan transcription factor modules. A possible explanation for this difference in the intracellular and intercellular toolkits is that evolution of the transcription factor modules preceded the burst of exon shuffling that led to the creation of the proteins controlling spatial patterning in Metazoa. This explanation is in harmony with the temporal-to-spatial transition hypothesis of multicellularity that proposes that cell differentiation may have predated spatial segregation of cell types in animal ancestors.
Collapse
Affiliation(s)
- Laszlo Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Liu H, Lyu HM, Zhu K, de Peer YV, Cheng ZM(M. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1072-1082. [PMID: 33217085 PMCID: PMC7116809 DOI: 10.1111/tpj.15088] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/02/2023]
Abstract
Eukaryotic genes can be classified into intronless (no introns), intron-poor (three or fewer introns per gene) or intron-rich. Early eukaryotic genes were mostly intron-rich, and their alternative splicing into multiple transcripts, giving rise to different proteins, might have played pivotal roles in adaptation and evolution. Interestingly, extant plant genomes contain many gene families with one or sometimes few sub-families with genes that are intron-poor or intronless, and it remains unknown when and how these intron-poor or intronless genes have originated and evolved, and what their possible functions are. In this study, we identified 33 such gene families that contained intronless and intron-poor sub-families. Intronless genes seemed to have first emerged in early land plant evolution, while intron-poor sub-families seemed first to have appeared in green algae. In contrast to intron-rich genes, intronless genes in intron-poor sub-families occurred later, and were subject to stronger functional constraints. Based on RNA-seq analyses in Arabidopsis and rice, intronless or intron-poor genes in AP2, EF-hand_7, bZIP, FAD_binding_4, STE_STE11, CAMK_CAMKL-CHK1 and C2 gene families were more likely to play a role in response to drought and salt stress, compared with intron-rich genes in the same gene families, whereas intronless genes in the B_lectin and S_locus_glycop gene family were more likely to participate in epigenetic processes and plant development. Understanding the origin and evolutionary trajectory, as well as the potential functions, of intronless and intron-poor sub-families provides further insight into plant genome evolution and the functional divergence of genes.
Collapse
Affiliation(s)
- Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Meng Lyu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Zhu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yves Van de Peer
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Zong-Ming (Max) Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Sciences, University of Tennessee, Knoxville 37996, USA
- Corresponding author (, )
| |
Collapse
|
7
|
Leconte J, Benites LF, Vannier T, Wincker P, Piganeau G, Jaillon O. Genome Resolved Biogeography of Mamiellales. Genes (Basel) 2020; 11:E66. [PMID: 31936086 PMCID: PMC7016971 DOI: 10.3390/genes11010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Among marine phytoplankton, Mamiellales encompass several species from the genera Micromonas, Ostreococcus and Bathycoccus, which are important contributors to primary production. Previous studies based on single gene markers described their wide geographical distribution but led to discussion because of the uneven taxonomic resolution of the method. Here, we leverage genome sequences for six Mamiellales species, two from each genus Micromonas, Ostreococcus and Bathycoccus, to investigate their distribution across 133 stations sampled during the Tara Oceans expedition. Our study confirms the cosmopolitan distribution of Mamiellales and further suggests non-random distribution of species, with two triplets of co-occurring genomes associated with different temperatures: Ostreococcuslucimarinus, Bathycoccusprasinos and Micromonaspusilla were found in colder waters, whereas Ostreococcus spp. RCC809, Bathycoccus spp. TOSAG39-1 and Micromonascommoda were more abundant in warmer conditions. We also report the distribution of the two candidate mating-types of Ostreococcus for which the frequency of sexual reproduction was previously assumed to be very low. Indeed, both mating types were systematically detected together in agreement with either frequent sexual reproduction or the high prevalence of a diploid stage. Altogether, these analyses provide novel insights into Mamiellales' biogeography and raise novel testable hypotheses about their life cycle and ecology.
Collapse
Affiliation(s)
- Jade Leconte
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - L. Felipe Benites
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Thomas Vannier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Gwenael Piganeau
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
8
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 PMCID: PMC6726248 DOI: 10.1371/journal.pgen.1008249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function. The protein coding information in eukaryotic genes is broken by intervening sequences called introns that are removed from RNA during transcription by a large protein-RNA complex called the spliceosome. Where introns come from and how the spliceosome contributes to genome evolution are open questions. In this study, we find more than 150 new places in the yeast genome that are recognized by the spliceosome and spliced out as introns. Since they appear to have arisen very recently in evolution by sequence drift and do not appear to contribute to gene expression or its regulation, we call these protointrons. Protointrons are found in both protein-coding and non-coding RNAs and are not efficiently removed by the splicing machinery. Although most protointrons are not conserved and will likely disappear as evolution proceeds, a few are spliced more efficiently, and are located where they might begin to play functional roles in gene expression, as predicted by the proposed process of intronization. The challenge now is to understand how spontaneously appearing splicing events like protointrons might contribute to the creation of new genes, new genetic controls, and new protein isoforms as genomes evolve.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J. Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M. Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 DOI: 10.1101/515197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 05/28/2023] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
10
|
Wu B, Macielog AI, Hao W. Origin and Spread of Spliceosomal Introns: Insights from the Fungal Clade Zymoseptoria. Genome Biol Evol 2018; 9:2658-2667. [PMID: 29048531 PMCID: PMC5647799 DOI: 10.1093/gbe/evx211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Spliceosomal introns are a key feature of eukaryote genome architecture and have been proposed to originate from selfish group II introns from an endosymbiotic bacterium, that is, the ancestor of mitochondria. However, the mechanisms underlying the wide spread of spliceosomal introns across eukaryotic genomes have been obscure. In this study, we characterize the dynamic evolution of spliceosomal introns in the fungal genus Zymoseptoria at different evolutionary scales, that is, within a genome, among conspecific strains within species, and between different species. Within the genome, spliceosomal introns can proliferate in unrelated genes and intergenic regions. Among conspecific strains, spliceosomal introns undergo rapid turnover (gains and losses) and frequent sequence exchange between geographically distinct strains. Furthermore, spliceosomal introns could undergo introgression between distinct species, which can further promote intron invasion and proliferation. The dynamic invasion and proliferation processes of spliceosomal introns resemble the life cycles of mobile selfish (group I/II) introns, and these intron movements, at least in part, account for the dramatic processes of intron gain and intron loss during eukaryotic evolution.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biology, Clark University, Worcester, MA, USA
| | | | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
11
|
Huff JT, Zilberman D, Roy SW. Mechanism for DNA transposons to generate introns on genomic scales. Nature 2016; 538:533-536. [PMID: 27760113 PMCID: PMC5684705 DOI: 10.1038/nature20110] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 09/19/2016] [Indexed: 01/15/2023]
Abstract
The discovery of introns four decades ago was one of the most unexpected findings in molecular biology. Introns are sequences interrupting genes that must be removed as part of messenger RNA production. Genome sequencing projects have shown that most eukaryotic genes contain at least one intron, and frequently many. Comparison of these genomes reveals a history of long evolutionary periods during which few introns were gained, punctuated by episodes of rapid, extensive gain. However, although several detailed mechanisms for such episodic intron generation have been proposed, none has been empirically supported on a genomic scale. Here we show how short, non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from the gene sequence that is duplicated upon transposon insertion, allowing perfect splicing out of the RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between pre-existing nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases and prevalence of nucleosome-sized exons observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism that can plausibly account for episodes of rapid, extensive intron gain during eukaryotic evolution.
Collapse
Affiliation(s)
- Jason T Huff
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| |
Collapse
|
12
|
Hou S, Pfreundt U, Miller D, Berman-Frank I, Hess WR. mdRNA-Seq analysis of marine microbial communities from the northern Red Sea. Sci Rep 2016; 6:35470. [PMID: 27759035 PMCID: PMC5069720 DOI: 10.1038/srep35470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/28/2016] [Indexed: 01/17/2023] Open
Abstract
Metatranscriptomic differential RNA-Seq (mdRNA-Seq) identifies the suite of active transcriptional start sites at single-nucleotide resolution through enrichment of primary transcript 5′ ends. Here we analyzed the microbial community at 45 m depth at Station A in the northern Gulf of Aqaba, Red Sea, during 500 m deep mixing in February 2012 using mdRNA-Seq and a parallel classical RNA-Seq approach. We identified promoters active in situ for five different pico-planktonic genera (the SAR11 clade of Alphaproteobacteria, Synechococcus of Cyanobacteria, Euryarchaeota, Thaumarchaeota, and Micromonas as an example for picoeukaryotic algae), showing the applicability of this approach to highly diverse microbial communities. 16S rDNA quantification revealed that 24% of the analyzed community were group II marine Euryarchaeota in which we identified a highly abundant non-coding RNA, Tan1, and detected very high expression of genes encoding intrinsically disordered proteins, as well as enzymes for the synthesis of specific B vitamins, extracellular peptidases, carbohydrate-active enzymes, and transport systems. These results highlight previously unknown functions of Euryarchaeota with community-wide relevance. The complementation of metatranscriptomic studies with mdRNA-Seq provides substantial additional information regarding transcriptional start sites, promoter activities, and the identification of non-coding RNAs.
Collapse
Affiliation(s)
- Shengwei Hou
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ulrike Pfreundt
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Dan Miller
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Roy SW. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions. Mol Biol Evol 2016; 33:3088-3094. [DOI: 10.1093/molbev/msw172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Ma MY, Lan XR, Niu DK. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase. PeerJ 2016; 4:e2272. [PMID: 27547574 PMCID: PMC4974935 DOI: 10.7717/peerj.2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
15
|
van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J, Sudek S, Yu H, Poirier C, Deerinck TJ, Kuo A, Grigoriev IV, Wong CH, Smith RD, Callister SJ, Wei CL, Schmutz J, Worden AZ. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 2016; 17:267. [PMID: 27029936 PMCID: PMC4815162 DOI: 10.1186/s12864-016-2585-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
Background Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2585-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marijke J van Baren
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Charles Bachy
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Emily Nahas Reistetter
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Samuel O Purvine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jane Grimwood
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Hang Yu
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Now at: Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Thomas J Deerinck
- Center for Research in Biological Systems and the National Center for Microscopy and Imaging Research, University of California, La Jolla, San Diego, California, 92093, USA
| | - Alan Kuo
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Chee-Hong Wong
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Stephen J Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia-Lin Wei
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA. .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.
| |
Collapse
|
16
|
Ma MY, Che XR, Porceddu A, Niu DK. Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium. BMC Evol Biol 2015; 15:286. [PMID: 26678305 PMCID: PMC4683709 DOI: 10.1186/s12862-015-0567-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background Spliceosomal introns are a common feature of eukaryotic genomes. To approach a comprehensive understanding of intron evolution on Earth, studies should look beyond repeatedly studied groups such as animals, plants, and fungi. The slime mold Dictyostelium belongs to a supergroup of eukaryotes not covered in previous studies. Results We found 441 precise intron losses in Dictyostelium discoideum and 202 precise intron losses in Dictyostelium purpureum. Consistent with these observations, Dictyostelium discoideum was found to have significantly more copies of reverse transcriptase genes than Dictyostelium purpureum. We also found that the lost introns are significantly further from the 5′ end of genes than the conserved introns. Adjacent introns were prone to be lost simultaneously in Dictyostelium discoideum. In both Dictyostelium species, the exonic sequences flanking lost introns were found to have a significantly higher GC content than those flanking conserved introns. Together, these observations support a reverse-transcription model of intron loss in which intron losses were caused by gene conversion between genomic DNA and cDNA reverse transcribed from mature mRNA. We also identified two imprecise intron losses in Dictyostelium discoideum that may have resulted from genomic deletions. Ninety-eight putative intron gains were also observed. Consistent with previous studies of other lineages, the source sequences were found in only a small number of cases, with only two instances of intron gain identified in Dictyostelium discoideum. Conclusions Although they diverged very early from animals and fungi, Dictyostelium species have similar mechanisms of intron loss. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0567-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. .,Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xun-Ru Che
- The High School Affiliated to Renmin University of China, Beijing, 100080, China.
| | - Andrea Porceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. .,Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
Kumar A. Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for ∼500 MY. PeerJ 2015; 3:e1026. [PMID: 26157611 PMCID: PMC4476131 DOI: 10.7717/peerj.1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
The serpin superfamily is characterized by proteins that fold into a conserved tertiary structure and exploits a sophisticated and irreversible suicide-mechanism of inhibition. Vertebrate serpins are classified into six groups (V1-V6), based on three independent biological features-genomic organization, diagnostic amino acid sites and rare indels. However, this classification system was based on the limited number of mammalian genomes available. In this study, several non-mammalian genomes are used to validate this classification system using the powerful Bayesian phylogenetic method. This method supports the intron and indel based vertebrate classification and proves that serpins have been maintained from lampreys to humans for about 500 MY. Lampreys have fewer than 10 serpins, which expand into 36 serpins in humans. The two expanding groups V1 and V2 have SERPINB1/SERPINB6 and SERPINA8/SERPIND1 as the ancestral serpins, respectively. Large clusters of serpins are formed by local duplications of these serpins in tetrapod genomes. Interestingly, the ancestral HCII/SERPIND1 locus (nested within PIK4CA) possesses group V4 serpin (A2APL1, homolog of α 2-AP/SERPINF2) of lampreys; hence, pointing to the fact that group V4 might have originated from group V2. Additionally in this study, details of the phylogenetic history and genomic characteristics of vertebrate serpins are revisited.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
| |
Collapse
|
18
|
Collemare J, Beenen HG, Crous PW, de Wit PJGM, van der Burgt A. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns. PLoS One 2015; 10:e0129302. [PMID: 26046656 PMCID: PMC4457414 DOI: 10.1371/journal.pone.0129302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/08/2015] [Indexed: 01/08/2023] Open
Abstract
Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom.
Collapse
Affiliation(s)
- Jérôme Collemare
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Present address: UMR1345 IRHS-INRA, Beaucouzé, France
- * E-mail:
| | - Henriek G. Beenen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Present address: Dyadic, Wageningen, The Netherlands
| | - Pedro W. Crous
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | | - Ate van der Burgt
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Present address: Dyadic, Wageningen, The Netherlands
| |
Collapse
|
19
|
Simmons MP, Bachy C, Sudek S, van Baren MJ, Sudek L, Ares M, Worden AZ. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations. Mol Biol Evol 2015; 32:2219-35. [PMID: 25998521 PMCID: PMC4540971 DOI: 10.1093/molbev/msv122] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga.
Collapse
Affiliation(s)
- Melinda P Simmons
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA Department of Ocean Sciences, University of California Santa Cruz
| | - Charles Bachy
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | | | - Lisa Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | - Manuel Ares
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA Department of Ocean Sciences, University of California Santa Cruz Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
20
|
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 2015; 86:90-109. [PMID: 25797922 DOI: 10.1016/j.ympev.2015.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/25/2022]
Abstract
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Solenne Bire
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Institute of Biotechnology, University of Lausanne, Center for Biotechnology UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Peter Arensburger
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, United States.
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
21
|
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015; 347:1257594. [DOI: 10.1126/science.1257594] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Wang H, Devos KM, Bennetzen JL. Recurrent loss of specific introns during angiosperm evolution. PLoS Genet 2014; 10:e1004843. [PMID: 25474210 PMCID: PMC4256211 DOI: 10.1371/journal.pgen.1004843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 10/22/2014] [Indexed: 11/18/2022] Open
Abstract
Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss. The spliceosomal introns are nucleotide sequences that interrupt coding regions of eukaryotic genes and are removed by RNA splicing after transcription. Recent studies have reported several examples of possible recurrent intron loss or gain, i.e., introns that are independently removed from or inserted into the identical sites more than once in an investigated phylogeny. However, the frequency, evolutionary patterns or other characteristics of recurrent intron turnover remain unknown. We provide results for the first comprehensive analysis of recurrent intron turnover within a plant family and show that recurrent intron loss represents a considerable portion of all intron losses identified and intron loss events far outnumber intron gain events. We also demonstrate that recurrent intron loss is non-random, affecting only a small number of introns that are repeatedly lost, and that different lineages show significantly different rates of intron loss. Our results suggest a possible role of DNA methylation in the process of intron loss. Moreover, this study provides strong support for the model of intron loss by reverse transcriptase mediated conversion of genes by their processed mRNA transcripts.
Collapse
Affiliation(s)
- Hao Wang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Katrien M. Devos
- Department of Crop and Soil Sciences, and Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jeffrey L. Bennetzen
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Kunming, Yunnan, P.R. China
- * E-mail:
| |
Collapse
|
23
|
Kumar A, Bhandari A, Goswami C. Surveying genetic variants and molecular phylogeny of cerebral cavernous malformation gene, CCM3/PDCD10. Biochem Biophys Res Commun 2014; 455:98-106. [DOI: 10.1016/j.bbrc.2014.10.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
|
24
|
Kumar A, Bhandari A, Sarde SJ, Goswami C. Genetic variants and evolutionary analyses of heparin cofactor II. Immunobiology 2014; 219:713-28. [PMID: 24950623 DOI: 10.1016/j.imbio.2014.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/13/2014] [Accepted: 05/19/2014] [Indexed: 11/25/2022]
Abstract
Heparin cofactor II (HCII) belongs to serpin superfamily and it acts as a thrombin inhibitor in the coagulation cascade, in a glycosaminoglycan-dependent pathway using the release of a sequestered hirudin-like N-terminal tail for interaction with thrombin. This serpin belongs to multiple member group V2 of vertebrate serpin classification. However, there is no comprehensive study illustrating the exact phylogenetic history of HCII, to date. Herein, we explored phylogenetic traits of HCII genes. Structures of HCII gene from selected ray-finned fishes and lamprey varied in exon I and II with insertions of novel introns of which one in core domain for ray-finned fishes in exon II at the position 241c. We found HCII remain nested in the largest intron of phosphatidylinositol (PI) 4-kinase (PIK4CA) gene (genetic variants of this gene cause schizophrenia) at the origin of vertebrates, dated about 500MY old. We found that sequence features such as two acidic repeats (AR1-II), GAG-binding helix-D, three serpin motifs and inhibitory reactive center loop (RCL) of HCII protein are highly conserved in 55 vertebrates analyzed. We identified 985 HCII variants by analysis of 1092 human genomes with top three variation classes belongs to SNPs (84.3%), insertion (7.1%) and deletion (5.0%). We identified 37 deleterious mutations in the human HCII protein and we have described these mutations in relation to HCII sequence-structure-function relationships. These understandings may have clinical and medical importance as well.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel, Germany.
| | - Anita Bhandari
- Molecular Physiology, Zoological Institute, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Sandeep J Sarde
- Department of Genetics & Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel, Germany; Master Program Agrigenomics, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| |
Collapse
|