1
|
Moreira D, Blaz J, Kim E, Eme L. A gene-rich mitochondrion with a unique ancestral protein transport system. Curr Biol 2024; 34:3812-3819.e3. [PMID: 39084221 DOI: 10.1016/j.cub.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.1,2,3 Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).4 This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.5,6,7,8,9,10,11,12,13,14 At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.8 Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.15,16 Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.
Collapse
Affiliation(s)
- David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| | - Jazmin Blaz
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Laura Eme
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Leger MM, Gawryluk RMR. Evolution: A gene-rich mitochondrial genome sheds light on the last eukaryotic common ancestor. Curr Biol 2024; 34:R776-R779. [PMID: 39163838 DOI: 10.1016/j.cub.2024.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
A new mitochondrial genome is the most gene-rich one found in a major division of eukaryotes - and it shares remarkable features with that of one of its most distant relatives.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
3
|
Li H, Akella S, Engstler C, Omini JJ, Rodriguez M, Obata T, Carrie C, Cerutti H, Mower JP. Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida. Nat Commun 2024; 15:1548. [PMID: 38378784 PMCID: PMC10879542 DOI: 10.1038/s41467-024-45813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Mitochondrial cytochrome c maturation (CCM) requires heme attachment via distinct pathways termed systems I and III. The mosaic distribution of these systems in Archaeplastida raises questions about the genetic mechanisms and evolutionary forces promoting repeated evolution. Here, we show a recurrent shift from ancestral system I to the eukaryotic-specific holocytochrome c synthase (HCCS) of system III in 11 archaeplastid lineages. Archaeplastid HCCS is sufficient to rescue mutants of yeast system III and Arabidopsis system I. Algal HCCS mutants exhibit impaired growth and respiration, and altered biochemical and metabolic profiles, likely resulting from deficient CCM and reduced cytochrome c-dependent respiratory activity. Our findings demonstrate that archaeplastid HCCS homologs function as system III components in the absence of system I. These results elucidate the evolutionary trajectory and functional divergence of CCM pathways in Archaeplastida, providing insight into the causes, mechanisms, and consequences of repeated cooption of an entire biological pathway.
Collapse
Affiliation(s)
- Huang Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Soujanya Akella
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Carina Engstler
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Joy J Omini
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Moira Rodriguez
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Heriberto Cerutti
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
4
|
Eglit Y, Shiratori T, Jerlström-Hultqvist J, Williamson K, Roger AJ, Ishida KI, Simpson AGB. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr Biol 2024; 34:451-459.e6. [PMID: 38262350 DOI: 10.1016/j.cub.2023.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
"Kingdom-level" branches are being added to the tree of eukaryotes at a rate approaching one per year, with no signs of slowing down.1,2,3,4 Some are completely new discoveries, whereas others are morphologically unusual protists that were previously described but lacked molecular data. For example, Hemimastigophora are predatory protists with two rows of flagella that were known since the 19th century but proved to represent a new deep-branching eukaryote lineage when phylogenomic analyses were conducted.2Meteora sporadica5 is a protist with a unique morphology; cells glide over substrates along a long axis of anterior and posterior projections while a pair of lateral "arms" swing back and forth, a motility system without any obvious parallels. Originally, Meteora was described by light microscopy only, from a short-term enrichment of deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently, but the phylogenetic placement of Meteora remained unresolved.6 Here, we investigated two cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that both the anterior-posterior projections and the arms are supported by microtubules originating from a cluster of subnuclear microtubule organizing centers (MTOCs). Neither have a flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be among the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of 254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora. Our study suggests that Meteora and Hemimastigophora together represent a morphologically diverse "supergroup" and thus are important for resolving the tree of eukaryote life and early eukaryote evolution.
Collapse
Affiliation(s)
- Yana Eglit
- Institute for Comparative Genomics, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Takashi Shiratori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Jon Jerlström-Hultqvist
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kelsey Williamson
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ken-Ichiro Ishida
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Alastair G B Simpson
- Institute for Comparative Genomics, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
5
|
Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 2021; 13:evab096. [PMID: 33963405 PMCID: PMC8290118 DOI: 10.1093/gbe/evab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
Collapse
Affiliation(s)
- Josip Skejo
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hendriksen
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Bremer
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Damjan Franjević
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Záhonová K, Lax G, Sinha SD, Leonard G, Richards TA, Lukeš J, Wideman JG. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol 2021; 19:103. [PMID: 34001130 PMCID: PMC8130358 DOI: 10.1186/s12915-021-01035-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids, diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial genomes (mtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids. In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing to produce mature transcripts. All known euglenozoan mtDNAs exhibit extremely short mitochondrial small (rns) and large (rnl) subunit rRNA genes, and absence of tRNA genes. How these features evolved from an ancestral bacteria-like circular mitochondrial genome remains unanswered. Results We sequenced and assembled 20 euglenozoan single-cell amplified genomes (SAGs). In our phylogenetic and phylogenomic analyses, three SAGs were placed within kinetoplastids, 14 within diplonemids, one (EU2) within euglenids, and two SAGs with nearly identical small subunit rRNA gene (18S) sequences (EU17/18) branched as either a basal lineage of euglenids, or as a sister to all euglenozoans. Near-complete mitochondrial genomes were identified in EU2 and EU17/18. Surprisingly, both EU2 and EU17/18 mitochondrial contigs contained multiple genes and one tRNA gene. Furthermore, EU17/18 mtDNA possessed several features unique among euglenozoans including full-length rns and rnl genes, six mitoribosomal genes, and nad11, all likely on a single chromosome. Conclusions Our data strongly suggest that EU17/18 is an early-branching euglenozoan with numerous ancestral mitochondrial features. Collectively these data contribute to untangling the early evolution of euglenozoan mitochondria. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01035-y.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Savar D Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
7
|
Ettahi K, Lhee D, Sung JY, Simpson AGB, Park JS, Yoon HS. Evolutionary History of Mitochondrial Genomes in Discoba, Including the Extreme Halophile Pleurostomum flabellatum (Heterolobosea). Genome Biol Evol 2021; 13:evaa241. [PMID: 33185659 PMCID: PMC7900873 DOI: 10.1093/gbe/evaa241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Data from Discoba (Heterolobosea, Euglenozoa, Tsukubamonadida, and Jakobida) are essential to understand the evolution of mitochondrial genomes (mitogenomes), because this clade includes the most primitive-looking mitogenomes known, as well some extremely divergent genome information systems. Heterolobosea encompasses more than 150 described species, many of them from extreme habitats, but only six heterolobosean mitogenomes have been fully sequenced to date. Here we complete the mitogenome of the heterolobosean Pleurostomum flabellatum, which is extremely halophilic and reportedly also lacks classical mitochondrial cristae, hinting at reduction or loss of respiratory function. The mitogenome of P. flabellatum maps as a 57,829-bp-long circular molecule, including 40 coding sequences (19 tRNA, two rRNA, and 19 orfs). The gene content and gene arrangement are similar to Naegleria gruberi and Naegleria fowleri, the closest relatives with sequenced mitogenomes. The P. flabellatum mitogenome contains genes that encode components of the electron transport chain similar to those of Naegleria mitogenomes. Homology searches against a draft nuclear genome showed that P. flabellatum has two homologs of the highly conserved Mic60 subunit of the MICOS complex, and likely lost Mic19 and Mic10. However, electron microscopy showed no cristae structures. We infer that P. flabellatum, which originates from high salinity (313‰) water where the dissolved oxygen concentration is low, possesses a mitochondrion capable of aerobic respiration, but with reduced development of cristae structure reflecting limited use of this aerobic capacity (e.g., microaerophily).
Collapse
Affiliation(s)
- Khaoula Ettahi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Ji Yeon Sung
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jong Soo Park
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
Harada R, Inagaki Y. Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids. Genome Biol Evol 2021; 13:6081025. [PMID: 33432342 PMCID: PMC7883662 DOI: 10.1093/gbe/evab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondria retain their own genomes as other bacterial endosymbiont-derived organelles. Nevertheless, no protein for DNA replication and repair is encoded in any mitochondrial genomes (mtDNAs) assessed to date, suggesting that the nucleus primarily governs the maintenance of mtDNA. As the proteins of diverse evolutionary origins occupy a large proportion of the current mitochondrial proteomes, we anticipate finding the same evolutionary trend in the nucleus-encoded machinery for mtDNA maintenance. Indeed, none of the DNA polymerases (DNAPs) in the mitochondrial endosymbiont, a putative α-proteobacterium, seemingly had been inherited by their descendants (mitochondria), as none of the known types of mitochondrion-localized DNAP showed a specific affinity to the α-proteobacterial DNAPs. Nevertheless, we currently have no concrete idea of how and when the known types of mitochondrion-localized DNAPs emerged. We here explored the origins of mitochondrion-localized DNAPs after the improvement of the samplings of DNAPs from bacteria and phages/viruses. Past studies have revealed that a set of mitochondrion-localized DNAPs in kinetoplastids and diplonemids, namely PolIB, PolIC, PolID, PolI-Perk1/2, and PolI-dipl (henceforth designated collectively as “PolIBCD+”) have emerged from a single DNAP. In this study, we recovered an intimate connection between PolIBCD+ and the DNAPs found in a particular group of phages. Thus, the common ancestor of kinetoplastids and diplonemids most likely converted a laterally acquired phage DNAP into a mitochondrion-localized DNAP that was ancestral to PolIBCD+. The phage origin of PolIBCD+ hints at a potentially large contribution of proteins acquired via nonvertical processes to the machinery for mtDNA maintenance in kinetoplastids and diplonemids.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan.,Center for Computational Sciences, University of Tsukuba, Japan
| |
Collapse
|
9
|
Heiss AA, Warring SD, Lukacs K, Favate J, Yang A, Gyaltshen Y, Filardi C, Simpson AGB, Kim E. Description of Imasa heleensis, gen. nov., sp. nov. (Imasidae, fam. nov.), a Deep-Branching Marine Malawimonad and Possible Key Taxon in Understanding Early Eukaryotic Evolution. J Eukaryot Microbiol 2020; 68:e12837. [PMID: 33274482 DOI: 10.1111/jeu.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
Abstract
Malawimonadida is a deep-level (arguably "kingdom-scale") lineage of eukaryotes whose phylogenetic affinities are uncertain but of great evolutionary interest, as the group is suspected to branch close to the root of the tree of eukaryotes. Part of the difficulty in placing Malawimonadida phylogenetically is its tiny circumscription: at present, it comprises only two described and one cultured but undescribed species, all of them are freshwater suspension-feeding nanoflagellates. In this study, we cultivated and characterised Imasa heleensis gen. nov., sp. nov. (Imasidae fam. nov.), the first marine malawimonad to be described. Light and electron microscopy observations show that Imasa is largely similar to other malawimonads, but more frequently adheres to the substrate, often by means of a pliable posterior extension. Phylogenetic analyses based on two ribosomal RNA genes and four translated protein-coding genes using three different taxon sets place Imasa as sister to the three freshwater malawimonad strains with strong support. Imasa's mitochondrial genome is circular-mapping and shows a similar gene complement to other known malawimonads. We conclude that Imasa represents an important expansion of the range of taxa available for future evolutionary study.
Collapse
Affiliation(s)
- Aaron A Heiss
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Sally D Warring
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Kaleigh Lukacs
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - John Favate
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Ashley Yang
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Yangtsho Gyaltshen
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | | | - Alastair G B Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 1355 Oxford St, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Eunsoo Kim
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| |
Collapse
|
10
|
Yazaki E, Kume K, Shiratori T, Eglit Y, Tanifuji G, Harada R, Simpson AGB, Ishida KI, Hashimoto T, Inagaki Y. Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc Biol Sci 2020; 287:20201538. [PMID: 32873198 PMCID: PMC7542792 DOI: 10.1098/rspb.2020.1538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We here report the phylogenetic position of barthelonids, small anaerobic flagellates previously examined using light microscopy alone. Barthelona spp. were isolated from geographically distinct regions and we established five laboratory strains. Transcriptomic data generated from one Barthelona strain (PAP020) were used for large-scale, multi-gene phylogenetic (phylogenomic) analyses. Our analyses robustly placed strain PAP020 at the base of the Fornicata clade, indicating that barthelonids represent a deep-branching metamonad clade. Considering the anaerobic/microaerophilic nature of barthelonids and preliminary electron microscopy observations on strain PAP020, we suspected that barthelonids possess functionally and structurally reduced mitochondria (i.e. mitochondrion-related organelles or MROs). The metabolic pathways localized in the MRO of strain PAP020 were predicted based on its transcriptomic data and compared with those in the MROs of fornicates. We here propose that strain PAP020 is incapable of generating ATP in the MRO, as no mitochondrial/MRO enzymes involved in substrate-level phosphorylation were detected. Instead, we detected a putative cytosolic ATP-generating enzyme (acetyl-CoA synthetase), suggesting that strain PAP020 depends on ATP generated in the cytosol. We propose two separate losses of substrate-level phosphorylation from the MRO in the clade containing barthelonids and (other) fornicates.
Collapse
Affiliation(s)
- Euki Yazaki
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Saitama, Japan
| | - Keitaro Kume
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yana Eglit
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan
| | - Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Kolisko M, Flegontova O, Karnkowska A, Lax G, Maritz JM, Pánek T, Táborský P, Carlton JM, Čepička I, Horák A, Lukeš J, Simpson AGB, Tai V. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996027. [PMID: 33216898 PMCID: PMC7678783 DOI: 10.1093/database/baaa080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists—a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.
Collapse
Affiliation(s)
- Martin Kolisko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Olga Flegontova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland.,Department of Parasitology, BIOCEV, Faculty of Science, Charles University, 128 43 Vestec, Czech Republic
| | - Gordon Lax
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia M Maritz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tomáš Pánek
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Petr Táborský
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ivan Čepička
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Alastair G B Simpson
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vera Tai
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
12
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
13
|
Wideman JG, Lax G, Leonard G, Milner DS, Rodríguez-Martínez R, Simpson AGB, Richards TA. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190100. [PMID: 31587636 PMCID: PMC6792441 DOI: 10.1098/rstb.2019.0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Euglenozoa comprises euglenids, kinetoplastids, and diplonemids, with each group exhibiting different and highly unusual mitochondrial genome organizations. Although they are sister groups, kinetoplastids and diplonemids have very distinct mitochondrial genome architectures, requiring widespread insertion/deletion RNA editing and extensive trans-splicing, respectively, in order to generate functional transcripts. The evolutionary history by which these differing processes arose remains unclear. Using single-cell genomics, followed by small sub unit ribosomal DNA and multigene phylogenies, we identified an isolated marine cell that branches on phylogenetic trees as a sister to known kinetoplastids. Analysis of single-cell amplified genomic material identified multiple mitochondrial genome contigs. These revealed a gene architecture resembling that of diplonemid mitochondria, with small fragments of genes encoded out of order and or on different contigs, indicating that these genes require extensive trans-splicing. Conversely, no requirement for kinetoplastid-like insertion/deletion RNA-editing was detected. Additionally, while we identified some proteins so far only found in kinetoplastids, we could not unequivocally identify mitochondrial RNA editing proteins. These data invite the hypothesis that extensive genome fragmentation and trans-splicing were the ancestral states for the kinetoplastid-diplonemid clade but were lost during the kinetoplastid radiation. This study demonstrates that single-cell approaches can successfully retrieve lineages that represent important new branches on the tree of life, and thus can illuminate major evolutionary and functional transitions in eukaryotes. This article is part of a discussion meeting issue ‘Single cell ecology’.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Gordon Lax
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Alastair G B Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Thomas A Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
14
|
Yabuki A, Gyaltshen Y, Heiss AA, Fujikura K, Kim E. Ophirina amphinema n. gen., n. sp., a New Deeply Branching Discobid with Phylogenetic Affinity to Jakobids. Sci Rep 2018; 8:16219. [PMID: 30385814 PMCID: PMC6212452 DOI: 10.1038/s41598-018-34504-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/17/2018] [Indexed: 01/25/2023] Open
Abstract
We report a novel nanoflagellate, Ophirina amphinema n. gen. n. sp., isolated from a lagoon of the Solomon Islands. The flagellate displays ‘typical excavate’ morphological characteristics, such as the presence of a ventral feeding groove with vanes on the posterior flagellum. The cell is ca. 4 µm in length, bears two flagella, and has a single mitochondrion with flat to discoid cristae. The flagellate exists in two morphotypes: a suspension-feeder, which bears flagella that are about the length of the cell, and a swimmer, which has longer flagella. In a tree based on the analysis of 156 proteins, Ophirina is sister to jakobids, with moderate bootstrap support. Ophirina has some ultrastructural (e.g. B-fibre associated with the posterior basal body) and mtDNA (e.g. rpoA–D) features in common with jakobids. Yet, other morphological features, including the crista morphology and presence of two flagellar vanes, rather connect Ophirina to non-jakobid or non-discobid excavates. Ophirina amphinema has some unique features, such as an unusual segmented core structure within the basal bodies and a rightward-oriented dorsal fan. Thus, Ophirina represents a new deeply-branching member of Discoba, and its mosaic morphological characteristics may illuminate aspects of the ancestral eukaryotic cellular body plan.
Collapse
Affiliation(s)
- Akinori Yabuki
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Yangtsho Gyaltshen
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Aaron A Heiss
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA.
| |
Collapse
|
15
|
Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171707. [PMID: 29765641 PMCID: PMC5936906 DOI: 10.1098/rsos.171707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Modern syntheses of eukaryote diversity assign almost all taxa to one of three groups: Amorphea, Diaphoretickes and Excavata (comprising Discoba and Metamonada). The most glaring exception is Malawimonadidae, a group of small heterotrophic flagellates that resemble Excavata by morphology, but branch with Amorphea in most phylogenomic analyses. However, just one malawimonad, Malawimonas jakobiformis, has been studied with both morphological and molecular-phylogenetic approaches, raising the spectre of interpretation errors and phylogenetic artefacts from low taxon sampling. We report a morphological and phylogenomic study of a new deep-branching malawimonad, Gefionella okellyi n. gen. n. sp. Electron microscopy revealed all canonical features of 'typical excavates', including flagellar vanes (as an opposed pair, unlike M. jakobiformis but like many metamonads) and a composite fibre. Initial phylogenomic analyses grouped malawimonads with the Amorphea-related orphan lineage Collodictyon, separate from a Metamonada+Discoba clade. However, support for this topology weakened when more sophisticated evolutionary models were used, and/or fast-evolving sites and long-branching taxa (FS/LB) were excluded. Analyses of '-FS/LB' datasets instead suggested a relationship between malawimonads and metamonads. The 'malawimonad+metamonad signal' in morphological and molecular data argues against a strict Metamonada+Discoba clade (i.e. the predominant concept of Excavata). A Metamonad+Discoba clade should therefore not be assumed when inferring deep-level evolutionary history in eukaryotes.
Collapse
Affiliation(s)
- Aaron A. Heiss
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Martin Kolisko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Fleming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alastair G. B. Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
16
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
17
|
Yang J, Harding T, Kamikawa R, Simpson AGB, Roger AJ. Mitochondrial Genome Evolution and a Novel RNA Editing System in Deep-Branching Heteroloboseids. Genome Biol Evol 2017; 9:1161-1174. [PMID: 28453770 PMCID: PMC5421314 DOI: 10.1093/gbe/evx086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
Discoba (Excavata) is an evolutionarily important group of eukaryotes that includes Jakobida, with the most bacterial-like mitochondrial genomes known, and Euglenozoa, many of which have extensively fragmented mitochondrial genomes. However, little is known about the mitochondrial genomes of Heterolobosea, the third main group of Discoba. Here, we studied two heteroloboseids—an undescribed amoeba “BB2” and Pharyngomonas kirbyi. Phylogenomic analysis revealed that they form a clade that is a sister group to all other Heterolobosea. We characterized the mitochondrial genomes of BB2 and P. kirbyi, which encoded 44 and 48 putative protein-coding genes respectively. Their gene contents were similar to that of Naegleria. In BB2, mitochondrially encoded RNAs were heavily edited, with ∼500 mononucleotide insertion events, mostly guanosines. These insertions always have the same identity as an adjacent nucleotide. Editing occurs in all ribosomal RNAs and protein-coding transcripts except one, and half of the transfer RNAs. Analysis of Illumina deep-sequencing data suggested that this RNA editing is very accurate and efficient, and most likely co-transcriptional. The dissimilarity of this editing process to other RNA editing phenomena in discobids, as well as its apparent absence in P. kirbyi, suggest that this remarkably extensive system of insertional editing evolved independently in the BB2 lineage, after its divergence from the P. kirbyi lineage.
Collapse
Affiliation(s)
- Jiwon Yang
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tommy Harding
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics and Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Cavalier-Smith T. Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: Semi-conservative microtubule/strip duplication, strip shaping and transformation. Eur J Protistol 2017; 61:137-179. [DOI: 10.1016/j.ejop.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/19/2017] [Accepted: 09/05/2017] [Indexed: 11/27/2022]
|
19
|
Strassert JFH, Tikhonenkov DV, Pombert JF, Kolisko M, Tai V, Mylnikov AP, Keeling PJ. Moramonas marocensis gen. nov., sp. nov.: a jakobid flagellate isolated from desert soil with a bacteria-like, but bloated mitochondrial genome. Open Biol 2016; 6:150239. [PMID: 26887409 PMCID: PMC4772810 DOI: 10.1098/rsob.150239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new jakobid genus has been isolated from Moroccan desert soil. The cyst-forming protist Moramonas marocensis gen. nov., sp. nov. has two anteriorly inserted flagella of which one points to the posterior cell pole accompanying the ventral feeding groove and is equipped with a dorsal vane-a feature typical for the Jakobida. It further shows a flagellar root system consisting of singlet microtubular root, left root (R1), right root (R2) and typical fibres associated with R1 and R2. The affiliation of M. marocensis to the Jakobida was confirmed by molecular phylogenetic analyses of the SSU rRNA gene, five nuclear genes and 66 mitochondrial protein-coding genes. The mitochondrial genome has the high number of genes typical for jakobids, and bacterial features, such as the four-subunit RNA polymerase and Shine-Dalgarno sequences upstream of the coding regions of several genes. The M. marocensis mitochondrial genome encodes a similar number of genes as other jakobids, but is unique in its very large genome size (greater than 264 kbp), which is three to four times higher than that of any other jakobid species investigated yet. This increase seems to be due to a massive expansion in non-coding DNA, creating a bloated genome like those of plant mitochondria.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis V Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | | | - Martin Kolisko
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vera Tai
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Abstract
Mitochondrion-related organelles (MROs) have arisen independently in a wide range of anaerobic protist lineages. Only a few of these organelles and their functions have been investigated in detail, and most of what is known about MROs comes from studies of parasitic organisms such as the parabasalid Trichomonas vaginalis. Here, we describe the MRO of a free-living anaerobic jakobid excavate, Stygiella incarcerata. We report an RNAseq-based reconstruction of S. incarcerata’s MRO proteome, with an associated biochemical map of the pathways predicted to be present in this organelle. The pyruvate metabolism and oxidative stress response pathways are strikingly similar to those found in the MROs of other anaerobic protists, such as Pygsuia and Trichomonas. This elegant example of convergent evolution is suggestive of an anaerobic biochemical ‘module’ of prokaryotic origins that has been laterally transferred among eukaryotes, enabling them to adapt rapidly to anaerobiosis. We also identified genes corresponding to a variety of mitochondrial processes not found in Trichomonas, including intermembrane space components of the mitochondrial protein import apparatus, and enzymes involved in amino acid metabolism and cardiolipin biosynthesis. In this respect, the MROs of S. incarcerata more closely resemble those of the much more distantly related free-living organisms Pygsuia biforma and Cantina marsupialis, likely reflecting these organisms’ shared lifestyle as free-living anaerobes.
Collapse
Affiliation(s)
- Michelle M Leger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Laura A Hug
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Kamikawa R, Shiratori T, Ishida KI, Miyashita H, Roger AJ. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans. Genome Biol Evol 2016; 8:458-66. [PMID: 26833505 PMCID: PMC4779616 DOI: 10.1093/gbe/evw011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Japan Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Takashi Shiratori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Japan Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Abstract
Biologists used to draw schematic “universal” trees of life as metaphors illustrating the history of life. It is indeed a priori possible to construct an organismal tree connecting the three major domains of ribosome encoding organisms: Archaea, Bacteria and Eukarya, since they originated by cell division from LUCA. Several universal trees based on ribosomal RNA sequence comparisons proposed at the end of the last century are still widely used, although some of their main features have been challenged by subsequent analyses. Several authors have proposed to replace the traditional universal tree with a ring of life, whereas others have proposed more recently to include viruses as new domains. These proposals are misleading, suggesting that endosymbiosis can modify the shape of a tree or that viruses originated from the last universal common ancestor (LUCA). I propose here an updated version of Woese’s universal tree that includes several rootings for each domain and internal branching within domains that are supported by recent phylogenomic analyses of domain specific proteins. The tree is rooted between Bacteria and Arkarya, a new name proposed for the clade grouping Archaea and Eukarya. A consensus version, in which each of the three domains is unrooted, and a version in which eukaryotes emerged within archaea are also presented. This last scenario assumes the transformation of a modern domain into another, a controversial evolutionary pathway. Viruses are not indicated in these trees but are intrinsically present because they infect the tree from its roots to its leaves. Finally, I present a detailed tree of the domain Archaea, proposing the sub-phylum neo-Euryarchaeota for the monophyletic group of euryarchaeota containing DNA gyrase. These trees, that will be easily updated as new data become available, could be useful to discuss controversial scenarios regarding early life evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur , Paris, France ; Institut de Biologie Intégrative de la cellule, Université Paris-Saclay , Paris, France
| |
Collapse
|
23
|
Arisue N, Hashimoto T. Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol Int 2015; 64:254-9. [DOI: 10.1016/j.parint.2014.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
|
24
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
25
|
Abstract
The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.
Collapse
|
26
|
Cavalier-Smith T, Fiore-Donno AM, Chao E, Kudryavtsev A, Berney C, Snell EA, Lewis R. Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 2015; 83:293-304. [DOI: 10.1016/j.ympev.2014.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/02/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
27
|
Knie N, Polsakiewicz M, Knoop V. Horizontal gene transfer of chlamydial-like tRNA genes into early vascular plant mitochondria. Mol Biol Evol 2014; 32:629-34. [PMID: 25415968 DOI: 10.1093/molbev/msu324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial genomes of lycophytes are surprisingly diverse, including strikingly different transfer RNA (tRNA) gene complements: No mitochondrial tRNA genes are present in the spikemoss Selaginella moellendorffii, whereas 26 tRNAs are encoded in the chondrome of the clubmoss Huperzia squarrosa. Reinvestigating the latter we found that trnL(gag) and trnS(gga) had never before been identified in any other land plant mitochondrial DNA. Sensitive sequence comparisons showed these two tRNAs as well as trnN(guu) and trnS(gcu) to be very similar to their respective counterparts in chlamydial bacteria. We identified homologs of these chlamydial-type tRNAs also in other lycophyte, fern, and gymnosperm DNAs, suggesting horizontal gene transfer (HGT) into mitochondria in the early vascular plant stem lineages. These findings extend plant mitochondrial HGT to affect individual tRNA genes, to include bacterial donors, and suggest that Chlamydiae on top of their recently proposed key role in primary chloroplast establishment may also have participated in early tracheophyte genome evolution.
Collapse
Affiliation(s)
- Nils Knie
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Monika Polsakiewicz
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| |
Collapse
|
28
|
Fu CJ, Sheikh S, Miao W, Andersson SGE, Baldauf SL. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biol Evol 2014; 6:2240-57. [PMID: 25146648 PMCID: PMC4202320 DOI: 10.1093/gbe/evu180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida.
Collapse
Affiliation(s)
- Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Sanea Sheikh
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
29
|
Nishimura Y, Kamikawa R, Hashimoto T, Inagaki Y. An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333. Mob Genet Elements 2014; 4:e29384. [PMID: 25054084 PMCID: PMC4091101 DOI: 10.4161/mge.29384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial (mt) genome sequences, which often bear introns, have been sampled from phylogenetically diverse eukaryotes. Thus, we can anticipate novel insights into intron evolution from previously unstudied mt genomes. We here investigated the origins and evolution of three introns in the mt genome of the haptophyte Chrysochromulina sp. NIES-1333, which was sequenced completely in this study. All the three introns were characterized as group II, on the basis of predicted secondary structure, and the conserved sequence motifs at the 5′ and 3′ termini. Our comparative studies on diverse mt genomes prompt us to propose that the Chrysochromulina mt genome laterally acquired the introns from mt genomes in distantly related eukaryotes. Many group II introns harbor intronic open reading frames for the proteins (intron-encoded proteins or IEPs), which likely facilitate the splicing of their host introns. However, we propose that a “free-standing,” IEP-like protein, which is not encoded within any introns in the Chrysochromulina mt genome, is involved in the splicing of the first cox1 intron that lacks any open reading frames.
Collapse
Affiliation(s)
- Yuki Nishimura
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan ; Graduate School of Systems and Information Engineering; University of Tsukuba; Tsukuba, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies; Kyoto University; Kyoto, Japan ; Graduate School of Global Environmental Studies; Kyoto University; Kyoto, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan ; Center for Computational Sciences; University of Tsukuba; Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan ; Center for Computational Sciences; University of Tsukuba; Tsukuba, Japan
| |
Collapse
|
30
|
Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci Rep 2014; 4:4641. [PMID: 24717814 PMCID: PMC3982174 DOI: 10.1038/srep04641] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
Phylogenetic position of the marine biflagellate Palpitomonas bilix is intriguing, since several ultrastructural characteristics implied its evolutionary connection to Archaeplastida or Hacrobia. The origin and early evolution of these two eukaryotic assemblages have yet to be fully elucidated, and P. bilix may be a key lineage in tracing those groups' early evolution. In the present study, we analyzed a 'phylogenomic' alignment of 157 genes to clarify the position of P. bilix in eukaryotic phylogeny. In the 157-gene phylogeny, P. bilix was found to be basal to a clade of cryptophytes, goniomonads and kathablepharids, collectively known as Cryptista, which is proposed to be a part of the larger taxonomic assemblage Hacrobia. We here discuss the taxonomic assignment of P. bilix, and character evolution in Cryptista.
Collapse
|