1
|
Long T, Xu B, Hu Y, Wang Y, Mao C, Wang Y, Zhang J, Liu H, Huang H, Liu Y, Yu G, Zhao C, Li Y, Huang Y. Genome-wide identification of ZmSnRK2 genes and functional analysis of ZmSnRK2.10 in ABA signaling pathway in maize (Zea mays L). BMC PLANT BIOLOGY 2021; 21:309. [PMID: 34210268 PMCID: PMC8246669 DOI: 10.1186/s12870-021-03064-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/25/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Phytohormone abscisic acid (ABA) is involved in the regulation of a wide range of biological processes. In Arabidopsis, it has been well-known that SnRK2s are the central components of the ABA signaling pathway that control the balance between plant growth and stress response, but the functions of ZmSnRK2 in maize are rarely reported. Therefore, the study of ZmSnRK2 is of great importance to understand the ABA signaling pathways in maize. RESULTS In this study, 14 ZmSnRK2 genes were identified in the latest version of maize genome database. Phylogenetic analysis revealed that ZmSnRK2s are divided into three subclasses based on their diversity of C-terminal domains. The exon-intron structures, phylogenetic, synteny and collinearity analysis indicated that SnRK2s, especially the subclass III of SnRK2, are evolutionally conserved in maize, rice and Arabidopsis. Subcellular localization showed that ZmSnRK2 proteins are localized in the nucleus and cytoplasm. The RNA-Seq datasets and qRT-PCR analysis showed that ZmSnRK2 genes exhibit spatial and temporal expression patterns during the growth and development of different maize tissues, and the transcript levels of some ZmSnRK2 genes in kernel are significantly induced by ABA and sucrose treatment. In addition, we found that ZmSnRK2.10, which belongs to subclass III, is highly expressed in kernel and activated by ABA. Overexpression of ZmSnRK2.10 partially rescued the ABA-insensitive phenotype of snrk2.2/2.3 double and snrk2.2/2.3/2.6 triple mutants and led to delaying plant flowering in Arabidopsis. CONCLUSION The SnRK2 gene family exhibits a high evolutionary conservation and has expanded with whole-genome duplication events in plants. The ZmSnRK2s expanded in maize with whole-genome and segmental duplication, not tandem duplication. The expression pattern analysis of ZmSnRK2s in maize offers important information to study their functions. Study of the functions of ZmSnRK.10 in Arabidopsis suggests that the ABA-dependent members of SnRK2s are evolutionarily conserved in plants. Our study elucidated the structure and evolution of SnRK2 genes in plants and provided a basis for the functional study of ZmSnRK2s protein in maize.
Collapse
Affiliation(s)
- Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Binjie Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yayun Wang
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Changqing Mao
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yongbin Wang
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| |
Collapse
|
2
|
NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci U S A 2019; 116:11223-11228. [PMID: 31110006 DOI: 10.1073/pnas.1904995116] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grain starch and protein are synthesized during endosperm development, prompting the question of what regulatory mechanism underlies the synchronization of the accumulation of secondary and primary gene products. We found that two endosperm-specific NAC transcription factors, ZmNAC128 and ZmNAC130, have such a regulatory function. Knockdown of expression of ZmNAC128 and ZmNAC130 with RNA interference (RNAi) caused a shrunken kernel phenotype with significant reduction of starch and protein. We could show that ZmNAC128 and ZmNAC130 regulate the transcription of Bt2 and then reduce its protein level, a rate-limiting step in starch synthesis of maize endosperm. Lack of ZmNAC128 and ZmNAC130 also reduced accumulation of zeins and nonzeins by 18% and 24% compared with nontransgenic siblings, respectively. Although ZmNAC128 and ZmNAC130 affected expression of zein genes in general, they specifically activated transcription of the 16-kDa γ-zein gene. The two transcription factors did not dimerize with each other but exemplified redundancy, whereas individual discovery of their function was not amenable to conventional genetics but illustrated the power of RNAi. Given that both the Bt2 and the 16-kDa γ-zein genes were activated by ZmNAC128 or ZmNAC130, we could identify a core binding site ACGCAA contained within their target promoter regions by combining Dual-Luciferase Reporter and Electrophoretic Mobility Shift assays. Consistent with these properties, transcriptomic profiling uncovered that lack of ZmNAC128 and ZmNAC130 had a pleiotropic effect on the utilization of carbohydrates and amino acids.
Collapse
|
3
|
Skrzypek E, Warzecha T, Noga A, Warchoł M, Czyczyło-Mysza I, Dziurka K, Marcińska I, Kapłoniak K, Sutkowska A, Nita Z, Werwińska K, Idziak-Helmcke D, Rojek M, Hosiawa-Barańska M. Complex characterization of oat ( Avena sativa L.) lines obtained by wide crossing with maize ( Zea mays L.). PeerJ 2018; 6:e5107. [PMID: 29967749 PMCID: PMC6022724 DOI: 10.7717/peerj.5107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Background The oat × maize addition (OMA) lines are used for mapping of the maize genome, the studies of centromere-specific histone (CENH3), gene expression, meiotic chromosome behavior and also for introducing maize C4 photosynthetic system to oat. The aim of our study was the identification and molecular-cytogenetic characterization of oat × maize hybrids. Methods Oat DH lines and oat × maize hybrids were obtained using the wide crossing of Avena sativa L. with Zea mays L. The plants identified as having a Grande-1 retrotransposon fragment, which produced seeds, were used for genomic in situ hybridization (GISH). Results A total of 138 oat lines obtained by crossing of 2,314 oat plants from 80 genotypes with maize cv. Waza were tested for the presence of maize chromosomes. The presence of maize chromatin was indicated in 66 lines by amplification of the PCR product (500 bp) generated using primers specific for the maize retrotransposon Grande-1. Genomic in situ hybridization (GISH) detected whole maize chromosomes in eight lines (40%). All of the analyzed plants possessed full complement of oat chromosomes. The number of maize chromosomes differed between the OMA lines. Four OMA lines possessed two maize chromosomes similar in size, three OMA—one maize chromosome, and one OMA—four maize chromosomes. In most of the lines, the detected chromosomes were labeled uniformly. The presence of six 45S rDNA loci was detected in oat chromosomes, but none of the added maize chromosomes in any of the lines carried 45S rDNA locus. Twenty of the analyzed lines did not possess whole maize chromosomes, but the introgression of maize chromatin in the oat chromosomes. Five of 66 hybrids were shorter in height, grassy type without panicles. Twenty-seven OMA lines were fertile and produced seeds ranging in number from 1–102 (in total 613). Sixty-three fertile DH lines, out of 72 which did not have an addition of maize chromosomes or chromatin, produced seeds in the range of 1–343 (in total 3,758). Obtained DH and OMA lines were fertile and produced seeds. Discussion In wide hybridization of oat with maize, the complete or incomplete chromosomes elimination of maize occur. Hybrids of oat and maize had a complete set of oat chromosomes without maize chromosomes, and a complete set of oat chromosomes with one to four retained maize chromosomes.
Collapse
Affiliation(s)
- Edyta Skrzypek
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Tomasz Warzecha
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Angelika Noga
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Marzena Warchoł
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Ilona Czyczyło-Mysza
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kinga Dziurka
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Izabela Marcińska
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kamila Kapłoniak
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Agnieszka Sutkowska
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Zygmunt Nita
- Plant Breeding Strzelce Ltd., PBAI Group, Strzelce, Polska
| | | | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Marta Hosiawa-Barańska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| |
Collapse
|
4
|
Maize defective kernel mutant generated by insertion of a Ds element in a gene encoding a highly conserved TTI2 cochaperone. Proc Natl Acad Sci U S A 2017; 114:5165-5170. [PMID: 28461460 DOI: 10.1073/pnas.1703498114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used the newly engineered transposable element Dsg to tag a gene that gives rise to a defective kernel (dek) phenotype. Dsg requires the autonomous element Ac for transposition. Upon excision, it leaves a short DNA footprint that can create in-frame and frameshift insertions in coding sequences. Therefore, we could create alleles of the tagged gene that confirmed causation of the dek phenotype by the Dsg insertion. The mutation, designated dek38-Dsg, is embryonic lethal, has a defective basal endosperm transfer (BETL) layer, and results in a smaller seed with highly underdeveloped endosperm. The maize dek38 gene encodes a TTI2 (Tel2-interacting protein 2) molecular cochaperone. In yeast and mammals, TTI2 associates with two other cochaperones, TEL2 (Telomere maintenance 2) and TTI1 (Tel2-interacting protein 1), to form the triple T complex that regulates DNA damage response. Therefore, we cloned the maize Tel2 and Tti1 homologs and showed that TEL2 can interact with both TTI1 and TTI2 in yeast two-hybrid assays. The three proteins regulate the cellular levels of phosphatidylinositol 3-kinase-related kinases (PIKKs) and localize to the cytoplasm and the nucleus, consistent with known subcellular locations of PIKKs. dek38-Dsg displays reduced pollen transmission, indicating TTI2's importance in male reproductive cell development.
Collapse
|
5
|
Zhang W, Xu J, Bennetzen JL, Messing J. Teff, an Orphan Cereal in the Chloridoideae, Provides Insights into the Evolution of Storage Proteins in Grasses. Genome Biol Evol 2016; 8:1712-21. [PMID: 27190000 PMCID: PMC4943188 DOI: 10.1093/gbe/evw117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Seed storage proteins (SSP) in cereals provide essential nutrition for humans and animals. Genes encoding these proteins have undergone rapid evolution in different grass species. To better understand the degree of divergence, we analyzed this gene family in the subfamily Chloridoideae, where the genome of teff (Eragrostis tef) has been sequenced. We find gene duplications, deletions, and rapid mutations in protein-coding sequences. The main SSPs in teff, like other grasses, are prolamins, here called eragrostins. Teff has γ- and δ-prolamins, but has no β-prolamins. One δ-type prolamin (δ1) in teff has higher methionine (33%) levels than in maize (23–25%). The other δ-type prolamin (δ2) has reduced methionine residues (<10%) and is phylogenetically closer to α prolamins. Prolamin δ2 in teff represents an intermediate between δ and α types that appears to have been lost in maize and other Panicoideae, and was replaced by the expansion of α-prolamins. Teff also has considerably larger numbers of α-prolamin genes, which we further divide into five sub-groups, where α2 and α5 represent the most abundant α-prolamins both in number and in expression. In addition, indolines that determine kernel softness are present in teff and the panicoid cereal called foxtail millet (Setaria italica) but not in sorghum or maize, indicating that these genes were only recently lost in some members of the Panicoideae. Moreover, this study provides not only information on the evolution of SSPs in the grass family but also the importance of α-globulins in protein aggregation and germplasm divergence.
Collapse
Affiliation(s)
- Wei Zhang
- Waksman Institute of Microbiology, Rutgers University
| | - Jianhong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou China
| | | | | |
Collapse
|