1
|
Evolutionary Changes in Pathways and Networks of Genes Expressed in the Brains of Humans and Macaques. J Mol Neurosci 2021; 71:1825-1837. [PMID: 34191269 DOI: 10.1007/s12031-021-01874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
As the key organ that separates humans from nonhuman primates, the brain has continuously evolved to adapt to environmental and climatic changes. Although humans share most genetic, molecular, and cellular features with other primates such as macaques, there are significant differences in the structure and function of the brain between humans and these species. Thus, exploring the differences between the brains of human and nonhuman primates in the context of evolution will provide insights into the development, functionality, and diseases of the human central nervous system (CNS). Since the genes involved in many aspects of the human brain are under common pressures of natural selection, their evolutionary features can be analyzed collectively at the pathway level. In this study, the molecular mechanisms underlying human brain capabilities were explored by comparing the evolution features of pathways enriched in genes expressed in the human brain and the macaque brain. We identified 31 pathways with differential evolutionary properties, including those related to neurological diseases, signal transduction, immunological response, and metabolic processes. By analyzing genes differentially expressed in brain regions or development stages between humans and macaques, 9 and 4 pathways with differential evolutionary properties were detected, respectively. We further performed crosstalk analysis on the pathways to obtain an intuitive correlation between the pathways, which is helpful in understanding the mechanisms of interaction between pathways. Our results provide on a comprehensive view of the evolutionary pathways of the human CNS and can serve as a reference for the study of human brain development.
Collapse
|
2
|
Castano-Duque L, Ghosal S, Quilloy FA, Mitchell-Olds T, Dixit S. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment. PLANT PHYSIOLOGY 2021; 186:1042-1059. [PMID: 33638990 PMCID: PMC8195528 DOI: 10.1093/plphys/kiab100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in 2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a generalized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influences AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling establishment developmental stages.
Collapse
Affiliation(s)
| | - Sharmistha Ghosal
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | - Fergie A Quilloy
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | | | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| |
Collapse
|
3
|
Jovanovic VM, Sarfert M, Reyna-Blanco CS, Indrischek H, Valdivia DI, Shelest E, Nowick K. Positive Selection in Gene Regulatory Factors Suggests Adaptive Pleiotropic Changes During Human Evolution. Front Genet 2021; 12:662239. [PMID: 34079582 PMCID: PMC8166252 DOI: 10.3389/fgene.2021.662239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory factors (GRFs), such as transcription factors, co-factors and histone-modifying enzymes, play many important roles in modifying gene expression in biological processes. They have also been proposed to underlie speciation and adaptation. To investigate potential contributions of GRFs to primate evolution, we analyzed GRF genes in 27 publicly available primate genomes. Genes coding for zinc finger (ZNF) proteins, especially ZNFs with a Krüppel-associated box (KRAB) domain were the most abundant TFs in all genomes. Gene numbers per TF family differed between all species. To detect signs of positive selection in GRF genes we investigated more than 3,000 human GRFs with their more than 70,000 orthologs in 26 non-human primates. We implemented two independent tests for positive selection, the branch-site-model of the PAML suite and aBSREL of the HyPhy suite, focusing on the human and great ape branch. Our workflow included rigorous procedures to reduce the number of false positives: excluding distantly similar orthologs, manual corrections of alignments, and considering only genes and sites detected by both tests for positive selection. Furthermore, we verified the candidate sites for selection by investigating their variation within human and non-human great ape population data. In order to approximately assign a date to positively selected sites in the human lineage, we analyzed archaic human genomes. Our work revealed with high confidence five GRFs that have been positively selected on the human lineage and one GRF that has been positively selected on the great ape lineage. These GRFs are scattered on different chromosomes and have been previously linked to diverse functions. For some of them a role in speciation and/or adaptation can be proposed based on the expression pattern or association with human diseases, but it seems that they all contributed independently to human evolution. Four of the positively selected GRFs are KRAB-ZNF proteins, that induce changes in target genes co-expression and/or through arms race with transposable elements. Since each positively selected GRF contains several sites with evidence for positive selection, we suggest that these GRFs participated pleiotropically to phenotypic adaptations in humans.
Collapse
Affiliation(s)
- Vladimir M Jovanovic
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany.,Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Melanie Sarfert
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| | - Carlos S Reyna-Blanco
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Dulce I Valdivia
- Evolutionary Genomics Laboratory and Genome Topology and Regulation Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-Irapuato), Irapuato, Mexico
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom
| | - Katja Nowick
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Takou M, Hämälä T, Koch EM, Steige KA, Dittberner H, Yant L, Genete M, Sunyaev S, Castric V, Vekemans X, Savolainen O, de Meaux J. Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Mol Biol Evol 2021; 38:1820-1836. [PMID: 33480994 PMCID: PMC8097302 DOI: 10.1093/molbev/msaa322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.
Collapse
Affiliation(s)
- Margarita Takou
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kim A Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | | | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mathieu Genete
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Castric
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Xavier Vekemans
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | |
Collapse
|
5
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
6
|
Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O'Connell MJ, Spillane C. Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana. Mol Biol Evol 2019; 36:1239-1253. [PMID: 30913563 PMCID: PMC6526901 DOI: 10.1093/molbev/msz063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.
Collapse
Affiliation(s)
- Reetu Tuteja
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Center for Genomics and Systems Biology, New York University, New York, NY
| | - Peter C McKeown
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pat Ryan
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Claire C Morgan
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland.,Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Mark T A Donoghue
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim Downing
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charles Spillane
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
7
|
Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology. G3-GENES GENOMES GENETICS 2018; 8:1315-1325. [PMID: 29467190 PMCID: PMC5873920 DOI: 10.1534/g3.118.200035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that significantly deviated from neutrality either experienced soft sweeps or population-specific hard sweeps. Interestingly, while most hard sweeps occurred on genes involved in sialic acid recognition, most soft sweeps involved genes associated with recycling, degradation and activation, transport, and transfer functions. We propose that the lack of signatures of recent positive selection for the majority of the sialic acid biology genes is consistent with the view that these genes regulate immune responses against ancient rather than contemporary cosmopolitan or geographically restricted pathogens.
Collapse
|
8
|
Daub JT, Moretti S, Davydov II, Excoffier L, Robinson-Rechavi M. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans. Mol Biol Evol 2017; 34:1391-1402. [PMID: 28333345 PMCID: PMC5435107 DOI: 10.1093/molbev/msx083] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene set enrichment approaches have been increasingly successful in finding signals of recent polygenic selection in the human genome. In this study, we aim at detecting biological pathways affected by positive selection in more ancient human evolutionary history. Focusing on four branches of the primate tree that lead to modern humans, we tested all available protein coding gene trees of the Primates clade for signals of adaptation in these branches, using the likelihood-based branch site test of positive selection. The results of these locus-specific tests were then used as input for a gene set enrichment test, where whole pathways are globally scored for a signal of positive selection, instead of focusing only on outlier "significant" genes. We identified signals of positive selection in several pathways that are mainly involved in immune response, sensory perception, metabolism, and energy production. These pathway-level results are highly significant, even though there is no functional enrichment when only focusing on top scoring genes. Interestingly, several gene sets are found significant at multiple levels in the phylogeny, but different genes are responsible for the selection signal in the different branches. This suggests that the same function has been optimized in different ways at different times in primate evolution.
Collapse
Affiliation(s)
- J T Daub
- CMPG, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - S Moretti
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - I I Davydov
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - L Excoffier
- CMPG, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - M Robinson-Rechavi
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Szedlak A, Smith N, Liu L, Paternostro G, Piermarocchi C. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks. PLoS Comput Biol 2016; 12:e1005009. [PMID: 27359334 PMCID: PMC4928929 DOI: 10.1371/journal.pcbi.1005009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/25/2016] [Indexed: 01/26/2023] Open
Abstract
The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.
Collapse
Affiliation(s)
- Anthony Szedlak
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
| | - Nicholas Smith
- Salgomed Inc., Del Mar, California, United States of America
| | - Li Liu
- College of Health Solutions, Arizona State University, Tempe, Arizona, United States of America
| | - Giovanni Paternostro
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
10
|
Alves I, Arenas M, Currat M, Sramkova Hanulova A, Sousa VC, Ray N, Excoffier L. Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia. Mol Biol Evol 2015; 33:946-58. [PMID: 26637555 PMCID: PMC4776706 DOI: 10.1093/molbev/msv332] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.
Collapse
Affiliation(s)
- Isabel Alves
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland Population and Conservation Genetics Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Miguel Arenas
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mathias Currat
- Anthropology, Genetics and Peopling History Lab, Department of Genetics & Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Anna Sramkova Hanulova
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Ray
- EnviroSPACE Lab, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|