1
|
Wang Y, Chen KP. C and G are frequently mutated into T and A in coding regions of human genes. Mol Genet Genomics 2024; 299:23. [PMID: 38431687 DOI: 10.1007/s00438-024-02118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Nucleotide mutations in human genes have long been a hot subject for study because some of them may lead to severe human diseases. Understanding the general mutational process and evolutionary trend of human genes could help answer such questions as why certain diseases occur and what challenges we face in protecting human health. In this study, we conducted statistics on 89,895 single-nucleotide variations identified in coding regions of 18,339 human genes. The results show that C and G are frequently mutated into T and A in human genes. C/G (C or G)-to-T/A mutations lead to reduction of hydrogen bonds in double-stranded DNA because C-G and T-A base pairs are maintained by three and two hydrogen bonds respectively. C-to-T and G-to-A mutations occur predominantly in human genes because they not only reduce hydrogen bonds but also belong to transition mutation. Reduction of hydrogen bonds could reduce energy consumption not only in separating double strands of mutated DNA for transcription and replication but also in disrupting stem-loop structure of mutated mRNA for translation. It is thus considered that to reduce hydrogen bonds (and thus to reduce energy consumption in gene expression) is one of the driving forces for nucleotide mutation. Moreover, codon mutation is positively correlated to its content, suggesting that most mutations are not targeted on changing any specific codons (amino acids) but are merely for reducing hydrogen bonds. Our study provides an example of utilizing single-nucleotide variation data to infer evolutionary trend of human genes, which can be referenced to conduct similar studies in other organisms.
Collapse
Affiliation(s)
- Yong Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Cui G, Hong J, Chung-Davidson YW, Infield D, Xu X, Li J, Simhaev L, Khazanov N, Stauffer B, Imhoff B, Cottrill K, Blalock JE, Li W, Senderowitz H, Sorscher E, McCarty NA, Gaggar A. An Ancient CFTR Ortholog Informs Molecular Evolution in ABC Transporters. Dev Cell 2019; 51:421-430.e3. [PMID: 31679858 DOI: 10.1016/j.devcel.2019.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/30/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport. Here, we describe the earliest known CFTR, expressed in sea lamprey (Petromyzon marinus), with unique structural features, altered kinetics of activation and sensitivity to inhibition, and altered single-channel conductance compared to human CFTR. Our data provide the earliest evolutionary evidence of CFTR, offering insight regarding changes in gene and protein structure that underpin evolution from transporter to anion channel. Importantly, these data provide a unique platform to enhance our understanding of vertebrate phylogeny over a critical period of evolutionary expansion.
Collapse
Affiliation(s)
- Guiying Cui
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Jeong Hong
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA; Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Daniel Infield
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Xin Xu
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Jindong Li
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Luba Simhaev
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Brandon Stauffer
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Barry Imhoff
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Kirsten Cottrill
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - J Edwin Blalock
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | | | - Eric Sorscher
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA; Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nael A McCarty
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Xie M, Ming Y, Shao F, Jian J, Zhang Y, Peng Z. Restriction site-associated DNA sequencing for SNP discovery and high-density genetic map construction in southern catfish ( Silurus meridionalis). ROYAL SOCIETY OPEN SCIENCE 2018; 5:172054. [PMID: 29892392 PMCID: PMC5990832 DOI: 10.1098/rsos.172054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Single-nucleotide polymorphism (SNP) markers and high-density genetic maps are important resources for marker-assisted selection, mapping of quantitative trait loci (QTLs) and genome structure analysis. Although linkage maps in certain catfish species have been obtained, high-density maps remain unavailable in the economically important southern catfish (Silurus meridionalis). Recently developed restriction site-associated DNA (RAD) markers have proved to be a promising tool for SNP detection and genetic map construction. The objective of the present study was to construct a high-density linkage map using SNPs generated by next-generation RAD sequencing in S. meridionalis for future genetic and genomic studies. An F1 population of 100 individuals was obtained by intraspecific crossing of two wild heterozygous individuals. In total, 77 634 putative high-quality bi-allelic SNPs between the parents were discovered by mapping the parents' paired-end RAD reads onto the reference contigs from both parents, of which 54.7% were transitions and 45.3% were transversions (transition/transversion ratio of 1.2). Finally, 26 714 high-quality RAD markers were grouped into 29 linkage groups by using de novo clustering methods (Stacks). Among these markers, 4514 were linked to the female genetic map, 23 718 to the male map and 6715 effective loci were linked to the integrated map spanning 5918.31 centimorgans (cM), with an average marker interval of 0.89 cM. High-resolution genetic maps are a useful tool for both marker-assisted breeding and various genome investigations in catfish, such as sequence assembly, gene localization, QTL detection and genome structure comparison. Hence, such a high-density linkage map will serve as a valuable resource for comparative genomics and fine-scale QTL mapping in catfish species.
Collapse
Affiliation(s)
- Mimi Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, People's Republic of China
| | - Yao Ming
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, People's Republic of China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, People's Republic of China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, People's Republic of China
| |
Collapse
|
4
|
Hill AE, Plyler ZE, Tiwari H, Patki A, Tully JP, McAtee CW, Moseley LA, Sorscher EJ. Longevity and plasticity of CFTR provide an argument for noncanonical SNP organization in hominid DNA. PLoS One 2014; 9:e109186. [PMID: 25350658 PMCID: PMC4211684 DOI: 10.1371/journal.pone.0109186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022] Open
Abstract
Like many other ancient genes, the cystic fibrosis transmembrane conductance regulator (CFTR) has survived for hundreds of millions of years. In this report, we consider whether such prodigious longevity of an individual gene – as opposed to an entire genome or species – should be considered surprising in the face of eons of relentless DNA replication errors, mutagenesis, and other causes of sequence polymorphism. The conventions that modern human SNP patterns result either from purifying selection or random (neutral) drift were not well supported, since extant models account rather poorly for the known plasticity and function (or the established SNP distributions) found in a multitude of genes such as CFTR. Instead, our analysis can be taken as a polemic indicating that SNPs in CFTR and many other mammalian genes may have been generated—and continue to accrue—in a fundamentally more organized manner than would otherwise have been expected. The resulting viewpoint contradicts earlier claims of ‘directional’ or ‘intelligent design-type’ SNP formation, and has important implications regarding the pace of DNA adaptation, the genesis of conserved non-coding DNA, and the extent to which eukaryotic SNP formation should be viewed as adaptive.
Collapse
Affiliation(s)
- Aubrey E. Hill
- Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zackery E. Plyler
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joel P. Tully
- Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christopher W. McAtee
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Leah A. Moseley
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric J. Sorscher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|