1
|
Denisko D, Kim J, Ku J, Zhao B, Lee EA. Inverted Alu repeats in loop-out exon skipping across hominoid evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642063. [PMID: 40161837 PMCID: PMC11952303 DOI: 10.1101/2025.03.07.642063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Changes in RNA splicing over the course of evolution have profoundly diversified the functional landscape of the human genome. While DNA sequences proximal to intron-exon junctions are known to be critical for RNA splicing, the impact of distal intronic sequences remains underexplored. Emerging evidence suggests that inverted pairs of intronic Alu elements can promote exon skipping by forming RNA stem-loop structures. However, their prevalence and influence throughout evolution remain unknown. Results Here, we present a systematic analysis of inverted Alu pairs across the human genome to assess their impact on exon skipping through predicted RNA stem-loop formation and their relevance to hominoid evolution. We found that inverted Alu pairs, particularly pairs of AluY-AluSx1 and AluSz-AluSx, are enriched in the flanking regions of skippable exons genome-wide and are predicted to form stable stem-loop structures. Exons defined by weak 3' acceptor and strong 5' donor splice sites appear especially prone to this skipping mechanism. Through comparative genome analysis across nine primate species, we identified 67,126 hominoid-specific Alu insertions, primarily from AluY and AluS subfamilies, which form inverted pairs enriched across skippable exons in genes of ubiquitination-related pathways. Experimental validation of exon skipping among several hominoid-specific inverted Alu pairs further reinforced their potential evolutionary significance. Conclusion This work extends our current knowledge of the roles of RNA secondary structure formed by inverted Alu pairs and details a newly emerging mechanism through which transposable elements have contributed to genomic innovation across hominoid evolution at the transcriptomic level.
Collapse
Affiliation(s)
- Danielle Denisko
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeonghyeon Kim
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Jayoung Ku
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ramirez P, Sun W, Dehkordi SK, Zare H, Pascarella G, Carninci P, Fongang B, Bieniek KF, Frost B. Nanopore Long-Read Sequencing Unveils Genomic Disruptions in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.01.578450. [PMID: 38370753 PMCID: PMC10871260 DOI: 10.1101/2024.02.01.578450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Studies in laboratory models and postmortem human brain tissue from patients with Alzheimer's disease have revealed disruption of basic cellular processes such as DNA repair and epigenetic control as drivers of neurodegeneration. While genomic alterations in regions of the genome that are rich in repetitive sequences, often termed "dark regions," are difficult to resolve using traditional sequencing approaches, long-read technologies offer promising new avenues to explore previously inaccessible regions of the genome. In the current study, we leverage nanopore-based long-read whole-genome sequencing of DNA extracted from postmortem human frontal cortex at early and late stages of Alzheimer's disease, as well as age-matched controls, to analyze retrotransposon insertion events, non-allelic homologous recombination (NAHR), structural variants and DNA methylation within retrotransposon loci and other repetitive/dark regions of the human genome. Interestingly, we find that retrotransposon insertion events and repetitive element-associated NAHR are particularly enriched within centromeric and pericentromeric regions of DNA in the aged human brain, and that ribosomal DNA (rDNA) is subject to a high degree of NAHR compared to other regions of the genome. We detect a trending increase in potential somatic retrotransposition events of the small interfering nuclear element (SINE) AluY in late-stage Alzheimer's disease, and differential changes in methylation within repetitive elements and retrotransposons according to disease stage. Taken together, our analysis provides the first long-read DNA sequencing-based analysis of retrotransposon sequences, NAHR, structural variants, and DNA methylation in the aged brain, and points toward transposable elements, centromeric/pericentromeric regions and rDNA as hotspots for genomic variation.
Collapse
Affiliation(s)
- Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Brown University, Providence, Rhode Island
| | - Wenyan Sun
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Brown University, Providence, Rhode Island
| |
Collapse
|
3
|
Scheuren M, Möhner J, Müller M, Zischler H. DSB profiles in human spermatozoa highlight the role of TMEJ in the male germline. Front Genet 2024; 15:1423674. [PMID: 39040993 PMCID: PMC11260735 DOI: 10.3389/fgene.2024.1423674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
The male mammalian germline is characterized by substantial chromatin remodeling associated with the transition from histones to protamines during spermatogenesis, followed by the reversal to nucleohistones in the male pronucleus preceding the zygotic genome activation. Both transitions are associated with the extensive formation of DNA double-strand breaks (DSBs), requiring an estimated 5 to 10 million transient DSBs per spermatozoa. Additionally, the high transcription rate in early stages of spermatogenesis leads to transcription-coupled damage preceding meiotic homologous recombination, potentially further contributing to the DSB landscape in mature spermatozoa. Once meiosis is completed, spermatozoa remain haploid and therefore cannot rely on error-free homologous recombination, but instead depend on error-prone classical non-homologous end joining (cNHEJ). This DNA damage/repair-scenario is proposed to be one of the main causes of the observed paternal mutation propensity in human evolution. Recent studies have shown that DSBs in the male pronucleus are repaired by maternally provided Polθ in Caenorhabditis elegans through Polθ-mediated end joining (TMEJ). Additionally, population genetic datasets have revealed a preponderance of TMEJ signatures associated with human variation. Since these signatures are the result of the combined effect of TMEJ and DSB formation in spermatozoa and male pronuclei, we used a BLISS-based protocol to analyze recurrent DSBs in mature human sperm heads as a proxy of the male pronucleus before zygotic chromatin remodeling. The DSBs were found to be enriched in (YR)n short tandem repeats and in evolutionarily young SINEs, reminiscent to patterns observed in murine spermatids, indicating evolutionary hotspots of recurrent DSB formation in mammalian spermatozoa. Additionally, we detected a similar DSB pattern in diploid human IMR90 cells when cNHEJ was selectively inhibited, indicating the significant impact of absent cNHEJ on the sperm DSB landscape. Strikingly, regions associated with most retained histones, and therefore less condensed chromatin, were not strongly enriched with recurrent DSBs. In contrast, the fraction of retained H3K27me3 in the mature spermatozoa displayed a strong association with recurrent DSBs. DSBs in H3K27me3 are associated with a preference for TMEJ over cNHEJ during repair. We hypothesize that the retained H3K27me3 may trigger transgenerational DNA repair by priming maternal Polθ to these regions.
Collapse
Affiliation(s)
- Maurice Scheuren
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonas Möhner
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Zischler
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Fernández-Suárez E, González-Del Pozo M, Méndez-Vidal C, Martín-Sánchez M, Mena M, de la Morena-Barrio B, Corral J, Borrego S, Antiñolo G. Long-read sequencing improves the genetic diagnosis of retinitis pigmentosa by identifying an Alu retrotransposon insertion in the EYS gene. Mob DNA 2024; 15:9. [PMID: 38704576 PMCID: PMC11069205 DOI: 10.1186/s13100-024-00320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Biallelic variants in EYS are the major cause of autosomal recessive retinitis pigmentosa (arRP) in certain populations, a clinically and genetically heterogeneous disease that may lead to legal blindness. EYS is one of the largest genes (~ 2 Mb) expressed in the retina, in which structural variants (SVs) represent a common cause of disease. However, their identification using short-read sequencing (SRS) is not always feasible. Here, we conducted targeted long-read sequencing (T-LRS) using adaptive sampling of EYS on the MinION sequencing platform (Oxford Nanopore Technologies) to definitively diagnose an arRP family, whose affected individuals (n = 3) carried the heterozygous pathogenic deletion of exons 32-33 in the EYS gene. As this was a recurrent variant identified in three additional families in our cohort, we also aimed to characterize the known deletion at the nucleotide level to assess a possible founder effect. RESULTS T-LRS in family A unveiled a heterozygous AluYa5 insertion in the coding exon 43 of EYS (chr6(GRCh37):g.64430524_64430525ins352), which segregated with the disease in compound heterozygosity with the previously identified deletion. Visual inspection of previous SRS alignments using IGV revealed several reads containing soft-clipped bases, accompanied by a slight drop in coverage at the Alu insertion site. This prompted us to develop a simplified program using grep command to investigate the recurrence of this variant in our cohort from SRS data. Moreover, LRS also allowed the characterization of the CNV as a ~ 56.4kb deletion spanning exons 32-33 of EYS (chr6(GRCh37):g.64764235_64820592del). The results of further characterization by Sanger sequencing and linkage analysis in the four families were consistent with a founder variant. CONCLUSIONS To our knowledge, this is the first report of a mobile element insertion into the coding sequence of EYS, as a likely cause of arRP in a family. Our study highlights the value of LRS technology in characterizing and identifying hidden pathogenic SVs, such as retrotransposon insertions, whose contribution to the etiopathogenesis of rare diseases may be underestimated.
Collapse
Affiliation(s)
- Elena Fernández-Suárez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - María González-Del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Marcela Mena
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
5
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Storer JM, Walker JA, Rewerts LC, Brown MA, Beckstrom TO, Herke SW, Roos C, Batzer MA. Owl Monkey Alu Insertion Polymorphisms and Aotus Phylogenetics. Genes (Basel) 2022; 13:2069. [PMID: 36360306 PMCID: PMC9691001 DOI: 10.3390/genes13112069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Owl monkeys (genus Aotus), or "night monkeys" are platyrrhine primates in the Aotidae family. Early taxonomy only recognized one species, Aotus trivirgatus, until 1983, when Hershkovitz proposed nine unique species designations, classified into red-necked and gray-necked species groups based predominately on pelage coloration. Recent studies questioned this conventional separation of the genus and proposed designations based on the geographical location of wild populations. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. A scaffold-level genome assembly for one Aotus species, Aotus nancymaae [Anan_2.0], facilitated large-scale ascertainment of nearly 2000 young lineage-specific Alu insertions. This study provides candidate oligonucleotides for locus-specific PCR assays for over 1350 of these elements. For 314 Alu elements across four taxa with multiple specimens, PCR analyses identified 159 insertion polymorphisms, including 21 grouping A. nancymaae and Aotus azarae (red-necked species) as sister taxa, with Aotus vociferans and A. trivirgatus (gray-necked) being more basal. DNA sequencing identified five novel Alu elements from three different taxa. The Alu datasets reported in this study will assist in species identification and provide a valuable resource for Aotus phylogenetics, population genetics and conservation strategies when applied to wild populations.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Lydia C. Rewerts
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Morgan A. Brown
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Thomas O. Beckstrom
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Department of Oral and Maxillofacial Surgery, University of Washington, 1959 NE Pacific Street, Health Sciences Building B-241, Seattle, WA 98195, USA
| | - Scott W. Herke
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Lee H, Min JW, Mun S, Han K. Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101583. [PMID: 36295018 PMCID: PMC9605557 DOI: 10.3390/life12101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.
Collapse
Affiliation(s)
- Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- Correspondence: (S.M.); (K.H.)
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- HuNbiome Co., Ltd., R&D Center, Seoul 08507, Korea
- Correspondence: (S.M.); (K.H.)
| |
Collapse
|
8
|
Hanineva A, Park KS, Wang JJ, DeAngelis MM, Farkas MH, Zhang SX. Emerging roles of circular RNAs in retinal diseases. Neural Regen Res 2022; 17:1875-1880. [PMID: 35142661 PMCID: PMC8848606 DOI: 10.4103/1673-5374.335691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Aneliya Hanineva
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| | - Michael H Farkas
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Research Service, Veterans Administration Western New York Healthcare System; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Li Q, Gloudemans MJ, Geisinger JM, Fan B, Aguet F, Sun T, Ramaswami G, Li YI, Ma JB, Pritchard JK, Montgomery SB, Li JB. RNA editing underlies genetic risk of common inflammatory diseases. Nature 2022; 608:569-577. [PMID: 35922514 PMCID: PMC9790998 DOI: 10.1038/s41586-022-05052-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.
Collapse
Affiliation(s)
- Qin Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J Gloudemans
- Department of Pathology, Stanford University, Stanford, CA, USA
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | | | - Boming Fan
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | | | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yang I Li
- Department of Genetics, Stanford University, Stanford, CA, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jin-Biao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Halabian R, Makałowski W. A Map of 3' DNA Transduction Variants Mediated by Non-LTR Retroelements on 3202 Human Genomes. BIOLOGY 2022; 11:1032. [PMID: 36101413 PMCID: PMC9311842 DOI: 10.3390/biology11071032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 05/03/2023]
Abstract
As one of the major structural constituents, mobile elements comprise more than half of the human genome, among which Alu, L1, and SVA elements are still active and continue to generate new offspring. One of the major characteristics of L1 and SVA elements is their ability to co-mobilize adjacent downstream sequences to new loci in a process called 3' DNA transduction. Transductions influence the structure and content of the genome in different ways, such as increasing genome variation, exon shuffling, and gene duplication. Moreover, given their mutagenicity capability, 3' transductions are often involved in tumorigenesis or in the development of some diseases. In this study, we analyzed 3202 genomes sequenced at high coverage by the New York Genome Center to catalog and characterize putative 3' transduced segments mediated by L1s and SVAs. Here, we present a genome-wide map of inter/intrachromosomal 3' transduction variants, including their genomic and functional location, length, progenitor location, and allelic frequency across 26 populations. In total, we identified 7103 polymorphic L1s and 3040 polymorphic SVAs. Of these, 268 and 162 variants were annotated as high-confidence L1 and SVA 3' transductions, respectively, with lengths that ranged from 7 to 997 nucleotides. We found specific loci within chromosomes X, 6, 7, and 6_GL000253v2_alt as master L1s and SVAs that had yielded more transductions, among others. Together, our results demonstrate the dynamic nature of transduction events within the genome and among individuals and their contribution to the structural variations of the human genome.
Collapse
Affiliation(s)
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
11
|
Fan HH, Zheng J, Huang XY, Wu KY, Cui L, Dong HJ, Wang Z, Zhang X, Zhu JH. An antisense Alu transposon insertion/deletion polymorphism of ALDH1A1 may functionally associate with Parkinson's disease. BMC Geriatr 2022; 22:427. [PMID: 35578164 PMCID: PMC9109383 DOI: 10.1186/s12877-022-03132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 (encoded by ALDH1A1) has been shown to protect against Parkinson's disease (PD) by reducing toxic metabolites of dopamine. We herein revealed an antisense Alu element insertion/deletion polymorphism in intron 4 of ALDH1A1, and hypothesized that it might play a role in PD. METHODS: A Han Chinese cohort comprising 488 PD patients and 515 controls was recruited to validate the Alu insertion/deletion polymorphism following a previous study of tag-single nucleotide polymorphisms, where rs7043217 was shown to be significantly associated with PD. Functional analyses of the Alu element insertion were performed. RESULTS The Alu element of ALDH1A1 was identified to be a variant of Yb8 subfamily and termed as Yb8c4. The antisense Yb8c4 insertion/deletion polymorphism (named asYb8c4ins and asYb8c4del, respectively) appeared to be in a complete linkage disequilibrium with rs7043217 and was validated to be significantly associated with PD susceptibility with asYb8c4ins serving as a risk allele (P = 0.030, OR = 1.224, 95% CI = 1.020-1.470). Multiple functional analyses including ALDH1A1 mRNA expression in blood cells of carriers, and reporters of EGFP and luciferase showed that the asYb8c4ins had a suppressive activity on gene transcription. Mechanistic explorations suggested that the asYb8c4ins induced no changes in CpG methylation and mRNA splicing of ALDH1A1 and appeared no binding of transcription factors. CONCLUSIONS Our results consolidate an involvement of ALDH1 in PD pathogenesis. The asYb8c4 polymorphism may be a functional output of its linkage disequilibrium-linked single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Hui-Hui Fan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jing Zheng
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiao-Ya Huang
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Ke-Yun Wu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Cui
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hao-Jia Dong
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhen Wang
- Department of Neurology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
12
|
Recently Integrated Alu Elements in Capuchin Monkeys: A Resource for Cebus/ Sapajus Genomics. Genes (Basel) 2022; 13:genes13040572. [PMID: 35456378 PMCID: PMC9030454 DOI: 10.3390/genes13040572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Capuchins are platyrrhines (monkeys found in the Americas) within the Cebidae family. For most of their taxonomic history, the two main morphological types of capuchins, gracile (untufted) and robust (tufted), were assigned to a single genus, Cebus. Further, all tufted capuchins were assigned to a single species, Cebus apella, despite broad geographic ranges spanning Central and northern South America. In 2012, tufted capuchins were assigned to their genus, Sapajus, with eight currently recognized species and five Cebus species, although these numbers are still under debate. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. However, Alu elements have rarely been used to study capuchins. Recent genome-level assemblies for capuchins (Cebus imitator; [Cebus_imitator_1.0] and Sapajus apella [GSC_monkey_1.0]) facilitated large scale ascertainment of young lineage-specific Alu insertions. Reported here are 1607 capuchin specific and 678 Sapajus specific Alu insertions along with candidate oligonucleotides for locus-specific PCR assays for many elements. PCR analyses identified 104 genus level and 51 species level Alu insertion polymorphisms. The Alu datasets reported in this study provide a valuable resource that will assist in the classification of archival samples lacking phenotypic data and for the study of capuchin phylogenetic relationships.
Collapse
|
13
|
Manoj F, Tai LW, Wang KSM, Kuhlman TE. Targeted insertion of large genetic payloads using cas directed LINE-1 reverse transcriptase. Sci Rep 2021; 11:23625. [PMID: 34880381 PMCID: PMC8654924 DOI: 10.1038/s41598-021-03130-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
A difficult genome editing goal is the site-specific insertion of large genetic constructs. Here we describe the GENEWRITE system, where site-specific targetable activity of Cas endonucleases is coupled with the reverse transcriptase activity of the ORF2p protein of the human retrotransposon LINE-1. This is accomplished by providing two RNAs: a guide RNA targeting Cas endonuclease activity and an appropriately designed payload RNA encoding the desired insertion. Using E. coli as a simple platform for development and deployment, we show that with proper payload design and co-expression of helper proteins, GENEWRITE can enable insertion of large genetic payloads to precise locations, although with off-target effects, using the described approach. Based upon these results, we describe a potential strategy for implementation of GENEWRITE in more complex systems.
Collapse
Affiliation(s)
- Femila Manoj
- Microbiology Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Laura W Tai
- Department of Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Katelyn Sun Mi Wang
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA, 92521, USA
| | - Thomas E Kuhlman
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
14
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
15
|
Watkins WS, Feusier JE, Thomas J, Goubert C, Mallick S, Jorde LB. The Simons Genome Diversity Project: A Global Analysis of Mobile Element Diversity. Genome Biol Evol 2021; 12:779-794. [PMID: 32359137 PMCID: PMC7290288 DOI: 10.1093/gbe/evaa086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ongoing retrotransposition of Alu, LINE-1, and SINE–VNTR–Alu elements generates diversity and variation among human populations. Previous analyses investigating the population genetics of mobile element insertions (MEIs) have been limited by population ascertainment bias or by relatively small numbers of populations and low sequencing coverage. Here, we use 296 individuals representing 142 global populations from the Simons Genome Diversity Project (SGDP) to discover and characterize MEI diversity from deeply sequenced whole-genome data. We report 5,742 MEIs not originally reported by the 1000 Genomes Project and show that high sampling diversity leads to a 4- to 7-fold increase in MEI discovery rates over the original 1000 Genomes Project data. As a result of negative selection, nonreference polymorphic MEIs are underrepresented within genes, and MEIs within genes are often found in the transcriptional orientation opposite that of the gene. Globally, 80% of Alu subfamilies predate the expansion of modern humans from Africa. Polymorphic MEIs show heterozygosity gradients that decrease from Africa to Eurasia to the Americas, and the number of MEIs found uniquely in a single individual are also distributed in this general pattern. The maximum fraction of MEI diversity partitioned among the seven major SGDP population groups (FST) is 7.4%, similar to, but slightly lower than, previous estimates and likely attributable to the diverse sampling strategy of the SGDP. Finally, we utilize these MEIs to extrapolate the primary Native American shared ancestry component to back to Asia and provide new evidence from genome-wide identical-by-descent genetic markers that add additional support for a southeastern Siberian origin for most Native Americans.
Collapse
Affiliation(s)
| | | | - Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Clement Goubert
- Department of Molecular Biology and Genetics, Cornell University
| | - Swapon Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah
| |
Collapse
|
16
|
Stenz L. The L1-dependant and Pol III transcribed Alu retrotransposon, from its discovery to innate immunity. Mol Biol Rep 2021; 48:2775-2789. [PMID: 33725281 PMCID: PMC7960883 DOI: 10.1007/s11033-021-06258-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Genetic Medicine and Development, Faculty of Medicine, Geneva University, Geneva, Switzerland. .,Swiss Centre for Applied Human Toxicology, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Fukuda S, Varshney A, Fowler BJ, Wang SB, Narendran S, Ambati K, Yasuma T, Magagnoli J, Leung H, Hirahara S, Nagasaka Y, Yasuma R, Apicella I, Pereira F, Makin RD, Magner E, Liu X, Sun J, Wang M, Baker K, Marion KM, Huang X, Baghdasaryan E, Ambati M, Ambati VL, Pandey A, Pandya L, Cummings T, Banerjee D, Huang P, Yerramothu P, Tolstonog GV, Held U, Erwin JA, Paquola ACM, Herdy JR, Ogura Y, Terasaki H, Oshika T, Darwish S, Singh RK, Mozaffari S, Bhattarai D, Kim KB, Hardin JW, Bennett CL, Hinton DR, Hanson TE, Röver C, Parang K, Kerur N, Liu J, Werner BC, Sutton SS, Sadda SR, Schumann GG, Gelfand BD, Gage FH, Ambati J. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022751118. [PMID: 33526699 PMCID: PMC8017980 DOI: 10.1073/pnas.2022751118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akhil Varshney
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - Shao-Bin Wang
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Siddharth Narendran
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Aravind Eye Hospital System, Madurai 625020, India
| | - Kameshwari Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Hannah Leung
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Reo Yasuma
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Ivana Apicella
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Felipe Pereira
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ryan D Makin
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Eamonn Magner
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Xinan Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Jian Sun
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Mo Wang
- Doheny Eye Institute, Los Angeles, CA 90033
| | | | | | - Xiwen Huang
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, CA 90033
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Meenakshi Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Center for Digital Image Evaluation, Charlottesville, VA 22901
| | - Vidya L Ambati
- Center for Digital Image Evaluation, Charlottesville, VA 22901
| | - Akshat Pandey
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Lekha Pandya
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Tammy Cummings
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Daipayan Banerjee
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Peirong Huang
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Praveen Yerramothu
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Genrich V Tolstonog
- Department of Otolaryngology-Head and Neck Surgery, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Ulrike Held
- Department of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Jennifer A Erwin
- The Lieber Institute for Brain Development, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Apua C M Paquola
- The Lieber Institute for Brain Development, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Joseph R Herdy
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Yuichiro Ogura
- Department of Ophthalmology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shaban Darwish
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza 12622, Egypt
| | - Ramendra K Singh
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - James W Hardin
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Charles L Bennett
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Center for Medication Safety and Efficacy, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - David R Hinton
- Department of Ophthalmology, University of Southern California Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Timothy E Hanson
- Medtronic, Inc., Minneapolis, MN 55432
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Christian Röver
- Department of Medical Statistics, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Nagaraj Kerur
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Brian C Werner
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - S Scott Sutton
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, CA 90033
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerald G Schumann
- Department of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Bradley D Gelfand
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037;
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908;
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
18
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
19
|
Lee YG, Lee JY, Kim J, Kim YJ. Insertion variants missing in the human reference genome are widespread among human populations. BMC Biol 2020; 18:167. [PMID: 33187521 PMCID: PMC7666470 DOI: 10.1186/s12915-020-00894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Background Structural variants comprise diverse genomic arrangements including deletions, insertions, inversions, and translocations, which can generally be detected in humans through sequence comparison to the reference genome. Among structural variants, insertions are the least frequently identified variants, mainly due to ascertainment bias in the reference genome, lack of previous sequence knowledge, and low complexity of typical insertion sequences. Though recent developments in long-read sequencing deliver promise in annotating individual non-reference insertions, population-level catalogues on non-reference insertion variants have not been identified and the possible functional roles of these hidden variants remain elusive. Results To detect non-reference insertion variants, we developed a pipeline, InserTag, which generates non-reference contigs by local de novo assembly and then infers the full-sequence of insertion variants by tracing contigs from non-human primates and other human genome assemblies. Application of the pipeline to data from 2535 individuals of the 1000 Genomes Project helped identify 1696 non-reference insertion variants and re-classify the variants as retention of ancestral sequences or novel sequence insertions based on the ancestral state. Genotyping of the variants showed that individuals had, on average, 0.92-Mbp sequences missing from the reference genome, 92% of the variants were common (allele frequency > 5%) among human populations, and more than half of the variants were major alleles. Among human populations, African populations were the most divergent and had the most non-reference sequences, which was attributed to the greater prevalence of high-frequency insertion variants. The subsets of insertion variants were in high linkage disequilibrium with phenotype-associated SNPs and showed signals of recent continent-specific selection. Conclusions Non-reference insertion variants represent an important type of genetic variation in the human population, and our developed pipeline, InserTag, provides the frameworks for the detection and genotyping of non-reference sequences missing from human populations. Supplementary information Supplementary information accompanies this paper at 10.1186/s12915-020-00894-1.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Integrated Omics for Biomedical Science, WCU Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Young-Joon Kim
- Department of Integrated Omics for Biomedical Science, WCU Graduate School, Yonsei University, Seoul, Republic of Korea. .,Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Zheng D, Cho H, Wang W, Rambout X, Tian B, Maquat LE. 3'READS + RIP defines differential Staufen1 binding to alternative 3'UTR isoforms and reveals structures and sequence motifs influencing binding and polysome association. RNA (NEW YORK, N.Y.) 2020; 26:1621-1636. [PMID: 32796083 PMCID: PMC7566578 DOI: 10.1261/rna.076133.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Staufen1 (STAU1) is an RNA-binding protein (RBP) that interacts with double-stranded RNA structures and has been implicated in regulating different aspects of mRNA metabolism. Previous studies have indicated that STAU1 interacts extensively with RNA structures in coding regions (CDSs) and 3'-untranslated regions (3'UTRs). In particular, duplex structures formed within 3'UTRs by inverted-repeat Alu elements (IRAlus) interact with STAU1 through its double-stranded RNA-binding domains (dsRBDs). Using 3' region extraction and deep sequencing coupled to ribonucleoprotein immunoprecipitation (3'READS + RIP), together with reanalyzing previous STAU1 binding and RNA structure data, we delineate STAU1 interactions transcriptome-wide, including binding differences between alternative polyadenylation (APA) isoforms. Consistent with previous reports, RNA structures are dominant features for STAU1 binding to CDSs and 3'UTRs. Overall, relative to short 3'UTR counterparts, longer 3'UTR isoforms of genes have stronger STAU1 binding, most likely due to a higher frequency of RNA structures, including specific IRAlus sequences. Nevertheless, a sizable fraction of genes express transcripts showing the opposite trend, attributable to AU-rich sequences in their alternative 3'UTRs that may recruit antagonistic RBPs and/or destabilize RNA structures. Using STAU1-knockout cells, we show that strong STAU1 binding to mRNA 3'UTRs generally enhances polysome association. However, IRAlus generally have little impact on STAU1-mediated polysome association despite having strong interactions with the protein. Taken together, our work reveals complex interactions of STAU1 with its cognate RNA substrates. Our data also shed light on distinct post-transcriptional fates for the widespread APA isoforms in mammalian cells.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Wei Wang
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
21
|
DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes. PLoS One 2020; 15:e0234578. [PMID: 32525932 PMCID: PMC7289438 DOI: 10.1371/journal.pone.0234578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The identification of early markers of dementia is important for higher-risk populations such as those with type 2 diabetes (T2D). Retrotransposons, including long interspersed nuclear element 1 (LINE-1) and Alu, comprise ~40% of the human genome. Although dysregulation of these retrotransposons can induce aberrant gene regulation and genomic instability, their role in the development of pre-symptomatic dementia (PSD) among T2D patients is unknown. Here, we examined locus-specific changes in LINE-1 and Alu methylation in PSD and the potential to offset these changes via supplementation with folate and vitamin B12. We interrogated DNA methylation patterns corresponding to 22,352 probes for LINE-1 and Alu elements using publicly-available Illumina Infinium 450K methylation datasets from i) an 18-month prospective study in 28 T2D patients (GSE62003) and ii) an intervention study in which 44 individuals were supplemented with folic acid (400 μg/day) and vitamin B12 (500 μg/day) over two years (GSE74548). We identified 714 differentially methylated positions (DMP) mapping to retrotransposons in T2D patients who developed PSD in comparison to those who did not (PFDR < 0.05), comprised of 2.4% (228 probes) of all LINE-1 probes and 3.8% (486 probes) of all Alu probes. These loci were enriched in genes with functions related to Alzheimer's disease and cognitive decline, including GNB5, GNG7 and PKN3 (p < 0.05). In older individuals supplemented with folate/vitamin B12, 85 (11.9%) PSD retrotransposon loci showed significant changes in methylation (p < 0.05): participants with the MTHFR CC genotype predominantly showed hypermethylation at these loci, while hypomethylation was observed more frequently in those with the TT genotype. In T2D patients, LINE-1 and Alu elements are differentially methylated in PSD in a locus-specific manner and may offer clinical utility in monitoring risk of dementia. Further work is required to examine the potential for dietary supplementation in lowering the risk of PSD.
Collapse
|
22
|
Casanova EL, Konkel MK. The Developmental Gene Hypothesis for Punctuated Equilibrium: Combined Roles of Developmental Regulatory Genes and Transposable Elements. Bioessays 2020; 42:e1900173. [PMID: 31943266 PMCID: PMC7029956 DOI: 10.1002/bies.201900173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Theories of the genetics underlying punctuated equilibrium (PE) have been vague to date. Here the developmental gene hypothesis is proposed, which states that: 1) developmental regulatory (DevReg) genes are responsible for the orchestration of metazoan morphogenesis and their extreme conservation and mutation intolerance generates the equilibrium or stasis present throughout much of the fossil record and 2) the accumulation of regulatory elements and recombination within these same genes-often derived from transposable elements-drives punctuated bursts of morphological divergence and speciation across metazoa. This two-part hypothesis helps to explain the features that characterize PE, providing a theoretical genetic basis for the once-controversial theory. Also see the video abstract here https://youtu.be/C-fu-ks5yDs.
Collapse
Affiliation(s)
- Emily L. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine at Greenville, Greenville, South Carolina, USA
| | - Miriam K. Konkel
- Department of Genetics and Biochemistry, Clemson Center for Human Genetics, Biomedical Data Science and Informatics Program, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
23
|
Martinez-Gomez L, Abascal F, Jungreis I, Pozo F, Kellis M, Mudge JM, Tress ML. Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation. NAR Genom Bioinform 2019; 2:lqz023. [PMID: 31886458 PMCID: PMC6924539 DOI: 10.1093/nargab/lqz023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/30/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Transposable elements colonize genomes and with time may end up being incorporated into functional regions. SINE Alu elements, which appeared in the primate lineage, are ubiquitous in the human genome and more than a thousand overlap annotated coding exons. Although almost all Alu-derived coding exons appear to be in alternative transcripts, they have been incorporated into the main coding transcript in at least 11 genes. The extent to which Alu regions are incorporated into functional proteins is unclear, but we detected reliable peptide evidence to support the translation to protein of 33 Alu-derived exons. All but one of the Alu elements for which we detected peptides were frame-preserving and there was proportionally seven times more peptide evidence for Alu elements as for other primate exons. Despite this strong evidence for translation to protein we found no evidence of selection, either from cross species alignments or human population variation data, among these Alu-derived exons. Overall, our results confirm that SINE Alu elements have contributed to the expansion of the human proteome, and this contribution appears to be stronger than might be expected over such a relatively short evolutionary timeframe. Despite this, the biological relevance of these modifications remains open to question.
Collapse
Affiliation(s)
- Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | | | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA and Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA and Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 732 8000; Fax: +34 91 224 6980;
| |
Collapse
|
24
|
Walker JA, Jordan VE, Storer JM, Steely CJ, Gonzalez-Quiroga P, Beckstrom TO, Rewerts LC, St Romain CP, Rockwell CE, Rogers J, Jolly CJ, Konkel MK, Batzer MA. Alu insertion polymorphisms shared by Papio baboons and Theropithecus gelada reveal an intertwined common ancestry. Mob DNA 2019; 10:46. [PMID: 31788036 PMCID: PMC6880559 DOI: 10.1186/s13100-019-0187-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Background Baboons (genus Papio) and geladas (Theropithecus gelada) are now generally recognized as close phylogenetic relatives, though morphologically quite distinct and generally classified in separate genera. Primate specific Alu retrotransposons are well-established genomic markers for the study of phylogenetic and population genetic relationships. We previously reported a computational reconstruction of Papio phylogeny using large-scale whole genome sequence (WGS) analysis of Alu insertion polymorphisms. Recently, high coverage WGS was generated for Theropithecus gelada. The objective of this study was to apply the high-throughput "poly-Detect" method to computationally determine the number of Alu insertion polymorphisms shared by T. gelada and Papio, and vice versa, by each individual Papio species and T. gelada. Secondly, we performed locus-specific polymerase chain reaction (PCR) assays on a diverse DNA panel to complement the computational data. Results We identified 27,700 Alu insertions from T. gelada WGS that were also present among six Papio species, with nearly half (12,956) remaining unfixed among 12 Papio individuals. Similarly, each of the six Papio species had species-indicative Alu insertions that were also present in T. gelada. In general, P. kindae shared more insertion polymorphisms with T. gelada than did any of the other five Papio species. PCR-based genotype data provided additional support for the computational findings. Conclusions Our discovery that several thousand Alu insertion polymorphisms are shared by T. gelada and Papio baboons suggests a much more permeable reproductive barrier between the two genera then previously suspected. Their intertwined evolution likely involves a long history of admixture, gene flow and incomplete lineage sorting.
Collapse
Affiliation(s)
- Jerilyn A Walker
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Vallmer E Jordan
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Jessica M Storer
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Cody J Steely
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Paulina Gonzalez-Quiroga
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Thomas O Beckstrom
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Lydia C Rewerts
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Corey P St Romain
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Catherine E Rockwell
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Jeffrey Rogers
- 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA.,3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Clifford J Jolly
- 4Department of Anthropology, New York University, New York, NY 10003 USA
| | - Miriam K Konkel
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA.,Department of Genetics & Biochemistry, Clemson Center for Human Genetics, Clemson, SC 29634 USA
| | | | - Mark A Batzer
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| |
Collapse
|
25
|
Feusier J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, Baird L, Ha H, Xing J, Jorde LB. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res 2019; 29:1567-1577. [PMID: 31575651 PMCID: PMC6771411 DOI: 10.1101/gr.247965.118] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/14/2019] [Indexed: 12/26/2022]
Abstract
Germline mutation rates in humans have been estimated for a variety of mutation types, including single-nucleotide and large structural variants. Here, we directly measure the germline retrotransposition rate for the three active retrotransposon elements: L1, Alu, and SVA. We used three tools for calling mobile element insertions (MEIs) (MELT, RUFUS, and TranSurVeyor) on blood-derived whole-genome sequence (WGS) data from 599 CEPH individuals, comprising 33 three-generation pedigrees. We identified 26 de novo MEIs in 437 births. The retrotransposition rate estimates for Alu elements, one in 40 births, is roughly half the rate estimated using phylogenetic analyses, a difference in magnitude similar to that observed for single-nucleotide variants. The L1 retrotransposition rate is one in 63 births and is within range of previous estimates (1:20-1:200 births). The SVA retrotransposition rate, one in 63 births, is much higher than the previous estimate of one in 900 births. Our large, three-generation pedigrees allowed us to assess parent-of-origin effects and the timing of insertion events in either gametogenesis or early embryonic development. We find a statistically significant paternal bias in Alu retrotransposition. Our study represents the first in-depth analysis of the rate and dynamics of human retrotransposition from WGS data in three-generation human pedigrees.
Collapse
Affiliation(s)
- Julie Feusier
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - W Scott Watkins
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Andrew Farrell
- USTAR Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - David J Witherspoon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Lisa Baird
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Hongseok Ha
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
26
|
Zhang XO, Gingeras TR, Weng Z. Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res 2019; 29:1402-1414. [PMID: 31413151 PMCID: PMC6724667 DOI: 10.1101/gr.249789.119] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
Abstract
Alu elements are one of the most successful families of transposons in the human genome. A portion of Alu elements is transcribed by RNA Pol III, whereas the remaining ones are part of Pol II transcripts. Because Alu elements are highly repetitive, it has been difficult to identify the Pol III-transcribed elements and quantify their expression levels. In this study, we generated high-resolution, long-genomic-span RAMPAGE data in 155 biosamples all with matching RNA-seq data and built an atlas of 17,249 Pol III-transcribed Alu elements. We further performed an integrative analysis on the ChIP-seq data of 10 histone marks and hundreds of transcription factors, whole-genome bisulfite sequencing data, ChIA-PET data, and functional data in several biosamples, and our results revealed that although the human-specific Alu elements are transcriptionally repressed, the older, expressed Alu elements may be exapted by the human host to function as cell-type-specific enhancers for their nearby protein-coding genes.
Collapse
Affiliation(s)
- Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas R Gingeras
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
27
|
Puurand T, Kukuškina V, Pajuste FD, Remm M. AluMine: alignment-free method for the discovery of polymorphic Alu element insertions. Mob DNA 2019; 10:31. [PMID: 31360240 PMCID: PMC6639938 DOI: 10.1186/s13100-019-0174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background Recently, alignment-free sequence analysis methods have gained popularity in the field of personal genomics. These methods are based on counting frequencies of short k-mer sequences, thus allowing faster and more robust analysis compared to traditional alignment-based methods. Results We have created a fast alignment-free method, AluMine, to analyze polymorphic insertions of Alu elements in the human genome. We tested the method on 2,241 individuals from the Estonian Genome Project and identified 28,962 potential polymorphic Alu element insertions. Each tested individual had on average 1,574 Alu element insertions that were different from those in the reference genome. In addition, we propose an alignment-free genotyping method that uses the frequency of insertion/deletion-specific 32-mer pairs to call the genotype directly from raw sequencing reads. Using this method, the concordance between the predicted and experimentally observed genotypes was 98.7%. The running time of the discovery pipeline is approximately 2 h per individual. The genotyping of potential polymorphic insertions takes between 0.4 and 4 h per individual, depending on the hardware configuration. Conclusions AluMine provides tools that allow discovery of novel Alu element insertions and/or genotyping of known Alu element insertions from personal genomes within few hours.
Collapse
Affiliation(s)
- Tarmo Puurand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Viktoria Kukuškina
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
28
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Jiang Y, Zong W, Ju S, Jing R, Cui M. Promising member of the short interspersed nuclear elements ( Alu elements): mechanisms and clinical applications in human cancers. J Med Genet 2019; 56:639-645. [PMID: 30852527 DOI: 10.1136/jmedgenet-2018-105761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Alu elements are one of most ubiquitous repetitive sequences in human genome, which were considered as the junk DNA in the past. Alu elements have been found to be associated with human diseases including cancers via events such as amplification, insertion, recombination or RNA editing, which provide a new perspective of oncogenesis at both DNA and RNA levels. Due to the prevalent distribution, Alu elements are widely used as target molecule of liquid biopsy. Alu-based cell-free DNA shows feasible application value in tumour diagnosis, postoperative monitoring and adjuvant therapy. In this review, the special tumourigenesis mechanism of Alu elements in human cancers is discussed, and the application of Alu elements in various tumour liquid biopsy is summarised.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
30
|
Steranka JP, Tang Z, Grivainis M, Huang CRL, Payer LM, Rego FOR, Miller TLA, Galante PAF, Ramaswami S, Heguy A, Fenyö D, Boeke JD, Burns KH. Transposon insertion profiling by sequencing (TIPseq) for mapping LINE-1 insertions in the human genome. Mob DNA 2019; 10:8. [PMID: 30899333 PMCID: PMC6407172 DOI: 10.1186/s13100-019-0148-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background Transposable elements make up a significant portion of the human genome. Accurately locating these mobile DNAs is vital to understand their role as a source of structural variation and somatic mutation. To this end, laboratories have developed strategies to selectively amplify or otherwise enrich transposable element insertion sites in genomic DNA. Results Here we describe a technique, Transposon Insertion Profiling by sequencing (TIPseq), to map Long INterspersed Element 1 (LINE-1, L1) retrotransposon insertions in the human genome. This method uses vectorette PCR to amplify species-specific L1 (L1PA1) insertion sites followed by paired-end Illumina sequencing. In addition to providing a step-by-step molecular biology protocol, we offer users a guide to our pipeline for data analysis, TIPseqHunter. Our recent studies in pancreatic and ovarian cancer demonstrate the ability of TIPseq to identify invariant (fixed), polymorphic (inherited variants), as well as somatically-acquired L1 insertions that distinguish cancer genomes from a patient’s constitutional make-up. Conclusions TIPseq provides an approach for amplifying evolutionarily young, active transposable element insertion sites from genomic DNA. Our rationale and variations on this protocol may be useful to those mapping L1 and other mobile elements in complex genomes. Electronic supplementary material The online version of this article (10.1186/s13100-019-0148-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jared P Steranka
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Zuojian Tang
- 3Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016 USA.,4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Mark Grivainis
- 3Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016 USA.,4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Cheng Ran Lisa Huang
- 2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Lindsay M Payer
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Fernanda O R Rego
- 5Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Thiago Luiz Araujo Miller
- 5Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paul, São Paulo, Brazil
| | - Pedro A F Galante
- 5Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Sitharam Ramaswami
- 7Genome Technology Center, Division of Advanced Research Technologies, NYU Langone Health, New York, NY USA
| | - Adriana Heguy
- 7Genome Technology Center, Division of Advanced Research Technologies, NYU Langone Health, New York, NY USA
| | - David Fenyö
- 3Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016 USA.,4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Jef D Boeke
- 4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Kathleen H Burns
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
31
|
Analysis of Anasplatyrhynchos genome resequencing data reveals genetic signatures of artificial selection. PLoS One 2019; 14:e0211908. [PMID: 30735526 PMCID: PMC6368380 DOI: 10.1371/journal.pone.0211908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/22/2019] [Indexed: 02/05/2023] Open
Abstract
Three artificially selected duck populations (AS), higher lean meat ratios (LTPD), higher fat ratios (FTPD) and higher quality meat (CMD), have been developed in China, providing excellent populations for investigation of artificial selection effects. However, the genetic signatures of artificial selection are unclear. In this study, we sequenced the genome sequences of these three artificially selected populations and their ancestral population (mallard, M). We then compared the genome sequences between AS and M and between LTPD and FTPD using integrated strategies such as anchoring scaffolds to pseudo-chromosomes, mutation detection, selective screening, GO analysis, qRT-PCR, and protein multiple sequences alignment to uncover genetic signatures of selection. We anchored duck scaffolds to pseudo-chromosomes and obtained 28 pseudo-chromosomes, accounting for 84% of duck genome in length. Totally 78 and 99 genes were found to be under selection between AS and M and between LTPD and FTPD. Genes under selection between AS and M mainly involved in pigmentation and heart rates, while genes under selection between LTPD and FTPD involved in muscle development and fat deposition. A heart rate regulator (HCN1), the strongest selected gene between AS and M, harbored a GC deletion in AS and displayed higher mRNA expression level in M than in AS. IGF2R, a regulator of skeletal muscle mass, was found to be under selection between FTPD and LTPD. We also found two nonsynonymous substitutions in IGF2R, which might lead to higher IGF2R mRNA expression level in FTPD than LTPD, indicating the two nonsynonymous substitutions might play a key role for the regulation of duck skeletal muscle mass. Taken together, these results of this study provide valuable insight for the genetic basis of duck artificial selection.
Collapse
|
32
|
Moshiri N, Mirarab S. A Two-State Model of Tree Evolution and Its Applications to Alu Retrotransposition. Syst Biol 2018; 67:475-489. [PMID: 29165679 DOI: 10.1093/sysbio/syx088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/15/2017] [Indexed: 11/14/2022] Open
Abstract
Models of tree evolution have mostly focused on capturing the cladogenesis processes behind speciation. Processes that derive the evolution of genomic elements, such as repeats, are not necessarily captured by these existing models. In this article, we design a model of tree evolution that we call the dual-birth model, and we show how it can be useful in studying the evolution of short Alu repeats found in the human genome in abundance. The dual-birth model extends the traditional birth-only model to have two rates of propagation, one for active nodes that propagate often, and another for inactive nodes, that with a lower rate, activate and start propagating. Adjusting the ratio of the rates controls the expected tree balance. We present several theoretical results under the dual-birth model, introduce parameter estimation techniques, and study the properties of the model in simulations. We then use the dual-birth model to estimate the number of active Alu elements and their rates of propagation and activation in the human genome based on a large phylogenetic tree that we build from close to one million Alu sequences.
Collapse
Affiliation(s)
- Niema Moshiri
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
34
|
Liu G, Ma D, Hu P, Wang W, Luo C, Wang Y, Sun Y, Zhang J, Jiang T, Xu Z. A Novel Whole Gene Deletion of BCKDHB by Alu-Mediated Non-allelic Recombination in a Chinese Patient With Maple Syrup Urine Disease. Front Genet 2018; 9:145. [PMID: 29740478 PMCID: PMC5928131 DOI: 10.3389/fgene.2018.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by mutations in the BCKDHA, BCKDHB, DBT, and DLD genes. Among the wide range of disease-causing mutations in BCKDHB, only one large deletion has been associated with MSUD. Compound heterozygous mutations in BCKDHB were identified in a Chinese patient with typical MSUD using next-generation sequencing, quantitative PCR, and array comparative genomic hybridization. One allele presented a missense mutation (c.391G > A), while the other allele had a large deletion; both were inherited from the patient’s unaffected parents. The deletion breakpoints were characterized using long-range PCR and sequencing. A novel 383,556 bp deletion (chr6: g.80811266_81194921del) was determined, which encompassed the entire BCKDHB gene. The junction site of the deletion was localized within a homologous sequence in two AluYa5 elements. Hence, Alu-mediated non-allelic homologous recombination is speculated as the mutational event underlying the large deletion. In summary, this study reports a recombination mechanism in the BCKDHB gene causing a whole gene deletion in a newborn with MSUD.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dingyuan Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wen Wang
- Reproductive Genetic Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunyu Luo
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
35
|
Steely CJ, Baker JN, Walker JA, Loupe CD, Batzer MA. Analysis of lineage-specific Alu subfamilies in the genome of the olive baboon, Papio anubis. Mob DNA 2018; 9:10. [PMID: 29560044 PMCID: PMC5858127 DOI: 10.1186/s13100-018-0115-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Alu elements are primate-specific retroposons that mobilize using the enzymatic machinery of L1 s. The recently completed baboon genome project found that the mobilization rate of Alu elements is higher than in the genome of any other primate studied thus far. However, the Alu subfamily structure present in and specific to baboons had not been examined yet. Results Here we report 129 Alu subfamilies that are propagating in the genome of the olive baboon, with 127 of these subfamilies being new and specific to the baboon lineage. We analyzed 233 Alu insertions in the genome of the olive baboon using locus specific polymerase chain reaction assays, covering 113 of the 129 subfamilies. The allele frequency data from these insertions show that none of the nine groups of subfamilies are nearing fixation in the lineage. Conclusions Many subfamilies of Alu elements are actively mobilizing throughout the baboon lineage, with most being specific to the baboon lineage.
Collapse
Affiliation(s)
- Cody J Steely
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Jasmine N Baker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Charles D Loupe
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| |
Collapse
|
36
|
Baker JN, Walker JA, Denham MW, Loupe CD, Batzer MA. Recently integrated Alu insertions in the squirrel monkey ( Saimiri) lineage and application for population analyses. Mob DNA 2018; 9:9. [PMID: 29449901 PMCID: PMC5808450 DOI: 10.1186/s13100-018-0114-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of Alu elements has been ongoing in primate lineages and Alu insertion polymorphisms are widely used in phylogenetic and population genetics studies. Alu subfamilies in the squirrel monkey (Saimiri), a New World Monkey (NWM), were recently reported. Squirrel monkeys are commonly used in biomedical research and often require species identification. The purpose of this study was two-fold: 1) Perform locus-specific PCR analyses on recently integrated Alu insertions in Saimiri to determine their amplification dynamics, and 2) Identify a subset of Alu insertion polymorphisms with species informative allele frequency distributions between the Saimiri sciureus and Saimiri boliviensis groups. RESULTS PCR analyses were performed on a DNA panel of 32 squirrel monkey individuals for 382 Alu insertion events ≤2% diverged from 46 different Alu subfamily consensus sequences, 25 Saimiri specific and 21 NWM specific Alu subfamilies. Of the 382 loci, 110 were polymorphic for presence / absence among squirrel monkey individuals, 35 elements from 14 different Saimiri specific Alu subfamilies and 75 elements from 19 different NWM specific Alu subfamilies (13 of 46 subfamilies analyzed did not contain polymorphic insertions). Of the 110 Alu insertion polymorphisms, 51 had species informative allele frequency distributions between Saimiri sciureus and Saimiri boliviensis groups. CONCLUSIONS This study confirms the evolution of Alu subfamilies in Saimiri and provides evidence for an ongoing and prolific expansion of these elements in Saimiri with many active subfamilies concurrently propagating. The subset of polymorphic Alu insertions with species informative allele frequency distribution between Saimiri sciureus and Saimiri boliviensis will be instructive for specimen identification and conservation biology.
Collapse
Affiliation(s)
- Jasmine N. Baker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Michael W. Denham
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Charles D. Loupe
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| |
Collapse
|
37
|
Jacob-Hirsch J, Eyal E, Knisbacher BA, Roth J, Cesarkas K, Dor C, Farage-Barhom S, Kunik V, Simon AJ, Gal M, Yalon M, Moshitch-Moshkovitz S, Tearle R, Constantini S, Levanon EY, Amariglio N, Rechavi G. Whole-genome sequencing reveals principles of brain retrotransposition in neurodevelopmental disorders. Cell Res 2018; 28:187-203. [PMID: 29327725 DOI: 10.1038/cr.2018.8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and characterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions. Our findings document the fingerprints of encoded endonuclease independent mechanisms in the majority of L1 brain insertion events. The insertions are "non-classical" in that they are truncated at both ends, integrate in the same orientation as the host element, and their target sequences are enriched with a CCATT motif in contrast to the classical endonuclease motif of most other retrotranspositions. We show that L1Hs elements integrate preferentially into genes associated with neural functions and diseases. We propose that pre-existing retrotransposons act as "lightning rods" for novel insertions, which may give fine modulation of gene expression while safeguarding from deleterious events. Overwhelmingly uncontrolled retrotransposition may breach this safeguard mechanism and increase the risk of harmful mutagenesis in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jasmine Jacob-Hirsch
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel.,Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Eran Eyal
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen Cesarkas
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Chen Dor
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sarit Farage-Barhom
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Vered Kunik
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Amos J Simon
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Moran Gal
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Michal Yalon
- Department of Pediatric Hematology-Oncology, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Moshitch-Moshkovitz
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Rick Tearle
- Complete Genomics, 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Ninette Amariglio
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel.,Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Gideon Rechavi
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 2018; 9:2. [PMID: 29308093 PMCID: PMC5753468 DOI: 10.1186/s13100-017-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 465 Fairchild Drive, Suite 201, Mountain View, CA 94043 USA.,Department of Life Sciences, National Cheng Kung University, No. 1, Daxue Rd, East District, Tainan, 701 Taiwan
| |
Collapse
|
39
|
Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, Mills RE, Devine SE. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res 2017; 27:1916-1929. [PMID: 28855259 PMCID: PMC5668948 DOI: 10.1101/gr.218032.116] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
Abstract
Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.
Collapse
Affiliation(s)
- Eugene J Gardner
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Vincent K Lam
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daniel N Harris
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nelson T Chuang
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Emma C Scott
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - W Stephen Pittard
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | - Scott E Devine
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
40
|
Feusier J, Witherspoon DJ, Scott Watkins W, Goubert C, Sasani TA, Jorde LB. Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations. Mob DNA 2017; 8:9. [PMID: 28770012 PMCID: PMC5531096 DOI: 10.1186/s13100-017-0093-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. AluYb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. RESULTS We identified 5,288 putative Alu insertion events, including several hundred novel AluYb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare AluYb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare AluYb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. CONCLUSION Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future ME-Scan experiments. In conclusion, we demonstrate that ME-Scan is a good supplement for next-generation sequencing methods and is well-suited for population-level analyses.
Collapse
Affiliation(s)
- Julie Feusier
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - David J. Witherspoon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - W. Scott Watkins
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Clément Goubert
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Thomas A. Sasani
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| |
Collapse
|
41
|
Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci U S A 2017; 114:E3984-E3992. [PMID: 28465436 DOI: 10.1073/pnas.1704117114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interspersed repeat sequences comprise much of our DNA, although their functional effects are poorly understood. The most commonly occurring repeat is the Alu short interspersed element. New Alu insertions occur in human populations, and have been responsible for several instances of genetic disease. In this study, we sought to determine if there are instances of polymorphic Alu insertion variants that function in a common variant, common disease paradigm. We cataloged 809 polymorphic Alu elements mapping to 1,159 loci implicated in disease risk by genome-wide association study (GWAS) (P < 10-8). We found that Alu insertion variants occur disproportionately at GWAS loci (P = 0.013). Moreover, we identified 44 of these Alu elements in linkage disequilibrium (r2 > 0.7) with the trait-associated SNP. This figure represents a >20-fold increase in the number of polymorphic Alu elements associated with human phenotypes. This work provides a broader perspective on how structural variants in repetitive DNAs may contribute to human disease.
Collapse
|
42
|
Kryatova MS, Steranka JP, Burns KH, Payer LM. Insertion and deletion polymorphisms of the ancient AluS family in the human genome. Mob DNA 2017; 8:6. [PMID: 28450901 PMCID: PMC5402677 DOI: 10.1186/s13100-017-0089-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Results Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3′ intact with 3′ poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Conclusions Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion, thus suggesting that some AluS elements have been more active recently than previously thought, or that fixation of AluS insertion alleles remains incomplete. These data expand the potential significance of polymorphic AluS elements in contributing to structural variation in the human genome. Future discovery efforts focusing on polymorphic AluS elements are likely to identify more such polymorphisms, and approaches tailored to identify deletion alleles may be warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| |
Collapse
|
43
|
Sheinman M, Ramisch A, Massip F, Arndt PF. Evolutionary dynamics of selfish DNA explains the abundance distribution of genomic subsequences. Sci Rep 2016; 6:30851. [PMID: 27488939 PMCID: PMC4973250 DOI: 10.1038/srep30851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
Since the sequencing of large genomes, many statistical features of their sequences have been found. One intriguing feature is that certain subsequences are much more abundant than others. In fact, abundances of subsequences of a given length are distributed with a scale-free power-law tail, resembling properties of human texts, such as Zipf's law. Despite recent efforts, the understanding of this phenomenon is still lacking. Here we find that selfish DNA elements, such as those belonging to the Alu family of repeats, dominate the power-law tail. Interestingly, for the Alu elements the power-law exponent increases with the length of the considered subsequences. Motivated by these observations, we develop a model of selfish DNA expansion. The predictions of this model qualitatively and quantitatively agree with the empirical observations. This allows us to estimate parameters for the process of selfish DNA spreading in a genome during its evolution. The obtained results shed light on how evolution of selfish DNA elements shapes non-trivial statistical properties of genomes.
Collapse
Affiliation(s)
- Michael Sheinman
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Anna Ramisch
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Florian Massip
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- INRA, UR1404 Mathématique Informatique Appliquées du Génome á l’Environnement-F-78350 Jouy-en Josas, France
| | - Peter F. Arndt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
44
|
Alu SINE analyses of 3,000-year-old human skeletal remains: a pilot study. Mob DNA 2016; 7:7. [PMID: 27096009 PMCID: PMC4836192 DOI: 10.1186/s13100-016-0063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 01/21/2023] Open
Abstract
Background As Short Interspersed Elements (SINEs), human-specific Alu elements can be used for population genetic studies. Very recent inserts are polymorphic within and between human populations. In a sample of 30 elements originating from three different Alu subfamilies, we investigated whether they are preserved in prehistorical skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. In the present study, we examined a prehistoric triad of father, mother and daughter. Results For 26 of the 30 Alu loci investigated, definite results were obtained. We were able to demonstrate that presence/absence analyses of Alu elements can be conducted on individuals who lived 3,000 years ago. The preservation of the ancient DNA (aDNA) is good enough in two out of three ancient individuals to routinely allow the amplification of 500 bp fragments. The third individual revealed less well-preserved DNA, which results in allelic dropout or complete amplification failures. We here present an alternative molecular approach to deal with these degradation phenomena by using internal Alu subfamily specific primers producing short fragments of approximately 150 bp. Conclusions Our data clearly show the possibility of presence/absence analyses of Alu elements in individuals from the Lichtenstein cave. Thus, we demonstrate that our method is reliably applicable for aDNA samples with good or moderate DNA preservation. This method will be very useful for further investigations with more Alu loci and larger datasets. Human population genetic studies and other large-scale investigations would provide insight into Alu SINE-based microevolutionary processes in humans during the last few thousand years and help us comprehend the evolutionary dynamics of our genome. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0063-y) contains supplementary material, which is available to authorized users.
Collapse
|