1
|
Iwanicki NSA, Gotti IA, Delalibera I, Licht HHDF. Host-specific patterns of virulence and gene expression profiles of the broad-host-range entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 2025; 209:108242. [PMID: 39631444 DOI: 10.1016/j.jip.2024.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Generalist pathogens with a broad host range encounter many different host environments. Such generalist pathogens are often highly versatile and adjust their expressed phenotype to the host being infected. Species in the fungal genus Metarhizium (Hypocreales: Clavicipitaceae) occupy various ecological niches, including plant rhizosphere symbionts, soil saprophytes, and insect pathogens with applications in biological control of pests. The species M. anisopliae is highly diverse combining the capability of association with plant roots and infection of a broad range of arachnid and insect hosts, from agricultural pests to vectors of human disease. It is among the most studied and applied biological control agents worldwide. Here, we investigate the phenotypic plasticity and differential gene expression of M. anisopliae blastospores during infection of different insect hosts. First, the virulence of M. anisopliae blastospores was evaluated against Tenebrio molitor (Coleoptera: Tenebrionidae), Spodoptera frugiperda (Lepidoptera: Noctuidae), Gryllus assimilis (Orthoptera: Gryllidae), and Apis mellifera (Hymenoptera: Apidae). Second, the percentage of appressorium formation on the membranous wings of the four hosts was determined, and third, the fungal transcriptome profile during penetration on the hosts was analyzed. Our findings reveal that M. anisopliae blastospores exhibit high virulence against Tenebrio molitor, with significantly higher appressorium formation on beetle wings compared to the other three tested insects. We also document distinct gene expression patterns in M. anisopliae blastospores during insect infection of T. molitor, S. frugiperda, and A. mellifera, with notable variations observed in G. assimilis. These differences are associated with the expression of enzymes involved in the degradation of specific compounds present in each insect wing, as well as hydrophobins, destruxins, and specialized metabolites related to virulence. The study emphasizes the differences in fungal gene expression during infection of the four insect orders and highlights the virulence-related genes specific to each infective process.
Collapse
Affiliation(s)
- Natasha Sant Anna Iwanicki
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil.
| | - Isabella Alice Gotti
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil
| | - Italo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
2
|
Llewellyn T, Nowell RW, Aptroot A, Temina M, Prescott TAK, Barraclough TG, Gaya E. Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol Evol 2023; 15:6986375. [PMID: 36634008 PMCID: PMC9907504 DOI: 10.1093/gbe/evad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Fungi produce a vast number of secondary metabolites that shape their interactions with other organisms and the environment. Characterizing the genes underpinning metabolite synthesis is therefore key to understanding fungal evolution and adaptation. Lichenized fungi represent almost one-third of Ascomycota diversity and boast impressive secondary metabolites repertoires. However, most lichen biosynthetic genes have not been linked to their metabolite products. Here we used metagenomic sequencing to survey gene families associated with production of anthraquinones, UV-protectant secondary metabolites present in various fungi, but especially abundant in a diverse order of lichens, the Teloschistales (class Lecanoromycetes, phylum Ascomycota). We successfully assembled 24 new, high-quality lichenized-fungal genomes de novo and combined them with publicly available Lecanoromycetes genomes from taxa with diverse secondary chemistry to produce a whole-genome tree. Secondary metabolite biosynthetic gene cluster (BGC) analysis showed that whilst lichen BGCs are numerous and highly dissimilar, core enzyme genes are generally conserved across taxa. This suggests metabolite diversification occurs via re-shuffling existing enzyme genes with novel accessory genes rather than BGC gains/losses or de novo gene evolution. We identified putative anthraquinone BGCs in our lichen dataset that appear homologous to anthraquinone clusters from non-lichenized fungi, suggesting these genes were present in the common ancestor of the subphylum Pezizomycotina. Finally, we identified unique transporter genes in Teloschistales anthraquinone BGCs that may explain why these metabolites are so abundant and ubiquitous in these lichens. Our results support the importance of metagenomics for understanding the secondary metabolism of non-model fungi such as lichens.
Collapse
Affiliation(s)
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Andre Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Marina Temina
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa, 3498838, Israel
| | - Thomas A K Prescott
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| |
Collapse
|
3
|
Koczyk G, Pawłowska J, Muszewska A. Terpenoid Biosynthesis Dominates among Secondary Metabolite Clusters in Mucoromycotina Genomes. J Fungi (Basel) 2021; 7:285. [PMID: 33918813 PMCID: PMC8070225 DOI: 10.3390/jof7040285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Early-diverging fungi harbour unprecedented diversity in terms of living forms, biological traits and genome architecture. Before the sequencing era, non-Dikarya fungi were considered unable to produce secondary metabolites (SM); however, this perspective is changing. The main classes of secondary metabolites in fungi include polyketides, nonribosomal peptides, terpenoids and siderophores that serve different biological roles, including iron chelation and plant growth promotion. The same classes of SM are reported for representatives of early-diverging fungal lineages. Encouraged by the advancement in the field, we carried out a systematic survey of SM in Mucoromycotina and corroborated the presence of various SM clusters (SMCs) within the phylum. Among the core findings, considerable representation of terpene and nonribosomal peptide synthetase (NRPS)-like candidate SMCs was found. Terpene clusters with diverse domain composition and potentially highly variable products dominated the landscape of candidate SMCs. A uniform low-copy distribution of siderophore clusters was observed among most assemblies. Mortierellomycotina are highlighted as the most potent SMC producers among the Mucoromycota and as a source of novel peptide products. SMC identification is dependent on gene model quality and can be successfully performed on a batch scale with genomes of different quality and completeness.
Collapse
Affiliation(s)
- Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland;
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Venice F, Desirò A, Silva G, Salvioli A, Bonfante P. The Mosaic Architecture of NRPS-PKS in the Arbuscular Mycorrhizal Fungus Gigaspora margarita Shows a Domain With Bacterial Signature. Front Microbiol 2020; 11:581313. [PMID: 33329443 PMCID: PMC7732545 DOI: 10.3389/fmicb.2020.581313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
As obligate biotrophic symbionts, arbuscular mycorrhizal fungi (AMF) live in association with most land plants. Among them, Gigaspora margarita has been deeply investigated because of its peculiar features, i.e., the presence of an intracellular microbiota with endobacteria and viruses. The genome sequencing of this fungus revealed the presence of some hybrid non-ribosomal peptide synthases-polyketide synthases (NRPS-PKS) that have been rarely identified in AMF. The aim of this study is to describe the architecture of these NRPS-PKS sequences and to understand whether they are present in other fungal taxa related to G. margarita. A phylogenetic analysis shows that the ketoacyl synthase (KS) domain of one G. margarita NRPS-PKS clusters with prokaryotic sequences. Since horizontal gene transfer (HGT) has often been advocated as a relevant evolutionary mechanism for the spread of secondary metabolite genes, we hypothesized that a similar event could have interested the KS domain of the PKS module. The bacterial endosymbiont of G. margarita, Candidatus Glomeribacter gigasporarum (CaGg), was the first candidate as a donor, since it possesses a large biosynthetic cluster involving an NRPS-PKS. However, bioinformatics analyses do not confirm the hypothesis of a direct HGT from the endobacterium to the fungal host: indeed, endobacterial and fungal sequences show a different evolution and potentially different donors. Lastly, by amplifying a NRPS-PKS conserved fragment and mining the sequenced AMF genomes, we demonstrate that, irrespective of the presence of CaGg, G. margarita, and some other related Gigasporaceae possess such a sequence.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Turin, Italy
| | - Alessandro Desirò
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Gladstone Silva
- Department of Mycology, Federal University of Pernambuco, Recife, Brazil
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37:868-878. [PMID: 31898704 PMCID: PMC7332410 DOI: 10.1039/c9np00045c] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2019Fungi produce a remarkable diversity of secondary metabolites: small, bioactive molecules not required for growth but which are essential to their ecological interactions with other organisms. Genes that participate in the same secondary metabolic pathway typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs). By synthesizing state-of-the-art knowledge on the evolution of BGCs in fungi, we propose that fungal chemodiversity stems from three molecular evolutionary processes involving BGCs: functional divergence, horizontal transfer, and de novo assembly. We provide examples of how these processes have contributed to the generation of fungal chemodiversity, discuss their relative importance, and outline major, outstanding questions in the field.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
6
|
Lan N, Perlatti B, Kvitek DJ, Wiemann P, Harvey CJB, Frisvad J, An Z, Bills GF. Acrophiarin (antibiotic S31794/F-1) from Penicillium arenicola shares biosynthetic features with both Aspergillus- and Leotiomycete-type echinocandins. Environ Microbiol 2020; 22:2292-2311. [PMID: 32239586 DOI: 10.1111/1462-2920.15004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.
Collapse
Affiliation(s)
- Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | | | | | - Jens Frisvad
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| |
Collapse
|
7
|
A Tale of Two Families: Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2020; 21:ijms21072580. [PMID: 32276381 PMCID: PMC7177731 DOI: 10.3390/ijms21072580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/04/2023] Open
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family—a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families—glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. Employing the available evidence, we show the impact of duplications on the initial complement of the analyzed gene families within the genistoid clade and posit that the function of duplicates has been largely retained. In terms of a broader perspective, our results concerning GS and PEPC gene families corroborate earlier findings pointing to key whole genome duplication/triplication event(s) affecting the genistoid lineage.
Collapse
|
8
|
Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Theobald S, Vesth TC, Andersen MR. Genus level analysis of PKS-NRPS and NRPS-PKS hybrids reveals their origin in Aspergilli. BMC Genomics 2019; 20:847. [PMID: 31722662 PMCID: PMC6854747 DOI: 10.1186/s12864-019-6114-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Filamentous fungi produce a vast amount of bioactive secondary metabolites (SMs) synthesized by e.g. hybrid polyketide synthase-nonribosomal peptide synthetase enzymes (PKS-NRPS; NRPS-PKS). While their domain structure suggests a common ancestor with other SM proteins, their evolutionary origin and dynamics in fungi are still unclear. Recent rational engineering approaches highlighted the possibility to reassemble hybrids into chimeras — suggesting molecular recombination as diversifying mechanism. Results Phylogenetic analysis of hybrids in 37 species – spanning 9 sections of Aspergillus and Penicillium chrysogenum – let us describe their dynamics throughout the genus Aspergillus. The tree topology indicates that three groups of PKS-NRPS as well as one group of NRPS-PKS hybrids developed independently from each other. Comparison to other SM genes lead to the conclusion that hybrids in Aspergilli have several PKS ancestors; in contrast, hybrids are monophyletic when compared to available NRPS genes — with the exception of a small group of NRPSs. Our analysis also revealed that certain NRPS-likes are derived from NRPSs, suggesting that the NRPS/NRPS-like relationship is dynamic and proteins can diverge from one function to another. An extended phylogenetic analysis including bacterial and fungal taxa revealed multiple ancestors of hybrids. Homologous hybrids are present in all sections which suggests frequent horizontal gene transfer between genera and a finite number of hybrids in fungi. Conclusion Phylogenetic distances between hybrids provide us with evidence for their evolution: Large inter-group distances indicate multiple independent events leading to the generation of hybrids, while short intra-group distances of hybrids from different taxonomic sections indicate frequent horizontal gene transfer. Our results are further supported by adding bacterial and fungal genera. Presence of related hybrid genes in all Ascomycetes suggests a frequent horizontal gene transfer between genera and a finite diversity of hybrids — also explaining their scarcity. The provided insights into relations of hybrids and other SM genes will serve in rational design of new hybrid enzymes.
Collapse
Affiliation(s)
- Sebastian Theobald
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, Kgs. Lyngby, Denmark.,Current address: Novozymes A/S, Krogshøjvej 36, Bagsværd, Denmark
| | - Tammi C Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, Kgs. Lyngby, Denmark.,Current address: Chr. Hansen, Bøge Alle, Hørsholm, Denmark
| | - Mikael R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, Kgs. Lyngby, Denmark. .,Current address: Novozymes A/S, Krogshøjvej 36, Bagsværd, Denmark.
| |
Collapse
|
10
|
Popiel D, Dawidziuk A, Koczyk G. Efflux pumps as an additional source of resistance to trichothecenes in Fusarium proliferatum and Fusarium oxysporum isolates. J Appl Genet 2019; 60:405-416. [PMID: 31250288 PMCID: PMC6803570 DOI: 10.1007/s13353-019-00501-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/30/2022]
Abstract
Role of efflux-mediated toxin resistance to trichothecenes is known in trichothecene-producing species. However, the role of trichothecene efflux pump homologues in non-producing fusaria such as F. oxysporum and F. proliferatum was not investigated in detail. Analysis of the homologues of trichothecene efflux pump from multiple fungal species allowed us to uncover and catalogue functional gene copies of conserved structure. Putative Tri12 candidates in Fusarium oxysporum and F. proliferatum were characterised via expression profiling in response to different trigger compounds, providing supporting evidence for role of Tri12 homologues in the resistance to trichothecenes. Our analysis of Tri12 phylogeny also suggests that efflux-mediated trichothecene resistance is likely to predate the divergence of Trichoderma and Fusarium species. On the regulatory level, we posit that the increased tolerance of trichothecenes by F. oxysporum is possibly related to the decoupling of Tri12 homologue expression from pH, due to the deletion of PACC/RIM101 transcription factor binding site in its promoter region.
Collapse
Affiliation(s)
- Delfina Popiel
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, Poland.
| | - Adam Dawidziuk
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, Poland
| | - Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, Poland
| |
Collapse
|
11
|
Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-Strońska O, Krajewski P, Kosińska J, Podkowiński J, Wilczura P, Święcicki W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 2019; 9:2231. [PMID: 30783128 PMCID: PMC6381137 DOI: 10.1038/s41598-018-37701-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/12/2018] [Indexed: 01/23/2023] Open
Abstract
Unravelling the biosynthetic pathway of quinolizidine alkaloids (QAs), regarded as antinutritional compounds of narrow-leafed lupin (NLL) seeds, is fundamental to best exploit NLL as food or feed. We investigated 12 candidate genes connected to QA biosynthesis, selecting them by transcriptomic and genomic approaches, from the landscape of genes differentially expressed in leaves of the high- and low-alkaloid NLL accessions. Linkage analysis enabled the assessment of the location of the candidate genes in relation to iucundus, a major locus of unknown identity, that confers reduced QA content in seeds. The key finding was the identification of APETALA2/ethylene response transcription factor, RAP2-7, cosegregating with the iucundus locus and located within a region with highly significant QTLs that affect QA composition. We additionally identified a 4-hydroxy-tetrahydrodipicolinate synthase (DHDPS) gene involved in L-lysine biosynthesis as being closely linked to iucundus. The distributed location of other remaining candidates (including previously known QA genes) across different linkage groups, also indirectly supports the transcription factor as a possible regulator of lupin alkaloid biosynthesis. Our findings provide crucial insight into QA biosynthesis in NLL. Additionally, we evaluated and selected appropriate reference genes for qRT-PCRs to analyse the expression levels of QA genes in NLL.
Collapse
Affiliation(s)
- Magdalena Kroc
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Katarzyna A Kamel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Katarzyna Czepiel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Olga Fedorowicz-Strońska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Jan Podkowiński
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Piotrowo 2, 61-138, Poznań, Poland
| | - Paulina Wilczura
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Wojciech Święcicki
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
12
|
Bansal MS, Kellis M, Kordi M, Kundu S. RANGER-DTL 2.0: rigorous reconstruction of gene-family evolution by duplication, transfer and loss. Bioinformatics 2018; 34:3214-3216. [PMID: 29688310 PMCID: PMC6137995 DOI: 10.1093/bioinformatics/bty314] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 11/30/2022] Open
Abstract
Summary RANGER-DTL 2.0 is a software program for inferring gene family evolution using Duplication-Transfer-Loss reconciliation. This new software is highly scalable and easy to use, and offers many new features not currently available in any other reconciliation program. RANGER-DTL 2.0 has a particular focus on reconciliation accuracy and can account for many sources of reconciliation uncertainty including uncertain gene tree rooting, gene tree topological uncertainty, multiple optimal reconciliations and alternative event cost assignments. RANGER-DTL 2.0 is open-source and written in C++ and Python. Availability and implementation Pre-compiled executables, source code (open-source under GNU GPL) and a detailed manual are freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mukul S Bansal
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Misagh Kordi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Soumya Kundu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Zeng G, Zhang P, Zhang Q, Zhao H, Li Z, Zhang X, Wang C, Yin WB, Fang W. Duplication of a Pks gene cluster and subsequent functional diversification facilitate environmental adaptation in Metarhizium species. PLoS Genet 2018; 14:e1007472. [PMID: 29958281 PMCID: PMC6042797 DOI: 10.1371/journal.pgen.1007472] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/12/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
The ecological importance of the duplication and diversification of gene clusters that synthesize secondary metabolites in fungi remains poorly understood. Here, we demonstrated that the duplication and subsequent diversification of a gene cluster produced two polyketide synthase gene clusters in the cosmopolitan fungal genus Metarhizium. Diversification occurred in the promoter regions and the exon-intron structures of the two Pks paralogs (Pks1 and Pks2). These two Pks genes have distinct expression patterns, with Pks1 highly expressed during conidiation and Pks2 highly expressed during infection. Different upstream signaling pathways were found to regulate the two Pks genes. Pks1 is positively regulated by Hog1-MAPK, Slt2-MAPK and Mr-OPY2, while Pks2 is positively regulated by Fus3-MAPK and negatively regulated by Mr-OPY2. Pks1 and Pks2 have been subjected to positive selection and synthesize different secondary metabolites. PKS1 is involved in synthesis of an anthraquinone derivative, and contributes to conidial pigmentation, which plays an important role in fungal tolerance to UV radiation and extreme temperatures. Disruption of the Pks2 gene delayed formation of infectious structures and increased the time taken to kill insects, indicating that Pks2 contributes to pathogenesis. Thus, the duplication of a Pks gene cluster and its subsequent functional diversification has increased the adaptive flexibility of Metarhizium species.
Collapse
Affiliation(s)
- Guohong Zeng
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | | | - Hong Zhao
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Zixin Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xing Zhang
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weiguo Fang
- Institute of Microbiology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
14
|
Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci U S A 2018; 115:E5459-E5466. [PMID: 29844193 PMCID: PMC6004482 DOI: 10.1073/pnas.1712798115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species in the fungal genus Cercospora cause diseases in many important crops worldwide. Their success as pathogens is largely due to the secretion of cercosporin during infection. We report that the cercosporin toxin biosynthesis (CTB) gene cluster is ancient and was horizontally transferred to diverse fungal plant pathogens. Because our analyses revealed genes adjacent to the established CTB cluster with similar evolutionary trajectories, we evaluated their role in Cercospora beticola to show that four are necessary for cercosporin biosynthesis. Lastly, we confirmed that the apple pathogen Colletotrichum fioriniae produces cercosporin, the first case outside the family Mycosphaerellaceae. Other Colletotrichum plant pathogens also harbor the CTB cluster, which points to a wider role that this toxin may play in virulence. Species in the genus Cercospora cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen Cercospora beticola and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis (CTB) cluster. We show that the CTB gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range Colletotrichum genus as well as the rice pathogen Magnaporthe oryzae. Although cercosporin biosynthesis has been thought to rely on an eight-gene CTB cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all CTB cluster-harboring species. We demonstrate that the CTB cluster is larger than previously recognized and includes cercosporin facilitator protein, previously shown to be involved with cercosporin autoresistance, and four additional genes required for cercosporin biosynthesis, including the final pathway enzymes that install the unusual cercosporin methylenedioxy bridge. Lastly, we demonstrate production of cercosporin by Colletotrichum fioriniae, the first known cercosporin producer within this agriculturally important genus. Thus, our results provide insight into the intricate evolution and biology of a toxin critical to agriculture and broaden the production of cercosporin to another fungal genus containing many plant pathogens of important crops worldwide.
Collapse
|
15
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
16
|
Yu PW, Cho TY, Liou RF, Tzean SS, Lee TH. Identification of the orsellinic acid synthase PKS63787 for the biosynthesis of antroquinonols in Antrodia cinnamomea. Appl Microbiol Biotechnol 2017; 101:4701-4711. [DOI: 10.1007/s00253-017-8196-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
|
17
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Abstract
Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.
Collapse
Affiliation(s)
- Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77054
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, IA 52245
| |
Collapse
|
19
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|