1
|
Ilyukhin E, Chen Y, Markovskaja S, Shami A, Maharachchikumbura SSN. Comprehensive genome analysis of two Cytospora (Cytosporaceae, Diaporthales) species associated with canker disease of spruce: C.piceae and C.piceicola sp. nov. MycoKeys 2025; 117:89-119. [PMID: 40364895 PMCID: PMC12070060 DOI: 10.3897/mycokeys.117.145445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/27/2025] [Indexed: 05/15/2025] Open
Abstract
Cytospora canker (CC) is among the most important diseases in conifer trees (Picea spp., mainly). This disease poses a significant risk factor for forest health, potentially leading to economic losses for wood producers. To provide a genomic basis of the CC pathogenesis, the genomes of two Cytospora species associated with the disease were sequenced and further analyzed within a set of Diaporthales species. The first species was identified as C.piceae. The second was described as C.piceicola sp. nov. based on morphological characteristics and multi-gene phylogenetic analysis. The novel species is sister to other Cytospora species isolated from conifers. Here, we report 39.7 and 43.8 Mb highly contiguous genome assemblies of C.piceae EI-19(A) and C.piceicola EI-20, respectively, obtained using Illumina sequencing technology. Despite notably different genome sizes, these species share the main genome characteristics, such as predicted gene number (10,862 and 10,742) and assembly completeness (97.6% and 98.1%). A wide range of genes encoding carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, and secreted effectors were found. Multiple experimentally validated virulence genes were also identified in the studied species. The defined arsenals of enzymes and effectors generally relate to the hemibiotrophic lifestyle with a capability to switch to biotrophy. The obtained evidence also supports that C.piceae EI-19(A) and C.piceicola EI-20 can cause severe canker disease symptoms in Picea spp. specifically. It was additionally observed that the strains of C.piceae may have different pathogenicity and virulence characteristics based on the analyses of predicted secondary metabolite complements, effectomes, and virulence-related genes. Phylogenomic analysis and timetree estimations indicated that divergence of the studied species may have occurred relatively late, 11-10 million years ago. Compared to other members of Diaporthales, C.piceae EI-19(A) and C.piceicola EI-20 implied a moderate rate of gene contraction, but the latter experienced significant gene loss that can additionally support host specificity attributed to these species. But uncovered gene contraction events may point out potential lifestyle differentiation and host shift of the studied species. It was revealed that EI-19(A) and C.piceicola EI-20 carry distinct secretomes and effectomes among Diaporthales species. This feature can indicate a species lifestyle and pathogenicity potential. These findings highlight potential targets for identification and/or detection of pathogenic Cytospora in conifers. The introduced draft genome sequences of C.piceae and C.piceicola can be employed as tools to understand basic genetics and pathogenicity mechanisms of fungal species causing canker disease in woody plants. The identified pathogenicity and virulence-related genes would serve as potential candidates for host-induced gene silencing aimed at making plant hosts more resistant to pathogenic species. Furthermore, the comparative genomics component of the study will facilitate the functional analysis of the genes of unknown function in all fungal pathogens.
Collapse
Affiliation(s)
| | - Yanpeng Chen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, ChinaUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, LT 08406 Vilnius, LithuaniaLaboratory of Mycology, Nature Research CentreVilniusLithuania
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi ArabiaPrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Sajeewa S. N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, ChinaUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
2
|
Sumampong G, Feau N, Bernier L, Hamelin RC, Liu JJ, Shamoun SF. Genome sequence of Heterobasidion occidentale, a fungus that causes annosus root and butt rot among conifer trees in North America. Microbiol Resour Announc 2024; 13:e0041924. [PMID: 39177369 PMCID: PMC11492984 DOI: 10.1128/mra.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
We report an annotated draft genome of Heterobasidion occidentale, a fungus (Basidiomycota, Agaricomycetes) that has pathogenic and saprophytic lifestyles. This fungus belongs to the H. annosum (Fr.) Bref. sensu lato species complex that comprises several root rot pathogens. Heterobasidion occidentale causes annosus root and butt rot primarily in true fir (Abies spp.) and spruce (Picea spp.) species throughout western North America.
Collapse
Affiliation(s)
- Grace Sumampong
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Nicolas Feau
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Louis Bernier
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
| | - Richard C. Hamelin
- Department of Forest
and Conservation Sciences, Faculty of Forestry, The University of
British Columbia,
Vancouver, British Columbia,
Canada
| | - Jun-Jun Liu
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Simon F. Shamoun
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| |
Collapse
|
3
|
Li ZC, Xie TC, Feng XL, Wang ZX, Lin C, Li GM, Li XZ, Qi J. The First Five Mitochondrial Genomes for the Family Nidulariaceae Reveal Novel Gene Rearrangements, Intron Dynamics, and Phylogeny of Agaricales. Int J Mol Sci 2023; 24:12599. [PMID: 37628782 PMCID: PMC10454537 DOI: 10.3390/ijms241612599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The family Nidulariaceae, consisting of five genera including Cyathus, is a unique group of mushrooms commonly referred to as bird's nest fungi due to their striking resemblance to bird's nests. These mushrooms are considered medicinal mushrooms in Chinese medicine and have received attention in recent years for their anti-neurodegenerative properties. However, despite the interest in these mushrooms, very little is known about their mitochondrial genomes (mitogenomes). This study is the first comprehensive investigation of the mitogenomes of five Nidulariaceae species with circular genome structures ranging in size from 114,236 bp to 129,263 bp. Comparative analyses based on gene content, gene length, tRNA, and codon usage indicate convergence within the family Nidulariaceae and heterogeneity within the order Agaricales. Phylogenetic analysis based on a combined mitochondrial conserved protein dataset provides a well-supported phylogenetic tree for the Basidiomycetes, which clearly demonstrates the evolutionary relationships between Nidulariaceae and other members of Agaricales. Furthermore, phylogenetic inferences based on four different gene sets reveal the stability and proximity of evolutionary relationships within Agaricales. These results reveal the uniqueness of the family Nidulariaceae and its similarity to other members of Agaricales; provide valuable insights into the origin, evolution, and genetics of Nidulariaceae species; and enrich the fungal mitogenome resource. This study will help to expand the knowledge and understanding of the mitogenomes in mushrooms.
Collapse
Affiliation(s)
- Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tian-chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhen-xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Guo-ming Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Penaud B, Laurent B, Milhes M, Noüs C, Ehrenmann F, Dutech C. SNP4OrphanSpecies: A bioinformatics pipeline to isolate molecular markers for studying genetic diversity of orphan species. Biodivers Data J 2022; 10:e85587. [PMID: 36761595 PMCID: PMC9848450 DOI: 10.3897/bdj.10.e85587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
Background For several decades, an increase in disease or pest emergences due to anthropogenic introduction or environmental changes has been recorded. This increase leads to serious threats to the genetic and species diversity of numerous ecosystems. Many of these events involve species with poor or no genomic resources (called here "orphan species"). This lack of resources is a serious limitation to our understanding of the origin of emergent populations, their ability to adapt to new environments and to predict future consequences to biodiversity. Analyses of genetic diversity are an efficient method to obtain this information rapidly, but require available polymorphic genetic markers. New information We developed a generic bioinformatics pipeline to rapidly isolate such markers with the goal for the pipeline to be applied in studies of invasive taxa from different taxonomic groups, with a special focus on forest fungal pathogens and insect pests. This pipeline is based on: 1) an automated de novo genome assembly obtained from shotgun whole genome sequencing using paired-end Illumina technology; 2) the isolation of single-copy genes conserved in species related to the studied emergent organisms; 3) primer development for multiplexed short sequences obtained from these conserved genes. Previous studies have shown that intronic regions of these conserved genes generally contain several single nucleotide polymorphisms within species. The pipeline's functionality was evaluated with sequenced genomes of five invasive or expanding pathogen and pest species in Europe (Armillariaostoyae (Romagn.) Herink 1973, Bursaphelenchusxylophilus Steiner & Buhrer 1934, Sphaeropsissapinea (fr.) Dicko & B. Sutton 1980, Erysiphealphitoides (Griffon & Maubl.) U. Braun & S. Takam. 2000, Thaumetopoeapityocampa Denis & Schiffermüller, 1775). We successfully isolated several pools of one hundred short gene regions for each assembled genome, which can be amplified in multiplex. The bioinformatics pipeline is user-friendly and requires little computational resources. This easy-to-set-up and run method for genetic marker identification will be useful for numerous laboratories studying biological invasions, but with limited resources and expertise in bioinformatics.
Collapse
Affiliation(s)
- Benjamin Penaud
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| | - Benoit Laurent
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| | - Marine Milhes
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, FranceINRAE, US 1426, GeT-PlaGe, GenotoulCastanet-TolosanFrance
| | - Camille Noüs
- Laboratoire Cogitamus, Bordeaux, FranceLaboratoire CogitamusBordeauxFrance
| | - François Ehrenmann
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| | - Cyril Dutech
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| |
Collapse
|
6
|
Sedaghatjoo S, Mishra B, Forster MK, Becker Y, Keilwagen J, Killermann B, Thines M, Karlovsky P, Maier W. Comparative genomics reveals low levels of inter- and intraspecies diversity in the causal agents of dwarf and common bunt of wheat and hint at conspecificity of Tilletia caries and T. laevis. IMA Fungus 2022; 13:11. [PMID: 35672841 PMCID: PMC9172201 DOI: 10.1186/s43008-022-00098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely related fungal species differ in their teliospore morphology and partially in their physiology and infection biology. The gene content as well as intraspecies variation in these species and the genetic basis of their separation is unknown. We sequenced the genome of four T. caries, five T. controversa, and two T. laevis and extended this dataset with five publicly available ones. The genomes of the three species displayed microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. The majority of functionally characterized genes involved in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were found to be absent or poorly conserved in the draft genomes and the biosynthetic pathway for trimethylamine in Tilletia spp. could be different from bacteria. Overall, 75% of the identified protein-coding genes comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted proteins, and 47.4% of effector-like proteins were conserved and shared across all 16 isolates. We predicted nine highly identical secondary metabolite biosynthesis gene clusters comprising in total 62 genes in all species and none were species-specific. Less than 0.1% of the protein-coding genes were species-specific and their function remained mostly unknown. Tilletia controversa had the highest intraspecies genetic variation, followed by T. caries and the lowest in T. laevis. Although the genomes of the three species are very similar, employing 241 single copy genes T. controversa was phylogenetically distinct from T. caries and T. laevis, however these two could not be resolved as individual monophyletic groups. This was in line with the genome-wide number of single nucleotide polymorphisms and small insertions and deletions. Despite the conspicuously different teliospore ornamentation of T. caries and T. laevis, a high degree of genomic identity and scarcity of species-specific genes indicate that the two species could be conspecific.
Collapse
|
7
|
Kashif M, Jurvansuu J, Hyder R, Vainio EJ, Hantula J. Phenotypic Recovery of a Heterobasidion Isolate Infected by a Debilitation-Associated Virus Is Related to Altered Host Gene Expression and Reduced Virus Titer. Front Microbiol 2022; 12:661554. [PMID: 35310390 PMCID: PMC8930199 DOI: 10.3389/fmicb.2021.661554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The fungal genus Heterobasidion includes forest pathogenic species hosting a diverse group of partitiviruses. They include the host debilitating Heterobasidion partitivirus 13 strain an1 (HetPV13-an1), which was originally observed in a slowly growing H. annosum strain 94233. In this study, a relatively fast-growing sector strain 94233-RC3 was isolated from a highly debilitated mycelial culture of 94233, and its gene expression and virus transcript quantities as well as the genomic sequence of HetPV13-an1 were examined. The sequence of HetPV13-an1 genome in 94233-RC3 was identical to that in the original 94233, and thus not the reason for the partial phenotypic recovery. According to RNA-seq analysis, the HetPV13-an1 infected 94233-RC3 transcribed eight genes differently from the partitivirus-free 94233-32D. Three of these genes were downregulated and five upregulated. The number of differentially expressed genes was considerably lower and the changes in their expression were small compared to those of the highly debilitated original strain 94233 with the exception of the most highly upregulated ones, and therefore viral effects on the host transcriptome correlated with the degree of the virus-caused debilitation. The amounts of RdRp and CP transcripts of HetPV13-an1 were considerably lower in 94233-RC3 and also in 94233 strain infected by a closely related mildly debilitating virus HetPV13-an2, suggesting that the virus titer would have a role in determining the effect of HetPV13 viruses on their hosts.
Collapse
Affiliation(s)
| | | | - Rafiqul Hyder
- Natural Resources Institute Finland, Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
8
|
Derbyshire MC, Harper LA, Lopez-Ruiz FJ. Positive Selection of Transcription Factors Is a Prominent Feature of the Evolution of a Plant Pathogenic Genus Originating in the Miocene. Genome Biol Evol 2021; 13:6325025. [PMID: 34289036 PMCID: PMC8379374 DOI: 10.1093/gbe/evab167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Tests based on the dN/dS statistic are used to identify positive selection of nonsynonymous polymorphisms. Using these tests on alignments of all orthologs from related species can provide insights into which gene categories have been most frequently positively selected. However, longer alignments have more power to detect positive selection, creating a detection bias that could create misleading results from functional enrichment tests. Most studies of positive selection in plant pathogens focus on genes with specific virulence functions, with little emphasis on broader molecular processes. Furthermore, no studies in plant pathogens have accounted for detection bias due to alignment length when performing functional enrichment tests. To address these research gaps, we analyze 12 genomes of the phytopathogenic fungal genus Botrytis, including two sequenced in this study. To establish a temporal context, we estimated fossil-calibrated divergence times for the genus. We find that Botrytis likely originated 16–18 Ma in the Miocene and underwent continuous radiation ending in the Pliocene. An untargeted scan of Botrytis single-copy orthologs for positive selection with three different statistical tests uncovered evidence for positive selection among proteases, signaling proteins, CAZymes, and secreted proteins. There was also a strong overrepresentation of transcription factors among positively selected genes. This overrepresentation was still apparent after two complementary controls for detection bias due to sequence length. Positively selected sites were depleted within DNA-binding domains, suggesting changes in transcriptional responses to internal and external cues or protein–protein interactions have undergone positive selection more frequently than changes in promoter fidelity.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia
| | - Lincoln A Harper
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
10
|
Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00448-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Genome Sequencing and Analysis of the Fungal Symbiont of Sirex noctilio, Amylostereum areolatum: Revealing the Biology of Fungus-Insect Mutualism. mSphere 2020; 5:5/3/e00301-20. [PMID: 32404513 PMCID: PMC7227769 DOI: 10.1128/msphere.00301-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. Amylostereum areolatum is the symbiotic fungus of the Eurasian woodwasp, Sirex noctilio, a globally invasive species. The mutualistic symbiont is associated with the woodwasp, assisting the damage process and providing nutrition for its insect partners. Colonization and growth of A. areolatum have essential impacts on the development and spread of S. noctilio, though the mechanism of interaction between the two has been poorly described. In this study, the first genome of this symbiotic fungus was sequenced, assembled, and annotated. The assembled A. areolatum genome was 57.5 Mb (54.51% GC content) with 15,611 protein-coding genes. We identified 580 carbohydrate-active enzymes (CAZymes), 661 genes associated with pathogen-host interactions, and 318 genes encoding transport proteins in total. The genome annotation revealed 10 terpene/phytoene synthases responsible for terpenoid biosynthesis, which could be classified into three clades. Terpene synthase gene clusters in clade II were conserved well across Russulales. In this cluster, genes encoding mevalonate kinase (MK), EGR12 (COG1557), and nonplant terpene cyclases (cd00687) were the known biosynthesis and regulatory genes. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus. The wasps might protect the fungus before it was introduced into a suitable host substrate by oviposition, while the fungus would provide S. noctilio with a suitable environment and nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. IMPORTANCESirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis.
Collapse
|
12
|
Potential Interactions between Invasive Fusarium circinatum and Other Pine Pathogens in Europe. FORESTS 2019. [DOI: 10.3390/f11010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pines are major components of native forests and plantations in Europe, where they have both economic significance and an important ecological role. Diseases of pines are mainly caused by fungal and oomycete pathogens, and can significantly reduce the survival, vigor, and yield of both individual trees and entire stands or plantations. Pine pitch canker (PPC), caused by Fusarium circinatum (Nirenberg and O’Donnell), is among the most devastating pine diseases in the world, and is an example of an emergent invasive disease in Europe. The effects of microbial interactions on plant health, as well as the possible roles plant microbiomes may have in disease expression, have been the focus of several recent studies. Here, we describe the possible effects of co-infection with pathogenic fungi and oomycetes with F. circinatum on the health of pine seedlings and mature plants, in an attempt to expand our understanding of the role that biotic interactions may play in the future of PPC disease in European nurseries and forests. The available information on pine pathogens that are able to co-occur with F. circinatum in Europe is here reviewed and interpreted to theoretically predict the effects of such co-occurrences on pine survival, growth, and yield. Beside the awareness that F. circinatum may co-occurr on pines with other pathogens, an additional outcome from this review is an updating of the literature, including the so-called grey literature, to document the geographical distribution of the relevant pathogens and to facilitate differential diagnoses, particularly in nurseries, where some of them may cause symptoms similar to those induced by F. circinatum. An early and accurate diagnosis of F. circinatum, a pathogen that has been recently introduced and that is currently regulated in Europe, is essential to prevent its introduction and spread in plantings and forests.
Collapse
|
13
|
New Taxon-Specific Heterobasidion PCR Primers Detect and Differentiate North American Heterobasidion spp. in Various Substrates and Led to the Discovery of Heterobasidion irregulare in British Columbia, Canada. Pathogens 2019; 8:pathogens8030156. [PMID: 31540403 PMCID: PMC6789490 DOI: 10.3390/pathogens8030156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion annosum sensu lato is a species complex of pathogenic white-rot wood decay fungi which cause root and butt rot in conifer and hardwood species across the Northern hemisphere. Annual losses to forest managers are valued in the billions of dollars, due to tree mortality, reduction in timber yield, and wood decay. In North America, H. irregulare and H. occidentale have a partially overlapping host and geographic range, cause similar disease symptoms and produce similar fruiting bodies, making discrimination between the two of them often difficult. We developed two sets of primers that bind specifically to conserved, but species-specific portions of glyceraldehyde 3-phosphate dehydrogenase and elongation factor 1α alleles. The method is sensitive enough to detect either species from infected wood. Analysis of North American isolates has further clarified the distribution of both species on this continent, including the detection of H. irregulare for the first time on ponderosa pine (Pinus ponderosa) and eastern white pine (Pinus strobus) in British Columbia. This method has the potential to be a valuable tool for the detection of the pathogen in exported/imported wood products, as well as for the further identification and assessment of the distribution of North American Heterobasidion species.
Collapse
|
14
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
15
|
An ectomycorrhizal symbiosis differently affects host susceptibility to two congeneric fungal pathogens. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Sillo F, Gonthier P, Lockman B, Kasuga T, Garbelotto M. Molecular analyses identify hybridization-mediated nuclear evolution in newly discovered fungal hybrids. Ecol Evol 2019; 9:6588-6605. [PMID: 31236246 PMCID: PMC6580273 DOI: 10.1002/ece3.5238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hybridization may be a major driver in the evolution of plant pathogens. In a high elevation Alpine larch stand in Montana, a novel hybrid fungal pathogen of trees originating from the mating of Heterobasidion irregulare with H. occidentale has been recently discovered. In this study, sequence analyses of one mitochondrial and four nuclear loci from 11 Heterobasidion genotypes collected in the same Alpine larch stand indicated that hybridization has increased allelic diversity by generating novel polymorphisms unreported in either parental species. Sequence data and ploidy analysis through flow cytometry confirmed that heterokaryotic (n + n) genotypes were not first-generation hybrids, but were the result of multiple backcrosses, indicating hybrids are fertile. Additionally, all admixed genotypes possessed the H. occidentale mitochondrion, indicating that the hybrid progeny may have been backcrossing mostly with H. occidentale. Based on reticulate phylogenetic network analysis by PhyloNet, Bayesian assignment, and ordination tests, alleles can be defined as H. irregulare-like or H. occidentale-like. H. irregulare-like alleles are clearly distinct from all known H. irregulare alleles and are derived from the admixing of both Heterobasidion species. Instead, all but one H. occidentale alleles found in hybrids, although novel, were not clearly distinct from alleles found in the parental H. occidentale population. This discovery demonstrates that Alpine larch can be a universal host favouring the interspecific hybridization between H. irregulare and H. occidentale and the hybridization-mediated evolution of a nucleus, derived from H. irregulare parental species but clearly distinct from it.
Collapse
Affiliation(s)
- Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Blakey Lockman
- Pacific Northwest Region, State and Private ForestryUSDA Forest ServicePortlandOregon
| | - Takao Kasuga
- Crops Pathology and Genetics Research UnitUSDA Agricultural Research ServiceDavisCalifornia
| | - Matteo Garbelotto
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
- Department of Environmental Science, Policy and Management, Forest Pathology and Mycology LaboratoryUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
17
|
Pepori AL, Michelozzi M, Santini A, Cencetti G, Bonello P, Gonthier P, Sebastiani F, Luchi N. Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. TREE PHYSIOLOGY 2019; 39:31-44. [PMID: 30137615 DOI: 10.1093/treephys/tpy086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2018] [Indexed: 05/28/2023]
Abstract
Heterobasidion irregulare is a causal agent of root and butt-rot disease in conifers, and is native to North America. In 1944 it was introduced in central Italy in a Pinus pinea stand, where it shares the same niche with the native species Heterobasidion annosum. The introduction of a non-native pathogen may have significant negative effects on a naïve host tree and the ecosystem in which it resides, requiring a better understanding of the system. We compared the spatio-temporal phenotypic, transcriptional and metabolic host responses to inoculation with the two Heterobasidion species in a large experiment with P. pinea seedlings. Differences in length of lesions at the inoculation site (IS), expression of host genes involved in lignin pathway and in cell rescue and defence, and analysis of terpenes at both IS and 12 cm above the IS (distal site, DS), were assessed at 3, 14 and 35 days post inoculation (dpi). Results clearly showed that both species elicit similar physiological and biochemical responses in P. pinea seedlings. The analysis of host transcripts and total terpenes showed differences between inoculation sites and between pathogen and mock inoculated plants. Both pathogen and mock inoculations induced antimicrobial peptide and phenylalanine ammonia-lyase overexpression at IS beginning at 3 dpi; while at DS all the analysed genes, except for peroxidase, were overexpressed at 14 dpi. A significantly higher accumulation of terpenoids was observed at 14 dpi at IS, and at 35 dpi at DS. The terpene blend at IS showed significant variation among treatments and sampling times, while no significant differences were ever observed in DS tissues. Based on our results, H. irregulare does not seem to have competitive advantages over the native species H. annosum in terms of pathogenicity towards P. pinea trees; this may explain why the non-native species has not widely spread over the 73 years since its putative year of introduction into central Italy.
Collapse
Affiliation(s)
- Alessia Lucia Pepori
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Rd, Columbus, OH, USA
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, Grugliasco, TO, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| |
Collapse
|
18
|
Liu J, Shamoun SF, Leal I, Kowbel R, Sumampong G, Zamany A. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations. Microb Biotechnol 2018; 11:537-550. [PMID: 29611344 PMCID: PMC5954486 DOI: 10.1111/1751-7915.13259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Abstract
Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity.
Collapse
Affiliation(s)
- Jun‐Jun Liu
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Simon Francis Shamoun
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Isabel Leal
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Robert Kowbel
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Grace Sumampong
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Arezoo Zamany
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| |
Collapse
|
19
|
Zeng Z, Sun H, Vainio EJ, Raffaello T, Kovalchuk A, Morin E, Duplessis S, Asiegbu FO. Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion parviporum) and identification of its potential virulence factors. BMC Genomics 2018; 19:220. [PMID: 29580224 PMCID: PMC5870257 DOI: 10.1186/s12864-018-4610-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Heterobasidion parviporum is an economically most important fungal forest pathogen in northern Europe, causing root and butt rot disease of Norway spruce (Picea abies (L.) Karst.). The mechanisms underlying the pathogenesis and virulence of this species remain elusive. No reference genome to facilitate functional analysis is available for this species. RESULTS To better understand the virulence factor at both phenotypic and genomic level, we characterized 15 H. parviporum isolates originating from different locations across Finland for virulence, vegetative growth, sporulation and saprotrophic wood decay. Wood decay capability and latitude of fungal origins exerted interactive effects on their virulence and appeared important for H. parviporum virulence. We sequenced the most virulent isolate, the first full genome sequences of H. parviporum as a reference genome, and re-sequenced the remaining 14 H. parviporum isolates. Genome-wide alignments and intrinsic polymorphism analysis showed that these isolates exhibited overall high genomic similarity with an average of at least 96% nucleotide identity when compared to the reference, yet had remarkable intra-specific level of polymorphism with a bias for CpG to TpG mutations. Reads mapping coverage analysis enabled the classification of all predicted genes into five groups and uncovered two genomic regions exclusively present in the reference with putative contribution to its higher virulence. Genes enriched for copy number variations (deletions and duplications) and nucleotide polymorphism were involved in oxidation-reduction processes and encoding domains relevant to transcription factors. Some secreted protein coding genes based on the genome-wide selection pressure, or the presence of variants were proposed as potential virulence candidates. CONCLUSION Our study reported on the first reference genome sequence for this Norway spruce pathogen (H. parviporum). Comparative genomics analysis gave insight into the overall genomic variation among this fungal species and also facilitated the identification of several secreted protein coding genes as putative virulence factors for the further functional analysis. We also analyzed and identified phenotypic traits potentially linked to its virulence.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Emmanuelle Morin
- INRA UMR 1136 Interactions Arbres Micro-organismes, INRA Centre Grand Est Nancy, Champenoux, France
| | - Sébastien Duplessis
- INRA UMR 1136 Interactions Arbres Micro-organismes, INRA Centre Grand Est Nancy, Champenoux, France
- UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Giordano L, Sillo F, Garbelotto M, Gonthier P. Mitonuclear interactions may contribute to fitness of fungal hybrids. Sci Rep 2018; 8:1706. [PMID: 29374209 PMCID: PMC5786003 DOI: 10.1038/s41598-018-19922-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Hybridization between species is being recognized as a major force in the rapid adaptive evolution of fungal plant pathogens. The first stages of interspecific hybridization necessarily involve nuclear-mitochondrial chimeras. In their 2001 publication, Olson and Stenlid reported that mitochondria control the virulence of first generation hybrids between the North American fungal pathogen Heterobasidion irregulare and its congeneric H. occidentale. By assessing saprobic ability and gene expression of H. irregulare × H. annosum sensu stricto hybrids and of their parental genotypes, we demonstrate that mitochondria also influence saprobic growth of hybrids. Moreover, gene expression data suggest that fungal fitness is modulated by an intimate interplay between nuclear genes and mitochondrial type, and is dependent on the specific mitonuclear combination.
Collapse
Affiliation(s)
- Luana Giordano
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy.,Centre of Competence for the Innovation in the Agro-Environmental Field (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy
| | - Fabiano Sillo
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy.
| | - Matteo Garbelotto
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Forest Pathology and Mycology Laboratory, 54 Mulford Hall, 94720, Berkeley, California, USA
| | - Paolo Gonthier
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy
| |
Collapse
|
21
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
22
|
Choi J, Lee GW, Kim KT, Jeon J, Détry N, Kuo HC, Sun H, Asiegbu FO, Lee YH. Comparative analysis of genome sequences of the conifer tree pathogen, Heterobasidion annosum s.s. GENOMICS DATA 2017; 14:106-113. [PMID: 29085779 PMCID: PMC5654758 DOI: 10.1016/j.gdata.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023]
Abstract
The causal agent of root and butt rot of conifer trees, Heterobasidion annosum, is widespread in boreal forests and economically responsible for annual loss of approximately 50 million euros to forest industries in Finland alone and much more at European level. In order to further understand the pathobiology of this fungus at the genome level, a Finnish isolate of H. annosum sensu stricto (isolate 03012) was sequenced and analyzed with the genome sequences of 23 white-rot and 13 brown-rot fungi. The draft genome assembly of H. annosum has a size of 31.01 Mb, containing 11,453 predicted genes. Whole genome alignment showed that 84.38% of H. annosum genome sequences were aligned with those of previously sequenced H. irregulare TC 32-1 counterparts. The result is further supported by the protein sequence clustering analysis which revealed that the two genomes share 6719 out of 8647 clusters. When sequencing reads of H. annosum were aligned against the genome sequences of H. irregulare, six single nucleotide polymorphisms were found in every 1 kb, on average. In addition, 98.68% of SNPs were found to be homo-variants, suggesting that the two species have long evolved from different niches. Gene family analysis revealed that most of the white-rot fungi investigated had more gene families involved in lignin degradation or modification, including laccases and peroxidase. Comparative analysis of the two Heterobasidion spp. as well as white-/brown-rot fungi would provide new insights for understanding the pathobiology of the conifer tree pathogen.
Collapse
Affiliation(s)
- Jaeyoung Choi
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Gir-Won Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongbum Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nicolas Détry
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hsiao-Che Kuo
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hui Sun
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.,Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Zeng F, Lian X, Zhang G, Yu X, Bradley CA, Ming R. A comparative genome analysis of Cercospora sojina with other members of the pathogen genus Mycosphaerella on different plant hosts. GENOMICS DATA 2017; 13:54-63. [PMID: 28736701 PMCID: PMC5508496 DOI: 10.1016/j.gdata.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/17/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022]
Abstract
Fungi are the causal agents of many of the world's most serious plant diseases causing disastrous consequences for large-scale agricultural production. Pathogenicity genomic basis is complex in fungi as multicellular eukaryotic pathogens. Here, we report the genome sequence of C. sojina, and comparative genome analysis with plant pathogen members of the genus Mycosphaerella (Zymoseptoria. tritici (synonyms M. graminicola), M. pini, M. populorum and M. fijiensis - pathogens of wheat, pine, poplar and banana, respectively). Synteny or collinearity was limited between genomes of major Mycosphaerella pathogens. Comparative analysis with these related pathogen genomes indicated distinct genome-wide repeat organization features. It suggests repetitive elements might be responsible for considerable evolutionary genomic changes. These results reveal the background of genomic differences and similarities between Dothideomycete species. Wide diversity as well as conservation on genome features forms the potential genomic basis of the pathogen specialization, such as pathogenicity to woody vs. herbaceous hosts. Through comparative genome analysis among five Dothideomycete species, our results have shed light on the genome features of these related fungi species. It provides insight for understanding the genomic basis of fungal pathogenicity and disease resistance in the crop hosts.
Collapse
Affiliation(s)
- Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Xin Lian
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guirong Zhang
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Xiaoman Yu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA.,Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA.,FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
24
|
Zampieri E, Giordano L, Lione G, Vizzini A, Sillo F, Balestrini R, Gonthier P. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont. THE NEW PHYTOLOGIST 2017; 213:1836-1849. [PMID: 27870066 DOI: 10.1111/nph.14314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction.
Collapse
Affiliation(s)
- Elisa Zampieri
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Luana Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Field (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Guglielmo Lione
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale P.A. Mattioli 25, I-10125, Torino, Italy
| | - Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection, CNR, Torino Unit, Viale P.A. Mattioli 25, I-10125, Torino, Italy
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| |
Collapse
|
25
|
Insights From Genomics Into Spatial and Temporal Variation in Batrachochytrium dendrobatidis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016. [PMID: 27571698 DOI: 10.1016/bs.pmbts.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Advances in genetics and genomics have provided new tools for the study of emerging infectious diseases. Researchers can now move quickly from simple hypotheses to complex explanations for pathogen origin, spread, and mechanisms of virulence. Here we focus on the application of genomics to understanding the biology of the fungal pathogen Batrachochytrium dendrobatidis (Bd), a novel and deadly pathogen of amphibians. We provide a brief history of the system, then focus on key insights into Bd variation garnered from genomics approaches, and finally, highlight new frontiers for future discoveries. Genomic tools have revealed unexpected complexity and variation in the Bd system suggesting that the history and biology of emerging pathogens may not be as simple as they initially seem.
Collapse
|
26
|
Gonthier P, Sillo F, Lagostina E, Roccotelli A, Cacciola OS, Stenlid J, Garbelotto M. Selection processes in simple sequence repeats suggest a correlation with their genomic location: insights from a fungal model system. BMC Genomics 2015; 16:1107. [PMID: 26714466 PMCID: PMC4696308 DOI: 10.1186/s12864-015-2274-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adaptive processes shape the evolution of genomes and the diverse functions of different genomic regions are likely to have an impact on the trajectory and outcome of this evolution. The main underlying hypothesis of this study is that the evolution of Simple Sequence Repeats (SSRs) is correlated with the evolution of the genomic region in which they are located, resulting in differences of motif size, number of repeats, and levels of polymorphisms. These differences should be clearly detectable when analyzing the frequency and type of SSRs within the genome of a species, when studying populations within a species, and when comparing closely related sister taxa. By coupling a genome-wide SSR survey in the genome of the plant pathogenic fungus Heterobasidion irregulare with an analysis of intra- and interspecific variability of 39 SSR markers in five populations of the two sibling species H. irregulare and H. annosum, we investigated mechanisms of evolution of SSRs. RESULTS Results showed a clear dominance of trirepeats and a selection against other repeat number, i.e. di- and tetranucleotides, both in regions inside Open Reading Frames (ORFs) and upstream 5' untranslated region (5'UTR). Locus per locus AMOVA showed SSRs both inside ORFs and upstream 5'UTR were more conserved within species compared to SSRs in other genomic regions, suggesting their evolution is constrained by the functions of the regions they are in. Principal coordinates analysis (PCoA) indicated that even if SSRs inside ORFs were less polymorphic than those in intergenic regions, they were more powerful in differentiating species. These findings indicate SSRs evolution undergoes a directional selection pressure comparable to that of the ORFs they interrupt and to that of regions involved in regulatory functions. CONCLUSIONS Our work linked the variation and the type of SSRs with regions upstream 5'UTR, putatively harbouring regulatory elements, and shows that the evolution of SSRs might be affected by their location in the genome. Additionally, this study provides a first glimpse on a possible molecular basis for fast adaptation to the environment mediated by SSRs.
Collapse
Affiliation(s)
- Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy.
| | - Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy.
| | - Elisa Lagostina
- Department of Environmental Sciences, Policy and Management, University of California at Berkeley, CA, 94720, Berkeley, USA. .,Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| | - Angela Roccotelli
- Department of Environmental Sciences, Policy and Management, University of California at Berkeley, CA, 94720, Berkeley, USA. .,Department of Agriculture, Mediterranean University of Reggio Calabria, 89122, Reggio Calabria, Italy.
| | - Olga Santa Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy.
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| | - Matteo Garbelotto
- Department of Environmental Sciences, Policy and Management, University of California at Berkeley, CA, 94720, Berkeley, USA.
| |
Collapse
|