1
|
Nath R, Panda B, Rakesh S, Krishnan A. Lineage-Specific Class-A GPCR Dynamics Reflect Diverse Chemosensory Adaptations in Lophotrochozoa. Mol Biol Evol 2025; 42:msaf042. [PMID: 39943858 PMCID: PMC11886862 DOI: 10.1093/molbev/msaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/08/2025] Open
Abstract
Sensing external chemosensory cues via Class-A G protein-coupled receptors (GPCRs) is crucial for a multitude of behavioral and biological functions, influencing animal evolution and ecological adaptations. While extensively studied in vertebrates and echinoderms, the role of GPCR-mediated chemoreception in major protostome clades like Lophotrochozoa remains obscure despite their remarkable ecological adaptations across diverse aquatic and terrestrial environments. Utilizing 238 lophotrochozoan genomes across eight phyla, we conducted a large-scale comparative genomics analysis to identify lineage-specific expansions of Class-A GPCR subsets that are likely adapted for chemoreception. Using phylogeny and orthology-inference-based clustering, we distinguished these expansions from conserved orthogroups of prospective endogenous ligand-binding Class-A GPCR subsets. Across phyla, lineage-specific expansions correlated with adaptations to various habitats, ecological niches, and lifestyles, while the influence of whole-genome duplications in driving these lineage-specific expansions appeared to be less significant. Species adapted to various coastal, freshwater, and terrestrial habitats across several classes of Mollusca, Annelida, and other analyzed phyla exhibit large and diverse lineage-specific expansions, while adaptations to extreme deep-sea environments, parasitic lifestyles, sessile behaviors, or alternative chemosensory mechanisms consistently exhibit reductions. Sequence heterogeneity, signatures of positive selection, and conformational flexibility in ligand-binding pockets further highlighted adaptations to environmental signals. In summary, the evolutionary dynamics of Class-A GPCRs in lophotrochozoans reveal a widespread pattern of lineage-specific expansions driven by adaptations for chemoreception across diverse environmental niches, mirroring the trends and prominent roles seen in deuterostome lineages. The comprehensive datasets spanning numerous genomes offer a valuable foundation for advancing GPCR-mediated chemoreception studies in Lophotrochozoa.
Collapse
Affiliation(s)
- Rohan Nath
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Biswajit Panda
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Siuli Rakesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| |
Collapse
|
2
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
3
|
Kvarnemo C, Anderstedt A, Strandh M, Blomqvist D. The Importance of Olfaction for Mixed Paternity in Birds. Ecol Evol 2025; 15:e70863. [PMID: 39823114 PMCID: PMC11737898 DOI: 10.1002/ece3.70863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Olfaction can aid individuals in finding genetically compatible mates in many animals, while high levels of mixed paternity may result from a limited ability to evaluate their mate's genetic profile against their own before mating. To test this suggestion and explore if olfaction may indeed influence mating patterns in birds, we combined published measures of olfactory ability with data on genetic mating pattern in the same species, across a phylogenetically broad range of species. We used three measures of olfaction: (1) olfactory bulb diameter, (2) olfactory bulb volume and (3) number of olfactory receptor genes (148, 134 and 48 species, respectively). These measures were then matched to species-specific estimates of mating pattern, measured as percentage of broods with mixed paternity (> 1 male siring offspring in the same brood). Limited overlaps between the datasets resulted in 30 matched species for olfactory bulb diameter, 31 for olfactory bulb volume and 15 for olfactory receptor genes. Controlling for brain size (telencephalon), we then correlated olfaction to mating pattern, and found that the bigger the relative olfactory bulb diameter, the lower the proportion of mixed paternity. In contrast, there was no significant correlation between olfactory bulb volume or number of receptor genes and paternity. This study thus indicates that mating patterns in birds may be influenced by olfactory ability, measured as olfactory bulb diameter. Next, we suggest expanding the datasets by collecting olfactory-focused measures, targeting species for which paternity measures already exist, to allow a full phylogenetic analysis.
Collapse
Affiliation(s)
- Charlotta Kvarnemo
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Alice Anderstedt
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | | | - Donald Blomqvist
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
4
|
Jauhal AA, Constantine R, Newcomb R. Conservation and selective pressures shaping baleen whale olfactory receptor genes supports their use of olfaction in the marine environment. Mol Ecol 2024; 33:e17497. [PMID: 39161105 DOI: 10.1111/mec.17497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| | | | - Richard Newcomb
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| |
Collapse
|
5
|
Garber ME, Frank V, Kazakov AE, Incha MR, Nava AA, Zhang H, Valencia LE, Keasling JD, Rajeev L, Mukhopadhyay A. REC protein family expansion by the emergence of a new signaling pathway. mBio 2023; 14:e0262223. [PMID: 37991384 PMCID: PMC10746176 DOI: 10.1128/mbio.02622-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE We explore when and why large classes of proteins expand into new sequence space. We used an unsupervised machine learning approach to observe the sequence landscape of REC domains of bacterial response regulator proteins. We find that within-gene recombination can switch effector domains and, consequently, change the regulatory context of the duplicated protein.
Collapse
Affiliation(s)
- Megan E. Garber
- Department of Comparative Biochemistry, University of California, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vered Frank
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alexey E. Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthew R. Incha
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Alberto A. Nava
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Hanqiao Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Luis E. Valencia
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Jay D. Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lara Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Department of Comparative Biochemistry, University of California, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
6
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
7
|
Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories. Proc Natl Acad Sci U S A 2023; 120:e2201076120. [PMID: 36749728 PMCID: PMC9962930 DOI: 10.1073/pnas.2201076120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
Collapse
|
8
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
9
|
Olender T, Jones TEM, Bruford E, Lancet D. A unified nomenclature for vertebrate olfactory receptors. BMC Evol Biol 2020; 20:42. [PMID: 32295537 PMCID: PMC7160942 DOI: 10.1186/s12862-020-01607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/27/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Olfactory receptors (ORs) are G protein-coupled receptors with a crucial role in odor detection. A typical mammalian genome harbors ~ 1000 OR genes and pseudogenes; however, different gene duplication/deletion events have occurred in each species, resulting in complex orthology relationships. While the human OR nomenclature is widely accepted and based on phylogenetic classification into 18 families and further into subfamilies, for other mammals different and multiple nomenclature systems are currently in use, thus concealing important evolutionary and functional insights. RESULTS Here, we describe the Mutual Maximum Similarity (MMS) algorithm, a systematic classifier for assigning a human-centric nomenclature to any OR gene based on inter-species hierarchical pairwise similarities. MMS was applied to the OR repertoires of seven mammals and zebrafish. Altogether, we assigned symbols to 10,249 ORs. This nomenclature is supported by both phylogenetic and synteny analyses. The availability of a unified nomenclature provides a framework for diverse studies, where textual symbol comparison allows immediate identification of potential ortholog groups as well as species-specific expansions/deletions; for example, Or52e5 and Or52e5b represent a rat-specific duplication of OR52E5. Another example is the complete absence of OR subfamily OR6Z among primate OR symbols. In other mammals, OR6Z members are located in one genomic cluster, suggesting a large deletion in the great ape lineage. An additional 14 mammalian OR subfamilies are missing from the primate genomes. While in chimpanzee 87% of the symbols were identical to human symbols, this number decreased to ~ 50% in dog and cow and to ~ 30% in rodents, reflecting the adaptive changes of the OR gene superfamily across diverse ecological niches. Application of the proposed nomenclature to zebrafish revealed similarity to mammalian ORs that could not be detected from the current zebrafish olfactory receptor gene nomenclature. CONCLUSIONS We have consolidated a unified standard nomenclature system for the vertebrate OR superfamily. The new nomenclature system will be applied to cow, horse, dog and chimpanzee by the Vertebrate Gene Nomenclature Committee and its implementation is currently under consideration by other relevant species-specific nomenclature committees.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Tamsin E M Jones
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
10
|
C Silva M, Chibucos M, Munro JB, Daugherty S, Coelho MM, C Silva J. Signature of adaptive evolution in olfactory receptor genes in Cory's Shearwater supports molecular basis for smell in procellariiform seabirds. Sci Rep 2020; 10:543. [PMID: 31953474 PMCID: PMC6969042 DOI: 10.1038/s41598-019-56950-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Olfactory receptors (ORs), encoded by the largest vertebrate multigene family, enable the detection of thousands of unique odorants in the environment and consequently play a critical role in species survival. Here, we advance our knowledge of OR gene evolution in procellariiform seabirds, an avian group which relies on the sense of olfaction for critical ecological functions. We built a cosmid library of Cory's Shearwater (Calonectris borealis) genomic DNA, a model species for the study of olfaction-based navigation, and sequence OR gene-positive cosmid clones with a combination of sequencing technologies. We identified 220 OR open reading frames, 20 of which are full length, intact OR genes, and found a large ratio of partial and pseudogenes to intact OR genes (2:1), suggestive of a dynamic mode of evolution. Phylogenetic analyses revealed that while a few genes cluster with those of other sauropsid species in a γ (gamma) clade that predates the divergence of different avian lineages, most genes belong to an avian-specific γ-c clade, within which sequences cluster by species, suggesting frequent duplication and/or gene conversion events. We identified evidence of positive selection on full length γ-c clade genes. These patterns are consistent with a key role of adaptation in the functional diversification of olfactory receptor genes in a bird lineage that relies extensively on olfaction.
Collapse
Affiliation(s)
- Mónica C Silva
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Marcus Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - M Manuela Coelho
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
11
|
Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc Biol Sci 2019; 286:20191828. [PMID: 31506057 DOI: 10.1098/rspb.2019.1828] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.
Collapse
Affiliation(s)
- Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Kaori Tatsumi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
12
|
Yang L, Jiang H, Wang Y, Lei Y, Chen J, Sun N, Lv W, Wang C, Near TJ, He S. Expansion of vomeronasal receptor genes ( OlfC) in the evolution of fright reaction in Ostariophysan fishes. Commun Biol 2019; 2:235. [PMID: 31263779 PMCID: PMC6588630 DOI: 10.1038/s42003-019-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Ostariophysans are the most diverse group of freshwater fishes and feature a pheromone-elicited fright reaction. However, the genetic basis of fright reaction is unclear. Here, we compared vomeronasal type 2 receptor-like (OlfC) genes from fishes having and lacking fright reaction, to provide insight into evolution of pheromonal olfaction in fishes. We found OlfC genes expanded remarkably in ostariophysans having fright reaction compared with fishes lacking fright reaction. Phylogenetic analysis indicates OlfC subfamily 9 expanded specifically in ostariophysans having fright reaction. Principle component and phylogenetic logistic regression analysis partitioned fishes by ecotype (having or lacking fright reaction) and identified OlfC subfamily 9 as being an important factor for fright reaction. Expression levels of expanded OlfC subfamily genes after fright reaction in zebrafish changed more than did genes that had not expanded. Furthermore, evidence of positive selection was found in the expanded OlfC proteins in ostariophysan fishes having fright reaction. These results provide new insight into the genetic basis of fright reaction in ostariophysan fish and will enable future research into the mechanism of action of OlfC proteins.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Ying Wang
- School of Life Sciences, Jianghan University, 430056 Wuhan, People’s Republic of China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Cheng Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520 USA
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 People’s Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, People’s Republic of China
| |
Collapse
|
13
|
Abstract
The olfactory bulb (OB) ratio is the size of the OB relative to the cerebral hemisphere, and is used to estimate the proportion of the forebrain devoted to smell. In birds, OB ratio correlates with the number of olfactory receptor (OR) genes and therefore has been used as a proxy for olfactory acuity. By coupling OB ratios with known OR gene repertoires in birds, we infer minimum repertoire sizes for extinct taxa, including non-avian dinosaurs, using phylogenetic modelling, ancestral state reconstruction and comparative genomics. We highlight a shift in the scaling of OB ratio to body size along the lineage leading to modern birds, demonstrating variable OR repertoires present in different dinosaur and crown-bird lineages, with varying factors potentially influencing sensory evolution in theropods. We investigate the ancestral sensory space available to extinct taxa, highlighting potential adaptations to ecological niches. Through combining morphological and genomic data, we show that, while genetic information for extinct taxa is forever lost, it is potentially feasible to investigate evolutionary trajectories in extinct genomes.
Collapse
Affiliation(s)
- Graham M Hughes
- 1 School of Biology and Environmental Science, University College Dublin , Belfield, Dublin 4 , Republic of Ireland
| | - John A Finarelli
- 1 School of Biology and Environmental Science, University College Dublin , Belfield, Dublin 4 , Republic of Ireland.,2 Earth Institute, University College Dublin , Belfield, Dublin 4 , Republic of Ireland
| |
Collapse
|
14
|
Hoffmann FG, Vandewege MW, Storz JF, Opazo JC. Gene Turnover and Diversification of the α- and β-Globin Gene Families in Sauropsid Vertebrates. Genome Biol Evol 2018; 10:344-358. [PMID: 29340581 PMCID: PMC5786229 DOI: 10.1093/gbe/evy001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
The genes that encode the α- and β-chain subunits of vertebrate hemoglobin have served as a model system for elucidating general principles of gene family evolution, but little is known about patterns of evolution in amniotes other than mammals and birds. Here, we report a comparative genomic analysis of the α- and β-globin gene clusters in sauropsids (archosaurs and nonavian reptiles). The objectives were to characterize changes in the size and membership composition of the α- and β-globin gene families within and among the major sauropsid lineages, to reconstruct the evolutionary history of the sauropsid α- and β-globin genes, to resolve orthologous relationships, and to reconstruct evolutionary changes in the developmental regulation of gene expression. Our comparisons revealed contrasting patterns of evolution in the unlinked α- and β-globin gene clusters. In the α-globin gene cluster, which has remained in the ancestral chromosomal location, evolutionary changes in gene content are attributable to the differential retention of paralogous gene copies that were present in the common ancestor of tetrapods. In the β-globin gene cluster, which was translocated to a new chromosomal location, evolutionary changes in gene content are attributable to differential gene gains (via lineage-specific duplication events) and gene losses (via lineage-specific deletions and inactivations). Consequently, all major groups of amniotes possess unique repertoires of embryonic and postnatally expressed β-type globin genes that diversified independently in each lineage. These independently derived β-type globins descend from a pair of tandemly linked paralogs in the most recent common ancestor of sauropsids.
Collapse
Affiliation(s)
- Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
15
|
Connor EE, Zhou Y, Liu GE. The essence of appetite: does olfactory receptor variation play a role? J Anim Sci 2018. [PMID: 29534194 DOI: 10.1093/jas/sky068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Olfactory receptors are G-protein-coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predators or chemical toxins). Olfactory receptors also are present in organs outside of the nasal cavity where they bind to molecules such as nutrients and metabolites from the animal's internal environment to elicit physiological responses, including changes in gut motility, ventilation rate, and cellular migration. Recent evidence supports an additional role of olfactory receptors in the regulation of appetite in humans and rodents. In particular, genetic variation among individuals in specific odorant receptor genes has been linked to differences in their feeding behaviors, food choices, and the regulation of energy balance. This review provides a general overview of the olfactory receptors of vertebrates and their genetic variability and provides supporting evidence for a physiological role of olfactory receptors in appetite regulation of livestock. Basic research on olfactory receptors of livestock and their ligands should facilitate the development of novel odorant receptor agonists and identification of specific olfactory receptor variants that may be developed to enhance animal production efficiency.
Collapse
Affiliation(s)
- Erin E Connor
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD
| | - Yang Zhou
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD
| | - George E Liu
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD
| |
Collapse
|
16
|
Feng P, Liang S. Molecular evolution of umami/sweet taste receptor genes in reptiles. PeerJ 2018; 6:e5570. [PMID: 30155374 PMCID: PMC6110252 DOI: 10.7717/peerj.5570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
Sensory systems play an important role in animal survival. Changes to these systems may be critical in evolution of species in new environments. Previous studies exploring the correlation between feeding ecology and Tas1r evolution mainly focused on mammals and birds, and found that the relationship was complex. However, in reptiles, the correlation between Tas1r evolution and dietary preferences is still unclear. Here, we attempted to explore this relationship in representative species of the major groups of reptiles (turtles, snakes, lizards, crocodilians), for which the genome information is known. We first predicted the functionality (intact, partial, or defective) of Tas1r, and then related it to the feeding preferences. As a result, we identified 11 Tas1r1, 12 Tas1r2, and 12 Tas1r3 genes to be partial or intact and another 22 Tas1r genes to be absent or pseudogenized in the 19 reptiles. We found that, as it was revealed in some other vertebrate groups, no correlation existed between feeding ecology and Tas1r evolution in reptiles: genomic prediction indicated that the Tas1r genes possibly have been lost or pseudogenized in snakes, but in crocodylia and testudines Tas1r genes are either intact or partial, regardless of their feeding habits. Thus, we suggest that the driving force of Tas1r evolution in reptiles is complex, and the feeding habit of swallowing food whole without chewing or the absence of taste buds in certain species may account for the possible umami/sweet perception loss. In addition, we propose that caution should be taken when predicting gene functionality from the publicly available genome database.
Collapse
Affiliation(s)
- Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Shichu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
17
|
Perry BW, Card DC, McGlothlin JW, Pasquesi GIM, Adams RH, Schield DR, Hales NR, Corbin AB, Demuth JP, Hoffmann FG, Vandewege MW, Schott RK, Bhattacharyya N, Chang BSW, Casewell NR, Whiteley G, Reyes-Velasco J, Mackessy SP, Gamble T, Storey KB, Biggar KK, Passow CN, Kuo CH, McGaugh SE, Bronikowski AM, de Koning APJ, Edwards SV, Pfrender ME, Minx P, Brodie ED, Brodie ED, Warren WC, Castoe TA. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biol Evol 2018; 10:2110-2129. [PMID: 30060036 PMCID: PMC6110522 DOI: 10.1093/gbe/evy157] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, Arlington
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Nihar Bhattacharyya
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, Arlington.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - A P Jason de Koning
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Patrick Minx
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | | | | | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington
| |
Collapse
|
18
|
Annotated Draft Genome Assemblies for the Northern Bobwhite ( Colinus virginianus) and the Scaled Quail ( Callipepla squamata) Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size. G3-GENES GENOMES GENETICS 2017; 7:3047-3058. [PMID: 28717047 PMCID: PMC5592930 DOI: 10.1534/g3.117.043083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Northern bobwhite (Colinus virginianus; hereafter bobwhite) and scaled quail (Callipepla squamata) populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0) and second- (v2.0) generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb) was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb), which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%), genome-wide repetitive content (10.40%; 10.43%), and MAKER-predicted protein coding genes (17,131; 17,165) were similar for the scaled quail (v1.0) and bobwhite (v2.0) assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8%) and the bobwhite (v2.0; 82.5%), as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0), and 711 in the bobwhite genome (v2.0), including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0) and bobwhite (v2.0) genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15-20 KYA.
Collapse
|