1
|
Bodelón A, Fablet M, Veber P, Vieira C, García Guerreiro MP. OUP accepted manuscript. Genome Biol Evol 2022; 14:6526395. [PMID: 35143649 PMCID: PMC8872975 DOI: 10.1093/gbe/evac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Interspecific hybridization is often seen as a genomic stress that may lead to new gene expression patterns and deregulation of transposable elements (TEs). The understanding of expression changes in hybrids compared with parental species is essential to disentangle their putative role in speciation processes. However, to date we ignore the detailed mechanisms involved in genomic deregulation in hybrids. We studied the ovarian transcriptome and epigenome of the Drosophila buzzatii and Drosophila koepferae species together with their F1 hybrid females. We found a trend toward underexpression of genes and TE families in hybrids. The epigenome in hybrids was highly similar to the parental epigenomes and showed intermediate histone enrichments between parental species in most cases. Differential gene expression in hybrids was often associated only with changes in H3K4me3 enrichments, whereas differential TE family expression in hybrids may be associated with changes in H3K4me3, H3K9me3, or H3K27me3 enrichments. We identified specific genes and TE families, which their differential expression in comparison with the parental species was explained by their differential chromatin mark combination enrichment. Finally, cis–trans compensatory regulation could also contribute in some way to the hybrid deregulation. This work provides the first study of histone content in Drosophila interspecific hybrids and their effect on gene and TE expression deregulation.
Collapse
Affiliation(s)
- Alejandra Bodelón
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Spain
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut universitaire de France, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Pilar García Guerreiro
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Spain
- Corresponding author: E-mail:
| |
Collapse
|
2
|
|
3
|
Mohamed M, Dang NTM, Ogyama Y, Burlet N, Mugat B, Boulesteix M, Mérel V, Veber P, Salces-Ortiz J, Severac D, Pélisson A, Vieira C, Sabot F, Fablet M, Chambeyron S. A Transposon Story: From TE Content to TE Dynamic Invasion of Drosophila Genomes Using the Single-Molecule Sequencing Technology from Oxford Nanopore. Cells 2020; 9:E1776. [PMID: 32722451 PMCID: PMC7465170 DOI: 10.3390/cells9081776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurately recover TE insertion (TEI) sites and sequences from long reads obtained by Oxford Nanopore Technology (ONT) sequencing. With this pipeline, we could precisely describe the landscapes of the most recent TEIs in wild-type strains of Drosophila melanogaster and Drosophila simulans. Their comparison suggests that this subset of TE sequences is more similar than previously thought in these two species. The chromosome assemblies obtained using this pipeline also allowed recovering piRNA cluster sequences, which was impossible using short-read sequencing. Finally, we used our pipeline to analyze ONT sequencing data from a D. melanogaster unstable line in which LTR transposition was derepressed for 73 successive generations. We could rely on single reads to identify new insertions with intact target site duplications. Moreover, the detailed analysis of TEIs in the wild-type strains and the unstable line did not support the trap model claiming that piRNA clusters are hotspots of TE insertions.
Collapse
Affiliation(s)
- Mourdas Mohamed
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Nguyet Thi-Minh Dang
- IRD/UM UMR DIADE, 911 avenue Agropolis BP64501, 34394 Montpellier, France; (N.T.-M.D.); (F.S.)
| | - Yuki Ogyama
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Nelly Burlet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Bruno Mugat
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Philippe Veber
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Judit Salces-Ortiz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Montpellier, France;
| | - Alain Pélisson
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - François Sabot
- IRD/UM UMR DIADE, 911 avenue Agropolis BP64501, 34394 Montpellier, France; (N.T.-M.D.); (F.S.)
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Séverine Chambeyron
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| |
Collapse
|
4
|
Díaz-González J, Domínguez A. Different structural variants of roo retrotransposon are active in Drosophila melanogaster. Gene 2020; 741:144546. [PMID: 32165306 DOI: 10.1016/j.gene.2020.144546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/30/2020] [Accepted: 03/08/2020] [Indexed: 11/29/2022]
Abstract
Retrotransposon roo is one of the most active elements in Drosophila melanogaster. The level of nucleotide diversity between copies of roo is very low but structural variation in the 5'-UTR is considerable. Transposition of roo at high frequency (around 5 × 10-2 per generation) has been shown previously in the set of mutation accumulation lines named Oviedo. Here we isolated thirteen individual insertions by inverse PCR and sequenced the 5' end of the elements (between 1663 and 2039 nt) including the LTR, the 5'-UTR and a fragment of 661 nucleotides from the ORF, to study whether the new transposed copies come from a unique variant (the master copy model) or different elements are able to move (the transposon model). The elements in the Oviedo lines presented the same structural variants as the reference genome. Different structural variants were active, a behaviour compatible with the "transposon model" in which the copies localized in multiple sites in the genome are able to transpose. At the level of sequence, the copies of roo in our lines are highly similar to the elements in the reference genome. The phylogenetic tree shows a shallow diversification with unsupported nodes denoting that all the elements currently active are very young. This observation together with the great polymorphism in insertion sites implies a rapid turnover of the elements.
Collapse
Affiliation(s)
- J Díaz-González
- Departamento de Biología Funcional, Área de Genética. Universidad de Oviedo, 33071 Oviedo, Spain
| | - A Domínguez
- Departamento de Biología Funcional, Área de Genética. Universidad de Oviedo, 33071 Oviedo, Spain.
| |
Collapse
|
5
|
Drosophila Interspecific Hybridization Causes A Deregulation of the piRNA Pathway Genes. Genes (Basel) 2020; 11:genes11020215. [PMID: 32092860 PMCID: PMC7073935 DOI: 10.3390/genes11020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Almost all eukaryotes have transposable elements (TEs) against which they have developed defense mechanisms. In the Drosophila germline, the main transposable element (TE) regulation pathway is mediated by specific Piwi-interacting small RNAs (piRNAs). Nonetheless, for unknown reasons, TEs sometimes escape cellular control during interspecific hybridization processes. Because the piRNA pathway genes are involved in piRNA biogenesis and TE control, we sequenced and characterized nine key genes from this pathway in Drosophila buzzatii and Drosophila koepferae species and studied their expression pattern in ovaries of both species and their F1 hybrids. We found that gene structure is, in general, maintained between both species and that two genes—armitage and aubergine—are under positive selection. Three genes—krimper, methyltransferase 2, and zucchini—displayed higher expression values in hybrids than both parental species, while others had RNA levels similar to the parental species with the highest expression. This suggests that the overexpression of some piRNA pathway genes can be a primary response to hybrid stress. Therefore, these results reinforce the hypothesis that TE deregulation may be due to the protein incompatibility caused by the rapid evolution of these genes, leading to a TE silencing failure, rather than to an underexpression of piRNA pathway genes.
Collapse
|
6
|
Romero-Soriano V, Modolo L, Lopez-Maestre H, Mugat B, Pessia E, Chambeyron S, Vieira C, Garcia Guerreiro MP. Transposable Element Misregulation Is Linked to the Divergence between Parental piRNA Pathways in Drosophila Hybrids. Genome Biol Evol 2018; 9:1450-1470. [PMID: 28854624 PMCID: PMC5499732 DOI: 10.1093/gbe/evx091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Interspecific hybridization is a genomic stress condition that leads to the activation of transposable elements (TEs) in both animals and plants. In hybrids between Drosophila buzzatii and Drosophila koepferae, mobilization of at least 28 TEs has been described. However, the molecular mechanisms underlying this TE release remain poorly understood. To give insight on the causes of this TE activation, we performed a TE transcriptomic analysis in ovaries (notorious for playing a major role in TE silencing) of parental species and their F1 and backcrossed (BC) hybrids. We find that 15.2% and 10.6% of the expressed TEs are deregulated in F1 and BC1 ovaries, respectively, with a bias toward overexpression in both cases. Although differences between parental piRNA (Piwi-interacting RNA) populations explain only partially these results, we demonstrate that piRNA pathway proteins have divergent sequences and are differentially expressed between parental species. Thus, a functional divergence of the piRNA pathway between parental species, together with some differences between their piRNA pools, might be at the origin of hybrid instabilities and ultimately cause TE misregulation in ovaries. These analyses were complemented with the study of F1 testes, where TEs tend to be less expressed than in D. buzzatii. This can be explained by an increase in piRNA production, which probably acts as a defence mechanism against TE instability in the male germline. Hence, we describe a differential impact of interspecific hybridization in testes and ovaries, which reveals that TE expression and regulation are sex-biased.
Collapse
Affiliation(s)
- Valèria Romero-Soriano
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Laurent Modolo
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Hélène Lopez-Maestre
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Bruno Mugat
- Institut de Génétique Humaine, UMR9002, CNRS-Université de Montpellier, France
| | - Eugénie Pessia
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Séverine Chambeyron
- Institut de Génétique Humaine, UMR9002, CNRS-Université de Montpellier, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Pilar Garcia Guerreiro
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
7
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Lakhotia SC. Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0221-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
de Lima LG, Svartman M, Kuhn GCS. Dissecting the Satellite DNA Landscape in Three Cactophilic Drosophila Sequenced Genomes. G3 (BETHESDA, MD.) 2017; 7:2831-2843. [PMID: 28659292 PMCID: PMC5555486 DOI: 10.1534/g3.117.042093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Eukaryote genomes are replete with repetitive DNAs. This class includes tandemly repeated satellite DNAs (satDNA) which are among the most abundant, fast evolving (yet poorly studied) genomic components. Here, we used high-throughput sequencing data from three cactophilic Drosophila species, D. buzzatii, D. seriema, and D. mojavensis, to access and study their whole satDNA landscape. In total, the RepeatExplorer software identified five satDNAs, three previously described (pBuM, DBC-150 and CDSTR198) and two novel ones (CDSTR138 and CDSTR130). Only pBuM is shared among all three species. The satDNA repeat length falls within only two classes, between 130 and 200 bp or between 340 and 390 bp. FISH on metaphase and polytene chromosomes revealed the presence of satDNA arrays in at least one of the following genomic compartments: centromeric, telomeric, subtelomeric, or dispersed along euchromatin. The chromosomal distribution ranges from a single chromosome to almost all chromosomes of the complement. Fiber-FISH and sequence analysis of contigs revealed interspersion between pBuM and CDSTR130 in the microchromosomes of D. mojavensis Phylogenetic analyses showed that the pBuM satDNA underwent concerted evolution at both interspecific and intraspecific levels. Based on RNA-seq data, we found transcription activity for pBuM (in D. mojavensis) and CDSTR198 (in D. buzzatii) in all five analyzed developmental stages, most notably in pupae and adult males. Our data revealed that cactophilic Drosophila present the lowest amount of satDNAs (1.9-2.9%) within the Drosophila genus reported so far. We discuss how our findings on the satDNA location, abundance, organization, and transcription activity may be related to functional aspects.
Collapse
Affiliation(s)
- Leonardo G de Lima
- Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gustavo C S Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|