1
|
Anganoy-Criollo M, Viuche-Lozano A, Enciso-Calle MP, Bernal MH, Grant T. The Enigmatic Hyloxalus edwardsi Species Group (Anura: Dendrobatidae): Phylogenetic Position, a New Species, and New Putative Morphological Synapomorphies. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-21-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marvin Anganoy-Criollo
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Andres Viuche-Lozano
- Grupo de Herpetología, Eco-Fisiología and Etología, Departamento de Biología, Universidad del Tolima, 730006299 Ibagué, Colombia
| | - Maria Paula Enciso-Calle
- Grupo de Herpetología, Eco-Fisiología and Etología, Departamento de Biología, Universidad del Tolima, 730006299 Ibagué, Colombia
| | - Manuel Hernando Bernal
- Grupo de Herpetología, Eco-Fisiología and Etología, Departamento de Biología, Universidad del Tolima, 730006299 Ibagué, Colombia
| | - Taran Grant
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
2
|
Lestari B, Naito S, Endo A, Nishihara H, Kato A, Watanabe E, Denda K, Komada M, Fukushima T. Placental mammals acquired functional sequences in NRK for regulating the CK2-PTEN-AKT pathway and placental cell proliferation. Mol Biol Evol 2022; 39:6499274. [PMID: 34999820 PMCID: PMC8857918 DOI: 10.1093/molbev/msab371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The molecular evolution processes underlying the acquisition of the placenta in eutherian ancestors are not fully understood. Mouse NCK-interacting kinase (NIK)-related kinase (NRK) is expressed highly in the placenta and plays a role in preventing placental hyperplasia. Here, we show the molecular evolution of NRK, which confers its function for inhibiting placental cell proliferation. Comparative genome analysis identified NRK orthologs across vertebrates, which share the kinase and citron homology (CNH) domains. Evolutionary analysis revealed that NRK underwent extensive amino acid substitutions in the ancestor of placental mammals and has been since conserved. Biochemical analysis of mouse NRK revealed that the CNH domain binds to phospholipids, and a region in NRK binds to and inhibits casein kinase-2 (CK2), which we named the CK2-inhibitory region (CIR). Cell culture experiments suggest the following: 1) Mouse NRK is localized at the plasma membrane via the CNH domain, where the CIR inhibits CK2. 2) This mitigates CK2-dependent phosphorylation and inhibition of PTEN and 3) leads to the inhibition of AKT signaling and cell proliferation. Nrk deficiency increased phosphorylation levels of PTEN and AKT in mouse placenta, supporting our hypothesis. Unlike mouse NRK, chicken NRK did not bind to phospholipids and CK2, decrease phosphorylation of AKT, or inhibit cell proliferation. Both the CNH domain and CIR have evolved under purifying selection in placental mammals. Taken together, our study suggests that placental mammals acquired the phospholipid-binding CNH domain and CIR in NRK for regulating the CK2–PTEN–AKT pathway and placental cell proliferation.
Collapse
Affiliation(s)
- Beni Lestari
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Satomi Naito
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Akinori Endo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Erika Watanabe
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Kimitoshi Denda
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| |
Collapse
|
3
|
Takezaki N. Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biol Evol 2021; 13:6178791. [PMID: 33739405 PMCID: PMC8103497 DOI: 10.1093/gbe/evab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| |
Collapse
|
4
|
Kimura Y, Nikaido M. Conserved keratin gene clusters in ancient fish: An evolutionary seed for terrestrial adaptation. Genomics 2020; 113:1120-1128. [PMID: 33189779 DOI: 10.1016/j.ygeno.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Type I and type II keratins are subgroups of intermediate filament proteins that provide toughness to the epidermis and protect it from water loss. In terrestrial vertebrates, the keratin genes form two major clusters, clusters 1 and 2, each of which is dominated by type I and II keratin genes. By contrast, such clusters are not observed in teleost fish. Although the diversification of keratins is believed to have made a substantial contribution to terrestrial adaptation, its evolutionary process has not been clarified. Here, we performed a comprehensive genomic survey of the keratin genes of a broad range of vertebrates. As a result, we found that ancient fish lineages such as elephant shark, reedfish, spotted gar, and coelacanth share both keratin gene clusters. We also discovered an expansion of keratin genes that form a novel subcluster in reedfish. Syntenic and phylogenetic analyses revealed that two pairs of krt18/krt8 keratin genes were shared among all vertebrates, thus implying that they encode ancestral type I and II keratin protein sets. We further revealed that distinct keratin gene subclusters, which show specific expressions in the epidermis of adult amphibians, stemmed from canonical keratin genes in non-terrestrial ancestors. Molecular evolutionary analyses suggested that the selective constraints were relaxed in the adult epidermal subclusters of amphibians as well as the novel subcluster of reedfish. The results of the present study represent the process of diversification of keratins through a series of gene duplications that could have facilitated the terrestrial adaptation of vertebrates.
Collapse
Affiliation(s)
- Yuki Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Japan.
| |
Collapse
|
5
|
Zhang S, Li Y, Shao J, Liu H, Wang J, Wang M, Chen X, Bian W. Functional identification and characterization of IpMSTNa, a novel orthologous myostatin (MSTN) gene in channel catfish Ictalurus punctatus. Int J Biol Macromol 2020; 152:1-10. [PMID: 32045608 DOI: 10.1016/j.ijbiomac.2020.02.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
Channel catfish (Ictalurus punctatus) are one of the most important commercial freshwater fish in the world. China has been the major producer and consumer of channel catfish following the rapid development in the past three decades. In the present study, a novel orthologous myostatin gene, IpMSTNa, of channel catfish was identified based on homology cloning and genome locating. Multiple sequence alignments and gene structure analyses showed that the IpMSTNa gene and its deduced protein presented similar architectures to other known vertebrates. Phylogenetic and synteny analyses indicated that IpMSTNa belongs to MSTN1 orthologues. Pro-IpMSTNa protein is a typical disulphide-linked homodimer, with each chain containing an N-terminal pro-domain and a C-terminal unmatured GF domain, while pro-IpMSTNa present some significant differences in secondary structure and three-dimensional substances with pro-IpMSTNb. Relative expression level of the IpMSTNa gene upregulated rapidly and decreased dramatically during the embryonic and larval developmental stages, respectively. In addition, IpMSTNa displayed remarkably higher expression at most developmental stages compared to IpMSTNb. Tissue distribution analysis indicated that the IpMSTNa gene had a significantly higher level of expression than IpMSTNb in all selected tissues, with abundantly greater expression in the liver, muscle, gill and spleen, and moderately greater expression in the kidney, intestine, and head kidney. ISH analysis demonstrated that the expression signals of IpMSTNa and IpMSTNb at the selected developmental stages are consistent to qRT-PCR tests. Our study suggested that the IpMSTNa gene may have more biological functions, which have yet to be determined compared to the IpMSTNb gene.
Collapse
Affiliation(s)
- Shiyong Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yun Li
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Junjie Shao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Hongyan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jiang Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaohui Chen
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Wenji Bian
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
6
|
Zou H, Jakovlić I, Zhang D, Hua CJ, Chen R, Li WX, Li M, Wang GT. Architectural instability, inverted skews and mitochondrial phylogenomics of Isopoda: outgroup choice affects the long-branch attraction artefacts. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191887. [PMID: 32257344 PMCID: PMC7062073 DOI: 10.1098/rsos.191887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 05/13/2023]
Abstract
The majority strand of mitochondrial genomes of crustaceans usually exhibits negative GC skews. Most isopods exhibit an inversed strand asymmetry, believed to be a consequence of an inversion of the replication origin (ROI). Recently, we proposed that an additional ROI event in the common ancestor of Cymothoidae and Corallanidae families resulted in a double-inverted skew (negative GC), and that taxa with homoplastic skews cluster together in phylogenetic analyses (long-branch attraction, LBA). Herein, we further explore these hypotheses, for which we sequenced the mitogenome of Asotana magnifica (Cymothoidae), and tested whether our conclusions were biased by poor taxon sampling and inclusion of outgroups. (1) The new mitogenome also exhibits a double-inverted skew, which supports the hypothesis of an additional ROI event in the common ancestor of Cymothoidae and Corallanidae families. (2) It exhibits a unique gene order, which corroborates that isopods possess exceptionally destabilized mitogenomic architecture. (3) Improved taxonomic sampling failed to resolve skew-driven phylogenetic artefacts. (4) The use of a single outgroup exacerbated the LBA, whereas both the use of a large number of outgroups and complete exclusion of outgroups ameliorated it.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan 430075, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cong-Jie Hua
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, People's Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan 430075, People's Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Makhrov AA. Decreased Evolutionary Plasticity as a Result of Phylogenetic Immobilization and Its Ecological Significance. CONTEMP PROBL ECOL+ 2019. [DOI: 10.1134/s199542551905007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Simon C, Gordon ERL, Moulds MS, Cole JA, Haji D, Lemmon AR, Lemmon EM, Kortyna M, Nazario K, Wade EJ, Meister RC, Goemans G, Chiswell SM, Pessacq P, Veloso C, McCutcheon JP, Łukasik P. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric R L Gordon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - M S Moulds
- Australian Museum Research Institute, Sydney, NSW, Australia
| | - Jeffrey A Cole
- Natural Sciences Division, Pasadena City College, Pasadena, CA, USA
| | - Diler Haji
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katherine Nazario
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Elizabeth J Wade
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Department of Natural Sciences and Mathematics, Curry College, Milton, MA, USA
| | - Russell C Meister
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Geert Goemans
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, Esquel, Chubut, Argentina
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
9
|
Hahn N, Büschgens L, Schwedhelm-Domeyer N, Bank S, Geurten BRH, Neugebauer P, Massih B, Göpfert MC, Heinrich R. The Orphan Cytokine Receptor CRLF3 Emerged With the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts. Front Mol Neurosci 2019; 12:251. [PMID: 31680856 PMCID: PMC6797617 DOI: 10.3389/fnmol.2019.00251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
The orphan cytokine receptor-like factor 3 (CRLF3) was identified as a neuroprotective erythropoietin receptor in locust neurons and emerged with the evolution of the eumetazoan nervous system. Human CRLF3 belongs to class I helical cytokine receptors that mediate pleiotropic cellular reactions to injury and diverse physiological challenges. It is expressed in various tissues including the central nervous system but its ligand remains unidentified. A CRLF3 ortholog in the holometabolous beetle Tribolium castaneum was recently shown to induce anti-apoptotic mechanisms upon stimulation with human recombinant erythropoietin. To test the hypothesis that CRLF3 represents an ancient cell-protective receptor for erythropoietin-like cytokines, we investigated its presence across metazoan species. Furthermore, we examined CRLF3 expression and function in the hemimetabolous insect Locusta migratoria. Phylogenetic analysis of CRLF3 sequences indicated that CRLF3 is absent in Porifera, Placozoa and Ctenophora, all lacking the traditional nervous system. However, it is present in all major eumetazoan groups ranging from cnidarians over protostomians to mammals. The CRLF3 sequence is highly conserved and abundant amongst vertebrates. In contrast, relatively few invertebrates express CRLF3 and these sequences show greater variability, suggesting frequent loss due to low functional importance. In L. migratoria, we identified the transcript Lm-crlf3 by RACE-PCR and detected its expression in locust brain, skeletal muscle and hemocytes. These findings correspond to the ubiquitous expression of crlf3 in mammalian tissues. We demonstrate that the sole addition of double-stranded RNA to the culture medium (called soaking RNA interference) specifically interferes with protein expression in locust primary brain cell cultures. This technique was used to knock down Lm-crlf3 expression and to abolish its physiological function. We confirmed that recombinant human erythropoietin rescues locust brain neurons from hypoxia-induced apoptosis and showed that this neuroprotective effect is absent after knocking down Lm-crlf3. Our results affirm the erythropoietin-induced neuroprotective function of CRLF3 in a second insect species from a different taxonomic group. They suggest that the phylogenetically conserved CRLF3 receptor may function as a cell protective receptor for erythropoietin or a structurally related cytokine also in other animals including vertebrate and mammalian species.
Collapse
Affiliation(s)
- Nina Hahn
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Luca Büschgens
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Nicola Schwedhelm-Domeyer
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Sarah Bank
- Department of Animal Evolution and Biodiversity, Institute for Zoology & Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Pia Neugebauer
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bita Massih
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Grant T. Outgroup sampling in phylogenetics: Severity of test and successive outgroup expansion. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taran Grant
- Department of Zoology, Institute of Biosciences University of São Paulo São Paulo Brazil
| |
Collapse
|
11
|
Borowiec ML, Rabeling C, Brady SG, Fisher BL, Schultz TR, Ward PS. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol Phylogenet Evol 2019; 134:111-121. [DOI: 10.1016/j.ympev.2019.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
12
|
Abstract
This study investigated long-term substitution rate differences using three calibration points, divergences between lobe-finned vertebrates and ray-finned fish, between mammals and sauropsids, and between holosteans (gar and bowfin) and teleost fish with amino acid sequence data of 625 genes for 25 bony vertebrates. The result showed that the substitution rate was two to three times higher in the stem branches of lobe-finned vertebrates before the mammal-sauropsid divergence than in amniotes. The rate in the stem branch of ray-finned fish before the holostean-teleost fish divergence was also a few times higher than the holostean rate, whereas it was similar to or somewhat slower than the teleost fish rate. The phylogenetic relationship of coelacanth and lungfish with tetrapod was difficult to determine because of the short interval of the divergences. Considering the high rate in the stem branches, the divergences of coelacanth and lungfish from the stem branch were estimated as 408–427 Ma and 399–414 Ma, respectively, with the interval of 9–13 Myr. With the external calibration of the mammal-sauropsid split, the estimated times for ordinal divergences within eutherian mammals tend to be smaller than those in previous studies that used the calibration points within the lineage, with deeper divergences before the Cretaceous–Paleogene boundary and shallower ones after the boundary. In contrast the estimated times within birds were larger than those of previous studies, with the divergence between Galliformes and Anseriformes ∼80 Ma and that between Galloanserae and Neoaves 110 Ma.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Kitagun, Kagawa, Japan
| |
Collapse
|
13
|
Simon S, Blanke A, Meusemann K. Reanalyzing the Palaeoptera problem - The origin of insect flight remains obscure. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:328-338. [PMID: 29763650 DOI: 10.1016/j.asd.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
The phylogenetic relationships of the winged insect lineages - mayflies (Ephemeroptera), damselflies and dragonflies (Odonata), and all other winged insects (Neoptera) - are still controversial with three hypotheses supported by different datasets: Palaeoptera, Metapterygota and Chiastomyaria. Here, we reanalyze available phylogenomic data with a focus on detecting confounding and alternative signal. In this context, we provide a framework to quantitatively evaluate and assess incongruent molecular phylogenetic signal inherent in phylogenomic datasets. Despite overall support for the Palaeoptera hypothesis, we also found considerable signal for Chiastomyaria, which is not easily detectable by standardized tree inference approaches. Analyses of the accumulation of signal across gene partitions showed that signal accumulates gradually. However, even in case signal only slightly supported one over the other hypothesis, topologies inferred from large datasets switch from statistically strongly supported Palaeoptera to strongly supported Chiastomyaria. From a morphological point of view, Palaeoptera currently appears to be the best-supported hypothesis; however, recent analyses were restricted to head characters. Phylogenetic approaches covering all organ systems including analyses of potential functional or developmental convergence are still pending so that the Palaeoptera problem has to be considered an open question in insect systematics.
Collapse
Affiliation(s)
- Sabrina Simon
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Alexander Blanke
- Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany; Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Cottingham Road, HU6 7RX, Hull, UK
| | - Karen Meusemann
- Evolutionary Biology & Ecology, Institute for Biology, University of Freiburg, Hauptstr. 1, D-79104 Freiburg (Brsg.), Germany; Center of Molecular Biodiversity Research (ZMB), Zoological Research Museum A. Koenig (ZFMK), Adenauerallee 160, D-53113 Bonn, Germany.
| |
Collapse
|
14
|
Expression of meis and hoxa11 in dipnoan and teleost fins provides new insights into the evolution of vertebrate appendages. EvoDevo 2018; 9:11. [PMID: 29719716 PMCID: PMC5924435 DOI: 10.1186/s13227-018-0099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 11/22/2022] Open
Abstract
Background The concerted activity of Meis and Hoxa11 transcription factors is essential for the subdivision of tetrapod limbs into proximo-distal (PD) domains; however, little is know about the evolution of this patterning mechanism. Here, we aim to study the expression of meis and hoxa11 orthologues in the median and paired rayed fins of zebrafish and in the lobed fins of the Australian lungfish. Results First, a late phase of expression of meis1.1 and hoxa11b in zebrafish dorsal and anal fins relates with segmentation of endochondral elements in proximal and distal radials. Second, our zebrafish in situ hybridization results reveal spatial and temporal changes between pectoral and pelvic fins. Third, in situ analysis of meis1, meis3 and hoxa11 genes in Neoceratodus pectoral fins identifies decoupled domains of expression along the PD axis. Conclusions Our data raise the possibility that the origin of stylopod and zeugopod lies much deeper in gnathostome evolution and that variation in meis and hoxa11 expression has played a substantial role in the transformation of appendage anatomy. Moreover, these observations provide evidence that the Meis/Hoxa11 profile considered a hallmark of stylopod/zeugopod patterning is present in Neoceratodus. Electronic supplementary material The online version of this article (10.1186/s13227-018-0099-9) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Phylogeny mandalas for illustrating the Tree of Life. Mol Phylogenet Evol 2017; 117:168-178. [DOI: 10.1016/j.ympev.2016.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
16
|
Takezaki N, Nishihara H. Support for Lungfish as the Closest Relative of Tetrapods by Using Slowly Evolving Ray-Finned Fish as the Outgroup. Genome Biol Evol 2017; 9:93-101. [PMID: 28082606 PMCID: PMC5381532 DOI: 10.1093/gbe/evw288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2016] [Indexed: 11/14/2022] Open
Abstract
In a previous analysis of the phylogenetic relationships of coelacanths, lungfishes and tetrapods, using cartilaginous fish (CF) as the outgroup, the sister relationship of lungfishes and tetrapods was constructed with high statistical support. However, using as the outgroup ray-finned fish (RF), which are more taxonomically closely related to the three lineages than CF, the sister relationship of coelacanths and tetrapods was most often constructed depending on the methods and the data sets, but the statistical support was generally low except in the cases in which the data set including a small number of species was analyzed. In this study, instead of the fast evolving ray-finned fish, teleost fish (TF), in the previous data sets, by using two slowly evolving RF, gar and bowfin, as the outgroup, we showed that the sister relationship of lungfishes and tetrapods was reconstructed with high statistical support. In our analysis the evolutionary rates of gar and bowfin were similar to each other and one third to one half of TF. The difference of the amino acid frequencies of the two species with other lineages was larger than those of TF. This study provides a strong support for lungfishes as the closest relative of tetrapods and indicates the importance of using an appropriate outgroup with small divergence in phylogenetic construction.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| | - Hidenori Nishihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa Japan
| |
Collapse
|
17
|
Shen XX, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol 2017; 1:126. [PMID: 28812701 PMCID: PMC5560076 DOI: 10.1038/s41559-017-0126] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Phylogenomic studies have resolved countless branches of the tree of life, but remain strongly contradictory on certain, contentious relationships. Here, we use a maximum likelihood framework to quantify the distribution of phylogenetic signal among genes and sites for 17 contentious branches and 6 well-established control branches in plant, animal and fungal phylogenomic data matrices. We find that resolution in some of these 17 branches rests on a single gene or a few sites, and that removal of a single gene in concatenation analyses or a single site from every gene in coalescence-based analyses diminishes support and can alter the inferred topology. These results suggest that tiny subsets of very large data matrices drive the resolution of specific internodes, providing a dissection of the distribution of support and observed incongruence in phylogenomic analyses. We submit that quantifying the distribution of phylogenetic signal in phylogenomic data is essential for evaluating whether branches, especially contentious ones, are truly resolved. Finally, we offer one detailed example of such an evaluation for the controversy regarding the earliest-branching metazoan phylum, for which examination of the distributions of gene-wise and site-wise phylogenetic signal across eight data matrices consistently supports ctenophores as the sister group to all other metazoans.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|