1
|
Späth GF, Piel L, Pescher P. Leishmania genomic adaptation: more than just a 36-body problem. Trends Parasitol 2025:S1471-4922(25)00096-0. [PMID: 40316476 DOI: 10.1016/j.pt.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/04/2025]
Abstract
Genome instability has been identified as a major driver of adaptation in fast-growing, eukaryotic cells, including fungi, protists, or cancer. How these cells cope with the toxic effects caused by such copy number variations remains to be elucidated. In recent years, the protist parasites Leishmania spp. have emerged as interesting model pathogens to assess this open question and to study the role of its intrinsic genome instability in fitness gain in culture, experimental infection, and in the field. Here we summarize recent results on Leishmania genomic adaptation and propose thought-provoking evolutionary concepts new to the Leishmania field that need to be considered when mapping genotype-to-phenotype relationships in molecular and epidemiological studies.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France.
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France
| |
Collapse
|
2
|
Pessoa LMB, Silva CR, Sales KGDS, de Souza DC, Bonifácio LLN, de Luna RLN, Dantas-Torres F, Viana LA. Molecular Detection of Trypanosomatids in Rodents and Marsupials in the State of Amapá, Brazil. Microorganisms 2025; 13:242. [PMID: 40005609 PMCID: PMC11857483 DOI: 10.3390/microorganisms13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Trypanosomatids of the genera Trypanosoma and Leishmania are parasites of medical and veterinary importance that infect mammals, including humans and domestic and wild animals. Among mammals, rodents and marsupials play a crucial role in maintaining and spreading the zoonotic transmission cycle of these parasites. The present study aimed to detect the natural occurrence of Trypanosoma spp. and Leishmania spp. in rodents and marsupials in the state of Amapá, northern Brazil. In total, 137 samples were analyzed, of which 19 (6 marsupials and 13 rodents) were positive for trypanosomatid DNA. Partial sequences of the 18S rRNA gene of trypanosomatids were obtained from 10 out of 19 positive samples. Specifically, an undescribed Trypanosoma sp. was detected in Marmosa demerarae, Marmosa murina, Zygodontomys brevicauda, and Neacomys paracou. Trypanosoma cruzi was detected in a Philander opossum, whereas sequences close to Trypanosoma wauwau and Trypanosoma freitasi were obtained from Didelphis imperfecta and N. paracou, respectively. Finally, Leishmania (Viannia) sp. was detected in Mesomys hispidus, Hylaeamys megacephalus, and Z. brevicauda. The present study expands the knowledge about marsupials and rodents as hosts of trypanosomatids and emphasizes the need for further studies on the role of these animals as potential reservoirs of these parasites in the Amazon region.
Collapse
Affiliation(s)
- Lourdes Marina Bezerra Pessoa
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil; (L.M.B.P.); (D.C.d.S.); (L.A.V.)
| | - Claudia Regina Silva
- Laboratório de Mamíferos, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá 68903-329, AP, Brazil;
| | - Kamila Gaudêncio da Silva Sales
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Darlison Chagas de Souza
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil; (L.M.B.P.); (D.C.d.S.); (L.A.V.)
| | - Lucas Lisboa Nunes Bonifácio
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Rafaela Lira Nogueira de Luna
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Filipe Dantas-Torres
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Lúcio André Viana
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil; (L.M.B.P.); (D.C.d.S.); (L.A.V.)
| |
Collapse
|
3
|
Guarnizo SAG, Basma L, Equilia S, Condori BJ, Malaga E, Defazio S, Arteaga E, Velarde JK, Obregón M, Takyar A, Duque C, Hakim J, Tinajeros F, Gilman RH, Bowman N, Mugnier MR. A specific, stable, and accessible LAMP assay targeting the HSP70 gene of Trypanosoma cruzi. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.12.25320185. [PMID: 39867377 PMCID: PMC11759593 DOI: 10.1101/2025.01.12.25320185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Diagnostic delays prevent most Chagas disease patients from receiving timely therapy during the acute phase when treatment is effective. qPCR-based diagnostic methods provide high sensitivity during this phase but require specialized equipment and complex protocols. More simple and cost-effective tools are urgently needed to optimize early Chagas disease diagnosis in low-income endemic regions. Here, we present a loop-mediated isothermal amplification (LAMP) that targets a highly conserved region in the HSP70 gene of Trypanosoma cruzi, the causative agent of Chagas disease. This assay demonstrates species-specific amplification across multiple parasite genetic lineages while maintaining stability after 2 hours of incubation and at least 8 months of storage at -20°C. Moreover, the assay is at least 12 times less expensive than the TaqMan qPCR that is currently routinely used for acute Chagas diagnostics. Population-based validation in 100 infants born to Chagas-positive mothers in Santa Cruz, Bolivia, yielded a specificity of 100% and sensitivity exceeding 77% when compared to a TaqMan qPCR that targets satellite DNA. This cost-effective assay holds promise for large-scale diagnosis of Chagas disease in endemic regions with limited resources.
Collapse
Affiliation(s)
| | - Luciana Basma
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Shirley Equilia
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Beth Jessy Condori
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Edith Malaga
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Siena Defazio
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily Arteaga
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Jean Karla Velarde
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Martín Obregón
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Anshule Takyar
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carolina Duque
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jill Hakim
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Freddy Tinajeros
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Robert H Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Natalie Bowman
- Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Monica R Mugnier
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Cruz-Laufer AJ, Vanhove MPM, Bachmann L, Barson M, Bassirou H, Bitja Nyom AR, Geraerts M, Hahn C, Huyse T, Kasembele GK, Njom S, Resl P, Smeets K, Kmentová N. Adaptive evolution of stress response genes in parasites aligns with host niche diversity. BMC Biol 2025; 23:10. [PMID: 39800686 PMCID: PMC11727194 DOI: 10.1186/s12915-024-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness. We comparatively investigated antioxidant, heat shock, osmoregulatory, and behaviour-related genes (foraging) in two model parasitic flatworm lineages with contrasting ecological diversity, Cichlidogyrus and Kapentagyrus (Platyhelminthes: Monopisthocotyla), through whole-genome sequencing of 11 species followed by in silico exon bait capture as well as phylogenetic and codon analyses. RESULTS We assembled the sequences of 48 stress-related genes and report the first foraging (For) gene orthologs in flatworms. We found duplications of heat shock (Hsp) and oxidative stress genes in Cichlidogyrus compared to Kapentagyrus. We also observed positive selection patterns in genes related to mitochondrial protein import (Hsp) and behaviour (For) in species of Cichlidogyrus infecting East African cichlids-a host lineage under adaptive radiation. These patterns are consistent with a potential adaptation linked to a co-radiation of these parasites and their hosts. Additionally, the absence of cytochrome P450 and kappa and sigma-class glutathione S-transferases in monogenean flatworms is reported, genes considered essential for metazoan life. CONCLUSIONS This study potentially identifies the first molecular function linked to a flatworm radiation. Furthermore, the observed gene duplications and positive selection indicate the potentially important role of stress responses for the ecological adaptation of parasite species.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.
- Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, Brussels, Belgium.
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Maxwell Barson
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Mare Geraerts
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Department of Biology, Evolutionary Ecology Group - EVECO, University of Antwerp, Antwerp, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Graz, Austria.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Gyrhaiss Kapepula Kasembele
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Unité de Recherche en Biodiversité Et Exploitation Durable Des Zones Humides (BEZHU), Faculté Des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Philipp Resl
- Institute of Biology, University of Graz, Graz, Austria
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Aquatic and Terrestrial Ecology, Operational Directorate Natural Environment, Royal Belgian Institute for Natural Sciences, Brussels, Belgium
| |
Collapse
|
5
|
Bruno F, Castelli G, Li B, Reale S, Carra E, Vitale F, Scibetta S, Calzolari M, Varani S, Ortalli M, Franceschini E, Gennari W, Rugna G, Späth GF. Genomic and epidemiological evidence for the emergence of a L. infantum/L. donovani hybrid with unusual epidemiology in northern Italy. mBio 2024; 15:e0099524. [PMID: 38832792 PMCID: PMC11253594 DOI: 10.1128/mbio.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Leishmania (L.) infantum is one of the main causative agents of animal and human leishmaniasis across many endemic areas in South America, Europe, North Africa, and Asia. Despite its clinical significance, little is known about the genetic diversity of L. infantum circulating in a given endemic area. Here, we investigate this important open question by applying a comparative genomics approach to seven L. infantum isolates from different hosts and Italian regions, including the northern part of the country (Emilia-Romagna, RER), Sicily, and Sardinia, as an initial attempt to explore the breadth of parasite genetic heterogeneity in Italy. Additionally, microsatellite analysis was carried out to compare the isolates from RER with other 70 L. infantum strains from the same region as well as 65 strains belonging to the L. donovani complex from other countries. We revealed important karyotypic instability and identified strain-specific changes in gene dosage, which affected important virulence factors such as amastins and surface antigen-like proteins. Single nucleotide polymorphism-based clustering analysis of these genomes together with over 80 publicly available L. infantum and L. donovani genomes placed the Italian isolates into three geographically distinct clusters within the Mediterranean basin and uncovered three isolates clustering with putative L. infantum/L. donovani hybrids isolated in Cyprus. As judged by microsatellite profiling, these hybrid isolates are representative of a sub-population of parasites circulating in northern Italy that preferentially infect humans but not dogs. Our results place Italy at the crossroads of L. infantum infection in the Mediterranean and call attention to the public health risk represented by the introduction of non-European Leishmania species.IMPORTANCEThis study closes important knowledge gaps with respect to Leishmania (L.) infantum genetic heterogeneity in a given endemic country, as exemplified here for Italy, and reveals genetic hybridization as a main cause for re-emerging human leishmaniasis in northern Italy. The observed high diversity of Leishmania parasites on the Italian peninsula suggests different geographical origins, with genomic adaptation to various ecologies affecting both pathogenicity and transmission potential. This is documented by the discovery of a putative L. infantum/L. donovani hybrid strain, which has been shown to preferentially infect humans but not dogs. Our results provide important information to health authorities, which need to consider the public health risk represented by the introduction of new Leishmania species into EU countries due to population displacement or travel from countries where exotic/allochthonous parasite species are endemic.
Collapse
Affiliation(s)
- F. Bruno
- WOAH Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Palermo, Italy
| | - G. Castelli
- WOAH Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Palermo, Italy
| | - B. Li
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - S. Reale
- WOAH Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Palermo, Italy
| | - E. Carra
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - F. Vitale
- WOAH Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Palermo, Italy
| | - S. Scibetta
- WOAH Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Palermo, Italy
| | - M. Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - S. Varani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M. Ortalli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - E. Franceschini
- Infectious Disease Unit, Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - W. Gennari
- Virology and Molecular Microbiology Unit, University Hospital of Modena, Modena, Italy
| | - G. Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - G. F. Späth
- Unité de Parasitologie moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Heidari S, Hajjaran H, Mohebali M, Akhoundi B, Gharechahi J. Recognition of Immunoreactive Proteins in Leishmania infantum Amastigote-Like and Promastigote Using Sera of Visceral Leishmaniasis Patients: a Preliminary Study. Acta Parasitol 2024; 69:533-540. [PMID: 38227109 DOI: 10.1007/s11686-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE Visceral leishmaniasis (VL) is a systemic and parasitic disease that is usually fatal if left untreated. VL is endemic in different parts of Iran and is caused mainly by Leishmania infantum. This study aimed to recognition immunoreactive proteins in amastigote-like and promastigote stages of L. infantum (Iranian strain) by antibodies present in the sera of VL patients. METHODS Total protein extract from amastigote-like and promastigote cells was separated by two-dimensional electrophoresis (2DE). To detect the immunoreactive proteins, 2DE immunoblotting method was performed using different pools of VL patients' sera. RESULTS Approximately 390 and 430 protein spots could be separated in 2DE profiles of L. infantum amastigote-like and promastigote stages, respectively. In immunoblotting method, approximately 295 and 135 immunoreactive proteins of amastigotes-like reacted with high antibody titer serum pool and low antibody titer serum pool, respectively. Approximately 120 and 85 immunoreactive proteins of promastigote extract were recognized using the high antibody titer sera pool and low antibody titer sera, respectively. CONCLUSION The present study has recognized a number of antigenic diversity proteins based on the molecular weight and pH in amastigote-like and promastigote stages of L. infantum. These results provide us a new concept for further analysis development in the field of diagnosis biomarkers and vaccine targets.
Collapse
Affiliation(s)
- Soudabeh Heidari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran.
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rahmanipour M, Mohebali M, Koosha M, Kazemirad E, Yasami-Khiabani S, Mirjalali H, Hajjaran H. Effect of Leishmania RNA virus 2 on virulence factors and cytokines gene expression in a human macrophage infected with Leishmania major: A preliminary study. Exp Parasitol 2023; 246:108459. [PMID: 36596336 DOI: 10.1016/j.exppara.2022.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Cutaneous leishmaniasis (CL) is one of the most important infectious parasitic diseases in the world caused by the Leishmania parasite. In recent decades, the presence of a virus from the Totiviridae family has been proven in some Leishmania species. Although the existence of LRV2 in the Old world Leishmania species has been confirmed, almost no studies have been done to determine the potential impact of LRV2 on the immunopathogenicity of the Leishmania parasite. In this preliminary study, we measured the expression of target genes, including Glycoprotein 63 (gp63), Heat Shock Protein 70 (hsp70), Cysteine Protease b (cpb), Interleukin 1 beta (IL-1β), IL8 and IL-12 in LRV2 positive Leishmania major strain (LRV2+L. major) and LRV2 negative L. major strain (LRV2-L. major). We exposed THP-1, a human leukemia monocytic cell line, to promastigotes of both strains. After the initial infection, RNA was extracted at different time points, and the relative gene expression was determined using a real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Findings showed that the presence of LRV2 in L. major was able to increase the expression of gp63, hsp70, and cpb genes; also, we observed lower levels of expression in cytokine genes of IL-1β, IL-8, IL-12 in the presence of LRV2+, which are critical factors in the host's immune response against leishmaniasis. These changes could suggest that the presence of LRV2 in L. major parasite may change the outcome of the disease and increase the probability of Leishmania survival; nevertheless, further studies are needed to confirm our results.
Collapse
Affiliation(s)
- Milad Rahmanipour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mona Koosha
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
9
|
Rachidi N, Knippschild U, Späth GF. Dangerous Duplicity: The Dual Functions of Casein Kinase 1 in Parasite Biology and Host Subversion. Front Cell Infect Microbiol 2021; 11:655700. [PMID: 33869086 PMCID: PMC8044801 DOI: 10.3389/fcimb.2021.655700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 02/01/2023] Open
Abstract
Casein Kinase 1 (CK1) family members are serine/threonine protein kinases that are involved in many biological processes and highly conserved in eukaryotes from protozoan to humans. Even though pathogens exploit host CK1 signaling pathways to survive, the role of CK1 in infectious diseases and host/pathogen interaction is less well characterized compared to other diseases, such as cancer or neurodegenerative diseases. Here we present the current knowledge on CK1 in protozoan parasites highlighting their essential role for parasite survival and their importance for host-pathogen interactions. We also discuss how the dual requirement of CK1 family members for parasite biological processes and host subversion could be exploited to identify novel antimicrobial interventions.
Collapse
Affiliation(s)
- Najma Rachidi
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Centre, Ulm University Hospital, Ulm, Germany
| | - Gerald F. Späth
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
10
|
Nantes WAG, Santos FM, de Macedo GC, Barreto WTG, Gonçalves LR, Rodrigues MS, Chulli JVM, Rucco AC, Assis WDO, Porfírio GEDO, de Oliveira CE, Xavier SCDC, Herrera HM, Jansen AM. Trypanosomatid species in Didelphis albiventris from urban forest fragments. Parasitol Res 2020; 120:223-231. [PMID: 33079269 DOI: 10.1007/s00436-020-06921-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022]
Abstract
Urbanization results in loss of natural habitats and, consequently, reduction of richness and abundance of specialist to the detriment of generalist species. We hypothesized that a greater richness of trypanosomatid in Didelphis albiventris would be found in fragments of urban forests in Campo Grande, Mato Grosso do Sul, Brazil, that presented a larger richness of small mammals. We used parasitological, molecular, and serological methods to detect Trypanosoma spp. infection in D. albiventris (n = 43) from forest fragments. PCR was performed with primers specific for 18S rDNA, 24Sα rDNA, mini-chromosome satellites, and mini-exon genes. IFAT was used to detect anti-Trypanosoma cruzi IgG. All hemoculture was negative. We detected trypanosomatid DNA in blood of 35% of opossum. Two opossums were seropositive for T. cruzi. The trypanosomatid species number infecting D. albiventris was higher in the areas with greater abundance, rather than richness of small mammals. We found D. albiventris parasitized by T. cruzi in single and co-infections with Leishmania spp., recently described molecular operational taxonomic unit (MOTU) named DID, and Trypanosoma lainsoni. We concluded that (i) trypanosome richness may be determined by small mammal abundance, (ii) D. albiventris confirmed to be bio-accumulators of trypanosomatids, and (iii) T. lainsoni demonstrated a higher host range than described up to the present.
Collapse
Affiliation(s)
- Wesley Arruda Gimenes Nantes
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil
| | - Filipe Martins Santos
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.
| | - Gabriel Carvalho de Macedo
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil
| | - Wanessa Texeira Gomes Barreto
- Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Luiz Ricardo Gonçalves
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Marina Silva Rodrigues
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Andreza Castro Rucco
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil
| | - William de Oliveira Assis
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil
| | | | - Carina Elisei de Oliveira
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.,Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Heitor Miraglia Herrera
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.,Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Ana Maria Jansen
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.,Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Filgueira CPB, Moreira OC, Cantanhêde LM, de Farias HMT, Porrozzi R, Britto C, Boité MC, Cupolillo E. Comparison and clinical validation of qPCR assays targeting Leishmania 18S rDNA and HSP70 genes in patients with American Tegumentary Leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008750. [PMID: 33044986 PMCID: PMC7581006 DOI: 10.1371/journal.pntd.0008750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/22/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is a worldwide neglected disease, encompassing asymptomatic infections and different clinical forms, such as American Tegumentary Leishmaniasis (ATL) which is part of the complex of diseases caused by protozoan parasites from Leishmania genus, transmitted by sand fly vectors. As a neglected disease, much effort is still needed in treatment and diagnosis. Currently, ATL diagnosis is mainly made by parasite detection by microscopy. The sensitivity of the method varies, and factors such as collection procedures interfere. Molecular approaches, specially based on Real Time PCR (qPCR) technique, has been widely used to detect Leishmania infection and to quantify parasite load, once it is a simple, rapid and sensitive methodology, capable to detect low parasite concentrations and less prone to variability. Although many studies have been already published addressing the use of this technique, an improvement on these methodologies, including an analytical validation, standardization and data association is demanded. Moreover, a proper validation by the assay by the use of clinical samples is still required. In this sense, the purpose of the present work is to compare the performance of qPCR using two commonly used targets (18S rDNA and HSP70) with an internal control (RNAse P) in multiplex reactions. Additionally, we validated reactions by assaying 88 samples from patients presenting different clinical forms of leishmaniasis (cutaneous, mucosal, recent and old lesions), representing the diversity found in Brazil's Amazon Region. Following the methodology proposed herein, the results indicate the use of both qPCR assays, 18S rDNA and HSP70, to achieve a very good net sensitivity (98.5%) and specificity (100%), performing simultaneous or sequential testing, respectively. With this approach, our main goal is to conclude the first step of a further multicenter study to propose the standardization of detection and quantification of Leishmania.
Collapse
Affiliation(s)
- Camila Patricio Braga Filgueira
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Lilian Motta Cantanhêde
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Heloísa Martins Teixeira de Farias
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Côrtes Boité
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Bussotti G, Benkahla A, Jeddi F, Souiaï O, Aoun K, Späth GF, Bouratbine A. Nuclear and mitochondrial genome sequencing of North-African Leishmania infantum isolates from cured and relapsed visceral leishmaniasis patients reveals variations correlating with geography and phenotype. Microb Genom 2020; 6:mgen000444. [PMID: 32975503 PMCID: PMC7660250 DOI: 10.1099/mgen.0.000444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
Although several studies have investigated genetic diversity of Leishmania infantum in North Africa, genome-wide analyses are lacking. Here, we conducted comparative analyses of nuclear and mitochondrial genomes of seven L. infantum isolates from Tunisia with the aim to gain insight into factors that drive genomic and phenotypic adaptation. Isolates were from cured (n=4) and recurrent (n=3) visceral leishmaniasis (VL) cases, originating from northern (n=2) and central (n=5) Tunisia, where respectively stable and emerging VL foci are observed. All isolates from relapsed patients were from Kairouan governorate (Centre); one showing resistance to the anti-leishmanial drug Meglumine antimoniate. Nuclear genome diversity of the isolates was analysed by comparison to the L. infantum JPCM5 reference genome. Kinetoplast maxi and minicircle sequences (1 and 59, respectively) were extracted from unmapped reads and identified by blast analysis against public data sets. The genome variation analysis grouped together isolates from the same geographical origins. Strains from the North were very different from the reference showing more than 34 587 specific single nucleotide variants, with one isolate representing a full genetic hybrid as judged by variant frequency. Composition of minicircle classes within isolates corroborated this geographical population structure. Read depth analysis revealed several significant gene copy number variations correlating with either geographical origin (amastin and Hsp33 genes) or relapse (CLN3 gene). However, no specific gene copy number variation was found in the drug-resistant isolate. In contrast, resistance was associated with a specific minicircle pattern suggesting Leishmania mitochondrial DNA as a potential novel source for biomarker discovery.
Collapse
Affiliation(s)
- Giovanni Bussotti
- Institut Pasteur, Hub Bioinformatique et biostatistique, 28 Rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Département des Parasites et Insectes vecteurs, 25 Rue du Dr Roux, 75015 Paris, France
| | - Alia Benkahla
- Laboratoire de recherche, LR 16IPT09, Bioinformatique, Biomathématiques et Biostatistiques, Institut Pasteur de Tunis, Université Tunis El-Manar, 13 Place Pasteur, Tunis, Tunisie
| | - Fakhri Jeddi
- Laboratoire de Parasitologie, Hôpital de la Timone, Marseille, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU de Nantes, Nantes, France
| | - Oussama Souiaï
- Laboratoire de recherche, LR 16IPT09, Bioinformatique, Biomathématiques et Biostatistiques, Institut Pasteur de Tunis, Université Tunis El-Manar, 13 Place Pasteur, Tunis, Tunisie
| | - Karim Aoun
- Laboratoire de recherche, LR 16IPT06, Parasitoses médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, 13 Place Pasteur, Tunis, Tunisie
| | - Gerald F. Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Département des Parasites et Insectes vecteurs, 25 Rue du Dr Roux, 75015 Paris, France
| | - Aïda Bouratbine
- Laboratoire de recherche, LR 16IPT06, Parasitoses médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, 13 Place Pasteur, Tunis, Tunisie
| |
Collapse
|
13
|
Screening diagnostic candidates from Leishmania infantum proteins for human visceral leishmaniasis using an immunoproteomics approach. Parasitology 2019; 146:1467-1476. [PMID: 31142384 DOI: 10.1017/s0031182019000714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is no suitable vaccine against human visceral leishmaniasis (VL) and available drugs are toxic and/or present high cost. In this context, diagnostic tools should be improved for clinical management and epidemiological evaluation of disease. However, the variable sensitivity and/or specificity of the used antigens are limitations, showing the necessity to identify new molecules to be tested in a more sensitive and specific serology. In the present study, an immunoproteomics approach was performed in Leishmania infantum promastigotes and amastigotes employing sera samples from VL patients. Aiming to avoid undesired cross-reactivity in the serological assays, sera from Chagas disease patients and healthy subjects living in the endemic region of disease were also used in immunoblottings. The most reactive spots for VL samples were selected, and 29 and 21 proteins were identified in the promastigote and amastigote extracts, respectively. Two of them, endonuclease III and GTP-binding protein, were cloned, expressed, purified and tested in ELISA experiments against a large serological panel, and results showed high sensitivity and specificity values for the diagnosis of disease. In conclusion, the identified proteins could be considered in future studies as candidate antigens for the serodiagnosis of human VL.
Collapse
|
14
|
S. L. Figueiredo de Sá B, Rezende AM, de Melo Neto OP, de Brito MEF, Brandão Filho SP. Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Negl Trop Dis 2019; 13:e0007382. [PMID: 31170148 PMCID: PMC6581274 DOI: 10.1371/journal.pntd.0007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/18/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
Collapse
Affiliation(s)
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
15
|
Kariyawasam R, Mukkala AN, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Virulence factor RNA transcript expression in the Leishmania Viannia subgenus: influence of species, isolate source, and Leishmania RNA virus-1. Trop Med Health 2019; 47:25. [PMID: 31007536 PMCID: PMC6458769 DOI: 10.1186/s41182-019-0153-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leishmania RNA virus-1 (LRV1) is a double-stranded RNA virus identified in 20-25% of Viannia-species endemic to Latin America, and is believed to accelerate cutaneous to mucosal leishmaniasis over time. Our objective was to quantify known virulence factor (VF) RNA transcript expression according to LRV1 status, causative species, and isolate source. METHODS Eight cultured isolates of Leishmania were used, four of which were LRV1-positive (Leishmania Viannia braziliensis [n = 1], L. (V.) guyanensis [n = 1], L. (V.) panamensis [n = 2]), and four were LRV1-negative (L. (V.) panamensis [n = 3], L. (V.) braziliensis [n = 1]). Promastigotes were inoculated into macrophage cultures, and harvested at 24 and 48 h. RNA transcript expression of hsp23, hsp70, hsp90, hsp100, mpi, cpb, and gp63 were quantified by qPCR. RESULTS RNA transcript expression of hsp100 (p = 0.012), cpb (p = 0.016), and mpi (p = 0.022) showed significant increases from baseline pure culture expression to 24- and 48-h post-macrophage infection, whereas hsp70 (p = 0.004) was significantly decreased. A trend toward increased transcript expression of hsp100 at baseline in isolates of L. (V.) panamensis was noted. Pooled VF RNA transcript expression by L. (V.) panamensis isolates was lower than that of L. (V.) braziliensis and L. (V.) guyananesis at 24 h (p = 0.03). VF RNA transcript expression did not differ by LRV1 status, or source of cultured isolate at baseline, 24, or 48 h; however, a trend toward increased VF RNA transcript expression of 2.71- and 1.93-fold change of mpi (p = 0.11) and hsp90 (p = 0.11), respectively, in LRV1 negative isolates was noted. Similarly, a trend toward lower levels of overall VF RNA transcript expression in clinical isolates (1.15-fold change) compared to ATCC® strains at 24 h was noted (p = 0.07). CONCLUSIONS Our findings suggest that known VF RNA transcript expression may be affected by the process of macrophage infection. We were unable to demonstrate definitively that LRV-1 presence affected VF RNA transcript expression in the species and isolates studied. L. (V.) guyanensis and L. (V.) braziliensis demonstrated higher pooled VF RNA transcript expression than L. (V.) panamensis; however, further analyses of protein expression to corroborate this finding are warranted.
Collapse
Affiliation(s)
| | - Avinash N. Mukkala
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Toronto, ON Canada
| | - Braulio M. Valencia
- Instituto de Medicina Tropical “Alejandro von Humboldt”, Lima, Peru
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Sydney, Australia
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical “Alejandro von Humboldt”, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea K. Boggild
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Public Health Ontario Laboratory, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
| |
Collapse
|
16
|
Bentley SJ, Jamabo M, Boshoff A. The Hsp70/J-protein machinery of the African trypanosome, Trypanosoma brucei. Cell Stress Chaperones 2019; 24:125-148. [PMID: 30506377 PMCID: PMC6363631 DOI: 10.1007/s12192-018-0950-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
The etiological agent of the neglected tropical disease African trypanosomiasis, Trypanosoma brucei, possesses an expanded and diverse repertoire of heat shock proteins, which have been implicated in cytoprotection, differentiation, as well as progression and transmission of the disease. Hsp70 plays a crucial role in proteostasis, and inhibition of its interactions with co-chaperones is emerging as a potential therapeutic target for numerous diseases. In light of genome annotations and the release of the genome sequence of the human infective subspecies, an updated and current in silico overview of the Hsp70/J-protein machinery in both T. brucei brucei and T. brucei gambiense was conducted. Functional, structural, and evolutionary analyses of the T. brucei Hsp70 and J-protein families were performed. The Hsp70 and J-proteins from humans and selected kinetoplastid parasites were used to assist in identifying proteins from T. brucei, as well as the prediction of potential Hsp70-J-protein partnerships. The Hsp70 and J-proteins were mined from numerous genome-wide proteomics studies, which included different lifecycle stages and subcellular localisations. In this study, 12 putative Hsp70 proteins and 67 putative J-proteins were identified to be encoded on the genomes of both T. brucei subspecies. Interestingly there are 6 type III J-proteins that possess tetratricopeptide repeat-containing (TPR) motifs. Overall, it is envisioned that the results of this study will provide a future context for studying the biology of the African trypanosome and evaluating Hsp70 and J-protein interactions as potential drug targets.
Collapse
Affiliation(s)
| | - Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
17
|
Hess J, Skrede I, Chaib De Mares M, Hainaut M, Henrissat B, Pringle A. Rapid Divergence of Genome Architectures Following the Origin of an Ectomycorrhizal Symbiosis in the Genus Amanita. Mol Biol Evol 2018; 35:2786-2804. [PMID: 30239843 PMCID: PMC6231487 DOI: 10.1093/molbev/msy179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fungi are evolutionary shape shifters and adapt quickly to new environments. Ectomycorrhizal (EM) symbioses are mutualistic associations between fungi and plants and have evolved repeatedly and independently across the fungal tree of life, suggesting lineages frequently reconfigure genome content to take advantage of open ecological niches. To date analyses of genomic mechanisms facilitating EM symbioses have involved comparisons of distantly related species, but here, we use the genomes of three EM and two asymbiotic (AS) fungi from the genus Amanita as well as an AS outgroup to study genome evolution following a single origin of symbiosis. Our aim was to identify the defining features of EM genomes, but our analyses suggest no clear differentiation of genome size, gene repertoire size, or transposable element content between EM and AS species. Phylogenetic inference of gene gains and losses suggests the transition to symbiosis was dominated by the loss of plant cell wall decomposition genes, a confirmation of previous findings. However, the same dynamic defines the AS species A. inopinata, suggesting loss is not strictly associated with origin of symbiosis. Gene expansions in the common ancestor of EM Amanita were modest, but lineage specific and large gene family expansions are found in two of the three EM extant species. Even closely related EM genomes appear to share few common features. The genetic toolkit required for symbiosis appears already encoded in the genomes of saprotrophic species, and this dynamic may explain the pervasive, recurrent evolution of ectomycorrhizal associations.
Collapse
Affiliation(s)
- Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Maryam Chaib De Mares
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, Madison, WI
| |
Collapse
|
18
|
Costa-Martins AG, Lima L, Alves JMP, Serrano MG, Buck GA, Camargo EP, Teixeira MMG. Genome-wide identification of evolutionarily conserved Small Heat-Shock and eight other proteins bearing α-crystallin domain-like in kinetoplastid protists. PLoS One 2018; 13:e0206012. [PMID: 30346990 PMCID: PMC6197667 DOI: 10.1371/journal.pone.0206012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Small Heat-Shock Proteins (sHSPs) and other proteins bearing alpha-crystallin domains (ACD) participate in defense against heat and oxidative stress and play important roles in cell cycle, cytoskeleton dynamics, and immunological and pathological mechanisms in eukaryotes. However, little is known about these proteins in early-diverging lineages of protists such as the kinetoplastids. Here, ACD-like proteins (ACDp) were investigated in genomes of 61 species of 12 kinetoplastid genera, including Trypanosoma spp. (23 species of mammals, reptiles and frogs), Leishmania spp. (mammals and lizards), trypanosomatids of insects, Phytomonas spp. of plants, and bodonids. Comparison of ACDps based on domain architecture, predicted tertiary structure, phylogeny and genome organization reveals a kinetoplastid evolutionarily conserved repertoire, which diversified prior to trypanosomatid adaptation to parasitic life. We identified 9 ACDp orthologs classified in 8 families of TryACD: four previously recognized (HSP20, Tryp23A, Tryp23B and ATOM69), and four characterized for the first time in kinetoplastids (TryACDP, TrySGT1, TryDYX1C1 and TryNudC). A single copy of each ortholog was identified in each genome alongside TryNudC1/TrypNudC2 homologs and, overall, ACDPs were under strong selection pressures at main phylogenetic lineages. Transcripts of all ACDPs were identified across the life stages of T. cruzi, T. brucei and Leishmania spp., but proteomic profiles suggested that most ACDPs may be species- and stage-regulated. Our findings establish the basis for functional studies, and provided evolutionary and structural support for an underestimated repertoire of ACDps in the kinetoplastids.
Collapse
Affiliation(s)
- André G Costa-Martins
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Myrna G Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| |
Collapse
|
19
|
Piel L, Pescher P, Späth GF. Reverse Epidemiology: An Experimental Framework to Drive Leishmania Biomarker Discovery in situ by Functional Genetic Screening Using Relevant Animal Models. Front Cell Infect Microbiol 2018; 8:325. [PMID: 30283743 PMCID: PMC6157315 DOI: 10.3389/fcimb.2018.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Leishmania biomarker discovery remains an important challenge that needs to be revisited in light of our increasing knowledge on parasite-specific biology, notably its genome instability. In the absence of classical transcriptional regulation in these early-branching eukaryotes, fluctuations in transcript abundance can be generated by gene and chromosome amplifications, which have been linked to parasite phenotypic variability with respect to virulence, tissue tropism, and drug resistance. Conducting in vitro evolutionary experiments to study mechanisms of Leishmania environmental adaptation, we recently validated the link between parasite genetic amplification and fitness gain, thus defining gene and chromosome copy number variations (CNVs) as important Leishmania biomarkers. These experiments also demonstrated that long-term Leishmania culture adaptation can strongly interfere with epidemiologically relevant, genetic signals, which challenges current protocols for biomarker discovery, all of which rely on in vitro expansion of clinical isolates. Here we propose an experimental framework independent of long-term culture termed “reverse” epidemiology, which applies established protocols for functional genetic screening of cosmid-transfected parasites in animal models for the identification of clinically relevant genetic loci that then inform targeted field studies for their validation as Leishmania biomarkers.
Collapse
Affiliation(s)
- Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| | - Gerald F Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| |
Collapse
|
20
|
Herrera G, Higuera A, Patiño LH, Ayala MS, Ramírez JD. Description of Leishmania species among dogs and humans in Colombian Visceral Leishmaniasis outbreaks. INFECTION GENETICS AND EVOLUTION 2018; 64:135-138. [DOI: 10.1016/j.meegid.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022]
|
21
|
Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, Jaffe CL. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 2018; 14:e1007133. [PMID: 29315303 PMCID: PMC5777657 DOI: 10.1371/journal.pgen.1007133] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/22/2018] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Leishmania donovani is the main cause of visceral leishmaniasis (VL) in East Africa. Differences between northern Ethiopia/Sudan (NE) and southern Ethiopia (SE) in ecology, vectors, and patient sensitivity to drug treatment have been described, however the relationship between differences in parasite genotype between these two foci and phenotype is unknown. Whole genomic sequencing (WGS) was carried out for 41 L. donovani strains and clones from VL and VL/HIV co-infected patients in NE (n = 28) and SE (n = 13). Chromosome aneuploidy was observed in all parasites examined with each isolate exhibiting a unique karyotype. Differences in chromosome ploidy or karyotype were not correlated with the geographic origin of the parasites. However, correlation between single nucleotide polymorphism (SNP) and geographic origin was seen for 38/41 isolates, separating the NE and SE parasites into two large groups. SNP restricted to NE and SE groups were associated with genes involved in viability and parasite resistance to drugs. Unique copy number variation (CNV) were also associated with NE and SE parasites, respectively. One striking example is the folate transporter (FT) family genes (LdBPK_100390, LdBPK_100400 and LdBPK_100410) on chromosome 10 that are single copy in all 13 SE isolates, but either double copy or higher in 39/41 NE isolates (copy number 2-4). High copy number (= 4) was also found for one Sudanese strain examined. This was confirmed by quantitative polymerase chain reaction for LdBPK_100400, the L. donovani FT1 transporter homolog. Good correlation (p = 0.005) between FT copy number and resistance to methotrexate (0.5 mg/ml MTX) was also observed with the haploid SE strains examined showing higher viability than the NE strains at this concentration. Our results emphasize the advantages of whole genome analysis to shed light on vital parasite processes in Leishmania.
Collapse
Affiliation(s)
- Arie Zackay
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Asrat Hailu
- Dept Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abedelmajeed Nasereddin
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Alon Warburg
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Charles L. Jaffe
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
22
|
Vacchina P, Norris-Mullins B, Carlson ES, Morales MA. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors 2016; 9:621. [PMID: 27906059 PMCID: PMC5133764 DOI: 10.1186/s13071-016-1904-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background Protozoan parasites of the genus Leishmania are responsible for leishmaniasis, a neglected tropical disease affecting millions worldwide. Visceral leishmaniasis (VL), caused by Leishmania donovani, is the most severe form of leishmaniasis with high rates of mortality if left untreated. Current treatments include pentavalent antimonials and amphotericin B. However, high toxicity and emergence of resistance hinder the success of these options. Miltefosine (HePC) is the first oral treatment available for leishmaniasis. While treatment with HePC has proven effective, higher tolerance to the drug has been observed, and experimental resistance is easily developed in an in vitro environment. Several studies, including ours, have revealed that HePC resistance has a multi-factorial origin and this work aims to shed light on this complex mechanism. Methods 2D-DIGE quantitative proteomics comparing the soluble proteomes of sensitive and HePC resistant L. donovani lines identified a protein of interest tentatively involved in drug resistance. To test this link, we employed a gain-of-function approach followed by mutagenesis analysis. Functional studies were complemented with flow cytometry to measure HePC incorporation and cell death. Results We identified a mitochondrial HSP70 (HSPA9B) downregulated in HePC-resistant L. donovani promastigotes. The overexpression of HSPA9B in WT lines confers an increased sensitivity to HePC, regardless of whether the expression is ectopic or integrative. Moreover, the increased sensitivity to HePC is specific to the HSPA9B overexpression since dominant negative mutant lines were able to restore HePC susceptibility to WT values. Interestingly, the augmented susceptibility to HePC did not correlate with an increased HePC uptake. Leishmania donovani promastigotes overexpressing HSPA9B were subjected to different environmental stimuli. Our data suggest that HSPA9B is capable of protecting cells from stressful conditions such as low pH and high temperature. This phenotype was further corroborated in axenic amastigotes overexpressing HSPA9B. Conclusions The results from this study provide evidence to support the involvement of a mitochondrial HSP70 (HSPA9B) in experimental HePC resistance, a mechanism that is not yet fully understood, and reveal potential fundamental roles of HSPA9B in the biology of Leishmania. Overall, our findings are relevant for current and future antileishmanial chemotherapy strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1904-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Vacchina
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - B Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - E S Carlson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - M A Morales
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|