1
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero E. Comparative genomics of the carmine cochineal symbiont Candidatus Dactylopiibacterium carminicum reveals possible protection to the host against viruses via CRISPR/Cas. Syst Appl Microbiol 2024; 47:126540. [PMID: 39068732 DOI: 10.1016/j.syapm.2024.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico; Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
2
|
Mies US, Hervé V, Kropp T, Platt K, Sillam-Dussès D, Šobotník J, Brune A. Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates. mBio 2024; 15:e0082624. [PMID: 38742878 PMCID: PMC11257099 DOI: 10.1128/mbio.00826-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.
Collapse
Affiliation(s)
- Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tom Kropp
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
4
|
Chakraborty A, Šobotník J, Votýpková K, Hradecký J, Stiblik P, Synek J, Bourguignon T, Baldrian P, Engel MS, Novotný V, Odriozola I, Větrovský T. Impact of Wood Age on Termite Microbial Assemblages. Appl Environ Microbiol 2023; 89:e0036123. [PMID: 37067424 PMCID: PMC10231148 DOI: 10.1128/aem.00361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/25/2023] [Indexed: 04/18/2023] Open
Abstract
The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.
Collapse
Affiliation(s)
- Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Kateřina Votýpková
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Petr Stiblik
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jiří Synek
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Petr Baldrian
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michael S. Engel
- American Museum of Natural History, New York, New York, USA
- Division of Entomology, Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Vojtěch Novotný
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Větrovský
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Aoki H, Masahiro Y, Shimizu M, Hongoh Y, Ohkuma M, Yamagata Y. Agarose gel microcapsules enable easy-to-prepare, picolitre-scale, single-cell genomics, yielding high-coverage genome sequences. Sci Rep 2022; 12:17014. [PMID: 36257967 PMCID: PMC9579161 DOI: 10.1038/s41598-022-20923-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A novel type of agarose gel microcapsule (AGM), consisting of an alginate picolitre sol core and an agarose gel shell, was developed to obtain high-quality, single-cell, amplified genomic DNA of bacteria. The AGM is easy to prepare in a stable emulsion with oil of water-equivalent density, which prevents AGM aggregation, with only standard laboratory equipment. Single cells from a pure culture of Escherichia coli, a mock community comprising 15 strains of human gut bacteria, and a termite gut bacterial community were encapsulated within AGMs, and their genomic DNA samples were prepared with massively parallel amplifications in a tube. The genome sequencing did not need second-round amplification and showed an average genome completeness that was much higher than that obtained using a conventional amplification method on the microlitre scale, regardless of the genomic guanine-cytosine content. Our novel method using AGM will allow many researchers to perform single-cell genomics easily and effectively, and can accelerate genomic analysis of yet-uncultured microorganisms.
Collapse
Affiliation(s)
- Hiroyoshi Aoki
- grid.509457.aUltrahigh Precision Optics Technology Team, Advanced Photonics Technology Group, RIKEN Center for Advanced Photonics, 3-1, Hirosawa, Wako, Saitama 351-0198 Japan
| | - Yuki Masahiro
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Michiru Shimizu
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Yuichi Hongoh
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Moriya Ohkuma
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Yutaka Yamagata
- grid.509457.aUltrahigh Precision Optics Technology Team, Advanced Photonics Technology Group, RIKEN Center for Advanced Photonics, 3-1, Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
6
|
Simultaneous Single-Cell Genome and Transcriptome Sequencing of Termite Hindgut Protists Reveals Metabolic and Evolutionary Traits of Their Endosymbionts. mSphere 2022; 7:e0002122. [PMID: 35107338 PMCID: PMC8809381 DOI: 10.1128/msphere.00021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Some of the protist species which colonize the hindguts of wood-feeding Reticulitermes termites are associated with endosymbiotic bacteria belonging to the genus Endomicrobium. In this study, we focused on the endosymbionts of three protist species from Reticulitermes flavipes, as follows: Pyrsonympha vertens, Trichonympha agilis, and Dinenympha species II. Since these protist hosts represented members of different taxa which colonize separate niches within the hindguts of their termite hosts, we investigated if these differences translated to differential gene content and expression in their endosymbionts. Following assembly and comparative genome and transcriptome analyses, we discovered that these endosymbionts differed with respect to some possible niche-specific traits, such as carbon metabolism. Our analyses suggest that species-specific genes related to carbon metabolism were acquired by horizontal gene transfer (HGT) and may have come from taxa which are common in the termite hind gut. In addition, our analyses suggested that these endosymbionts contain and express genes related to natural transformation (competence) and recombination. Taken together, the presence of genes acquired by HGT and a putative competence pathway suggest that these endosymbionts are not cut off from gene flow and that competence may be a mechanism by which members of Endomicrobium can acquire new traits. IMPORTANCE The composition and structure of wood, which contains cellulose, hemicellulose, and lignin, prevent most organisms from using this common food source. Termites are a rare exception among animals, and they rely on a complex microbiota housed in their hindguts to use wood as a source of food. The lower termite, Reticulitermes flavipes, houses a variety of protists and prokaryotes that are the key players in the disassembly of lignocellulose. Here, we describe the genomes and the gene expression profiles of five Endomicrobium endosymbionts living inside three different protist species from R. flavipes. Data from these genomes suggest that these Endomicrobium species have different mechanisms for using carbon. In addition, they harbor genes that may be used to import DNA from their environment. This process of DNA uptake may contribute to the high levels of horizontal gene transfer noted previously in Endomicrobium species.
Collapse
|
7
|
Ahmad F, Yang GY, Liang SY, Zhou QH, Gaal HA, Mo JC. Multipartite symbioses in fungus-growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. INSECT SCIENCE 2021; 28:1512-1529. [PMID: 33236502 DOI: 10.1111/1744-7917.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host-termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Entomology Section, Central Cotton Research Institute, Sakrand, Shaheed Benazirabad, Sindh, Pakistan
| | - Gui-Ying Yang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shi-You Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi-Huan Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hassan Ahmed Gaal
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Entomology, Faculty of Veterinary and Animal Husbandry, Somali National University, Mogadishu, Somalia
| | - Jian-Chu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
9
|
Zhu Q, Dai L, Wang Y, Tan F, Chen C, He M, Maeda T. Enrichment of waste sewage sludge for enhancing methane production from cellulose. BIORESOURCE TECHNOLOGY 2021; 321:124497. [PMID: 33307481 DOI: 10.1016/j.biortech.2020.124497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Low ability of waste sewage sludge to degrade cellulose is observed due to its less cellulolytic bacteria content. The enrichment of sewage sludge in the absence or presence of carboxymethylcellulose (CMC) was conducted to improve anaerobic digestion (AD) of cellulose in this study. Compared to initial sewage sludge (IS), enriched sludge without CMC addition (ES) displayed 69.81% higher CH4 yield and about 1.7-fold greater anaerobic biodegradation of cellulose. In particular, bacterial and archaeal diversities in samples inoculated with ES were significantly altered, with Ruminiclostridium and Methanobacterium as the predominant genera. Enriched sludge with CMC addition (ESC) displayed enhanced methane production at initial cellulose fermentation but showed no distinct difference compared with the control after incubation 24 days. These findings suggest that enrichment of waste sewage sludge without CMC addition is more beneficial for promoting AD of cellulose, providing a novel insight for efficient energy utilization of lignocellulosic wastes.
Collapse
Affiliation(s)
- Qili Zhu
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Lichun Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Yanwei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Furong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Chenghan Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| |
Collapse
|
10
|
Zhu FC, Lian CA, He LS. Genomic Characterization of a Novel Tenericutes Bacterium from Deep-Sea Holothurian Intestine. Microorganisms 2020; 8:microorganisms8121874. [PMID: 33260795 PMCID: PMC7761423 DOI: 10.3390/microorganisms8121874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and immunity of animals, but little is known about the composition and function of intestinal microbiota in deep-sea invertebrates. In this study, the intestinal microbiota of six holothurian Molpadia musculus were investigated, showing that their midguts were predominantly occupied by Izemoplasmatales bacteria. Using metagenomic sequencing, a draft genome of 1,822,181 bp was successfully recovered. After comparison with phylogenetically related bacteria, genes involved in saccharide usage and de novo nucleotide biosynthesis were reduced. However, a set of genes responsible for extracellular nucleoside utilization and 14 of 20 amino acid synthesis pathways were completely retained. Under oligotrophic condition, the gut-associated bacterium may make use of extracellular DNA for carbon and energy supplement, and may provide essential amino acids to the host. The clustered regularly interspaced short palindromic repeat (CRISPR) and restriction–modification (RM) systems presented in the genome may provide protection against invading viruses. A linear azol(in)e-containing peptide gene cluster for bacteriocin synthesize was also identified, which may inhibit the colonization and growth of harmful bacteria. Known virulence factors were not found by database searching. On the basis of its phylogenetic position and metabolic characteristics, we proposed that the bacterium represented a novel genus and a novel family within the Izemoplasmatales order and suggested it be named “Candidatus Bathyoplasma sp. NZ”. This was the first time describing host-associated Izemoplasmatales.
Collapse
Affiliation(s)
- Fang-Chao Zhu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (F.-C.Z.); (C.-A.L.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chun-Ang Lian
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (F.-C.Z.); (C.-A.L.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (F.-C.Z.); (C.-A.L.)
- Correspondence: ; Tel.: +86-898-88380060
| |
Collapse
|
11
|
Takeuchi M, Kuwahara H, Murakami T, Takahashi K, Kajitani R, Toyoda A, Itoh T, Ohkuma M, Hongoh Y. Parallel reductive genome evolution in Desulfovibrio ectosymbionts independently acquired by Trichonympha protists in the termite gut. THE ISME JOURNAL 2020; 14:2288-2301. [PMID: 32483307 PMCID: PMC7608387 DOI: 10.1038/s41396-020-0688-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
Several Trichonympha protist species in the termite gut have independently acquired Desulfovibrio ectosymbionts in apparently different stages of symbiosis. Here, we obtained the near-complete genome sequence of Desulfovibrio phylotype ZnDsv-02, which attaches to the surface of Trichonympha collaris cells, and compared it with a previously obtained genome sequence of 'Candidatus Desulfovibrio trichonymphae' phylotype Rs-N31, which is almost completely embedded in the cytoplasm of Trichonympha agilis. Single-nucleotide polymorphism analysis indicated that although Rs-N31 is almost clonal, the ZnDsv-02 population on a single host cell is heterogeneous. Despite these differences, the genome of ZnDsv-02 has been reduced to 1.6 Mb, which is comparable to that of Rs-N31 (1.4 Mb), but unlike other known ectosymbionts of protists with a genome similar in size to their free-living relatives. Except for the presence of a lactate utilization pathway, cell-adhesion components and anti-phage defense systems in ZnDsv-02, the overall gene-loss pattern between the two genomes is very similar, including the loss of genes responsive to environmental changes. Our study suggests that genome reduction can occur in ectosymbionts, even when they can be transmitted horizontally and obtain genes via lateral transfer, and that the symbiont genome size depends heavily on their role in the symbiotic system.
Collapse
Affiliation(s)
- Mariko Takeuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Takumi Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- Department of Informatics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
12
|
Méheust R, Castelle CJ, Matheus Carnevali PB, Farag IF, He C, Chen LX, Amano Y, Hug LA, Banfield JF. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME JOURNAL 2020; 14:2907-2922. [PMID: 32681159 DOI: 10.1038/s41396-020-0716-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Currently described members of Elusimicrobia, a relatively recently defined phylum, are animal-associated and rely on fermentation. However, free-living Elusimicrobia have been detected in sediments, soils and groundwater, raising questions regarding their metabolic capacities and evolutionary relationship to animal-associated species. Here, we analyzed 94 draft-quality, non-redundant genomes, including 30 newly reconstructed genomes, from diverse animal-associated and natural environments. Genomes group into 12 clades, 10 of which previously lacked reference genomes. Groundwater-associated Elusimicrobia are predicted to be capable of heterotrophic or autotrophic lifestyles, reliant on oxygen or nitrate/nitrite-dependent respiration, or a variety of organic compounds and Rhodobacter nitrogen fixation (Rnf) complex-dependent acetogenesis with hydrogen and carbon dioxide as the substrates. Genomes from two clades of groundwater-associated Elusimicrobia often encode a new group of nitrogenase paralogs that co-occur with an extensive suite of radical S-Adenosylmethionine (SAM) proteins. We identified similar genomic loci in genomes of bacteria from the Gracilibacteria phylum and the Myxococcales order and predict that the gene clusters reduce a tetrapyrrole, possibly to form a novel cofactor. The animal-associated Elusimicrobia clades nest phylogenetically within two free-living-associated clades. Thus, we propose an evolutionary trajectory in which some Elusimicrobia adapted to animal-associated lifestyles from free-living species via genome reduction.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Paula B Matheus Carnevali
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Ibrahim F Farag
- School of Marine Science and Policy, University of Delaware, Lewes, DE, 19968, USA
| | - Christine He
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Ibaraki, Japan
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Jahnes BC, Sabree ZL. Nutritional symbiosis and ecology of host-gut microbe systems in the Blattodea. CURRENT OPINION IN INSECT SCIENCE 2020; 39:35-41. [PMID: 32109859 DOI: 10.1016/j.cois.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Cockroaches and termites (Order: Blattodea) have been the subject of substantial research attention for over a century due, in part, to a subset of them having a strong propensity to cohabitate with humans and their structures. Recent research has led to numerous insights into their behavior, physiology, and ecology, as well as their ability to harbor taxonomically diverse microbial communities within their digestive systems, which include taxa that contribute to host growth and development. Further, recent investigations into the physiological and behavioral adaptations that enable recalcitrant polysaccharide digestion and the maintenance of microbial symbionts in cockroaches and termites suggests that symbionts contribute significantly to nutrient provisioning and processing.
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, Ohio State University, 105 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Zakee L Sabree
- Department of Microbiology, Ohio State University, 105 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA; Department of Evolution, Ecology and Organismal Biology, Ohio State University, 300 Aronoff Laboratory, 318 W. 12th Avenue, Columbus OH, 43210, USA.
| |
Collapse
|
14
|
Husnik F, Keeling PJ. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr Opin Genet Dev 2019; 58-59:1-8. [DOI: 10.1016/j.gde.2019.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022]
|
15
|
Utami YD, Kuwahara H, Igai K, Murakami T, Sugaya K, Morikawa T, Nagura Y, Yuki M, Deevong P, Inoue T, Kihara K, Lo N, Yamada A, Ohkuma M, Hongoh Y. Genome analyses of uncultured TG2/ZB3 bacteria in 'Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut. THE ISME JOURNAL 2019; 13:455-467. [PMID: 30287885 PMCID: PMC6331581 DOI: 10.1038/s41396-018-0297-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
Abstract
We investigated the phylogenetic diversity, localisation and metabolism of an uncultured bacterial clade, Termite Group 2 (TG2), or ZB3, in the termite gut, which belongs to the candidate phylum 'Margulisbacteria'. We performed 16S rRNA amplicon sequencing analysis and detected TG2/ZB3 sequences in 40 out of 72 termite and cockroach species, which exclusively constituted a monophyletic cluster in the TG2/ZB3 clade. Fluorescence in situ hybridisation analysis in lower termites revealed that these bacteria are specifically attached to ectosymbiotic spirochetes of oxymonad gut protists. Draft genomes of four TG2/ZB3 phylotypes from a small number of bacterial cells were reconstructed, and functional genome analysis suggested that these bacteria hydrolyse and ferment cellulose/cellobiose to H2, CO2, acetate and ethanol. We also assembled a draft genome for a partner Treponema spirochete and found that it encoded genes for reductive acetogenesis from H2 and CO2. We hypothesise that the TG2/ZB3 bacteria we report here are commensal or mutualistic symbionts of the spirochetes, exploiting the spirochetes as H2 sinks. For these bacteria, we propose a novel genus, 'Candidatus Termititenax', which represents a hitherto uncharacterised class-level clade in 'Margulisbacteria'. Our findings add another layer, i.e., cellular association between bacteria, to the multi-layered symbiotic system in the termite gut.
Collapse
Affiliation(s)
- Yuniar Devi Utami
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Katsura Igai
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kaito Sugaya
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Takahiro Morikawa
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yuichi Nagura
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Pinsurang Deevong
- Department of Microbiology, Kasetsart University, Bangkok, 10900, Thailand
| | - Tetsushi Inoue
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Kumiko Kihara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Akinori Yamada
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
16
|
Alonso DP, Mancini MV, Damiani C, Cappelli A, Ricci I, Alvarez MVN, Bandi C, Ribolla PEM, Favia G. Genome Reduction in the Mosquito Symbiont Asaia. Genome Biol Evol 2019; 11:1-10. [PMID: 30476071 PMCID: PMC6317953 DOI: 10.1093/gbe/evy255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Symbiosis is now recognized as a driving force in evolution, a role that finds its ultimate expression in the variety of associations bonding insects with microbial symbionts. These associations have contributed to the evolutionary success of insects, with the hosts acquiring the capacity to exploit novel ecological niches, and the symbionts passing from facultative associations to obligate, mutualistic symbioses. In bacterial symbiont of insects, the transition from the free-living life style to mutualistic symbiosis often resulted in a reduction in the genome size, with the generation of the smallest bacterial genomes thus far described. Here, we show that the process of genome reduction is still occurring in Asaia, a group of bacterial symbionts associated with a variety of insects. Indeed, comparative genomics of Asaia isolated from different mosquito species revealed a substantial genome size and gene content reduction in Asaia from Anopheles darlingi, a South-American malaria vector. We thus propose Asaia as a novel model to study genome reduction dynamics, within a single bacterial taxon, evolving in a common biological niche.
Collapse
Affiliation(s)
- Diego Peres Alonso
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Maria Vittoria Mancini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.,MRC-University of Glasgow-Centre for Virus Research, Glasgow, United Kingdom
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Marcus Vinicius Niz Alvarez
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Claudio Bandi
- Clinical Pediatric Research Center Romeo and Enrica Invernizzi, Department of Biosciences, University of Milan, Italy
| | - Paulo Eduardo Martins Ribolla
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| |
Collapse
|
17
|
|
18
|
Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME JOURNAL 2018; 12:2655-2667. [PMID: 29991760 DOI: 10.1038/s41396-018-0207-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Endosymbiosis is a widespread phenomenon in the microbial world and can be based on diverse interactions between endosymbiont and host cell. The vast majority of the known endosymbiotic interactions involve bacteria that have invaded eukaryotic host cells. However, methanogenic archaea have been found to thrive in anaerobic, hydrogenosome-containing protists and it was suggested that this symbiosis is based on the transfer of hydrogen. Here, we used culture-independent genomics approaches to sequence the genomes of two distantly related methanogenic endosymbionts that have been acquired in two independent events by closely related anaerobic ciliate hosts Nyctotherus ovalis and Metopus contortus, respectively. The sequences obtained were then validated as originating from the ciliate endosymbionts by in situ probing experiments. Comparative analyses of these genomes and their closest free-living counterparts reveal that the genomes of both endosymbionts are in an early stage of adaptation towards endosymbiosis as evidenced by the large number of genes undergoing pseudogenization. For instance, the observed loss of genes involved in amino acid biosynthesis in both endosymbiont genomes indicates that the endosymbionts rely on their hosts for obtaining several essential nutrients. Furthermore, the endosymbionts appear to have gained significant amounts of genes of potentially secreted proteins, providing targets for future studies aiming to elucidate possible mechanisms underpinning host-interactions. Altogether, our results provide the first genomic insights into prokaryotic endosymbioses from the archaeal domain of life.
Collapse
|
19
|
Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K, Kihara K, Yuki M, Lo N, Deevong P, Hasin S, Boonriam W, Inoue T, Yamada A, Ohkuma M, Hongoh Y. Phylogenetic Diversity and Single-Cell Genome Analysis of "Melainabacteria", a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut. Microbes Environ 2018; 33:50-57. [PMID: 29415909 PMCID: PMC5877343 DOI: 10.1264/jsme2.me17137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class "Melainabacteria". We herein reported the phylogenetic diversity of "Melainabacteria" in the guts of diverse termites and conducted a single-cell genome analysis of a melainabacterium obtained from the gut of the termite Termes propinquus. We performed amplicon sequencing of 16S rRNA genes from the guts of 60 termite and eight cockroach species, and detected melainabacterial sequences in 48 out of the 68 insect species, albeit with low abundances (0.02-1.90%). Most of the melainabacterial sequences obtained were assigned to the order "Gastranaerophilales" and appeared to form clusters unique to termites and cockroaches. A single-cell genome of a melainabacterium, designated phylotype Tpq-Mel-01, was obtained using a fluorescence-activated cell sorter and whole genome amplification. The genome shared basic features with other melainabacterial genomes previously reconstructed from the metagenomes of human and koala feces. The bacterium had a small genome (~1.6 Mb) and possessed fermentative pathways possibly using sugars and chitobiose as carbon and energy sources, while the pathways for photosynthesis and carbon fixation were not found. The genome contained genes for flagellar components and chemotaxis; therefore, the bacterium is likely motile. A fluorescence in situ hybridization analysis showed that the cells of Tpq-Mel-01 and/or its close relatives are short rods with the dimensions of 1.1±0.2 μm by 0.5±0.1 μm; for these bacteria, we propose the novel species, "Candidatus Gastranaerophilus termiticola". Our results provide fundamental information on "Melainabacteria" in the termite gut and expand our knowledge on this underrepresented, non-photosynthetic cyanobacterial group.
Collapse
Affiliation(s)
| | | | - Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology
| | | | - Kaito Sugaya
- Department of Biological Sciences, Tokyo Institute of Technology
| | - Kumiko Kihara
- Department of Biological Sciences, Tokyo Institute of Technology
| | - Masahiro Yuki
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science
| | - Nathan Lo
- School of Biological Sciences, University of Sydney
| | | | - Sasitorn Hasin
- College of Innovative Management, Valaya Alongkorn Rajabhat University under the Royal Patronage
| | | | - Tetsushi Inoue
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Akinori Yamada
- Department of Biological Sciences, Tokyo Institute of Technology.,Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Moriya Ohkuma
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science.,Japan Collection of Microorganisms, RIKEN BioResource Center
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology.,Japan Collection of Microorganisms, RIKEN BioResource Center
| |
Collapse
|
20
|
Brune A. Ectosymbiotic Endomicrobia - a transition stage towards intracellular symbionts? ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:474-476. [PMID: 28892291 DOI: 10.1111/1758-2229.12587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Andreas Brune
- Insect Gut Microbiology and Symbiosis Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
21
|
Genome Analysis of Endomicrobium proavitum Suggests Loss and Gain of Relevant Functions during the Evolution of Intracellular Symbionts. Appl Environ Microbiol 2017. [PMID: 28646115 DOI: 10.1128/aem.00656-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endosymbionts of eukaryotes show progressive genome erosion, but detailed investigations of the evolutionary processes involved in the transition to an intracellular lifestyle are generally hampered by the lack of extant free-living lineages. Here, we characterize the genome of the recently isolated, free-living Endomicrobium proavitum, the second member of the Elusimicrobia phylum brought into pure culture, and compare it to the closely related "Candidatus Endomicrobium trichonymphae" strain Rs-D17, a previously described but uncultured endosymbiont of termite gut flagellates. A reconstruction of the metabolic pathways of Endomicrobium proavitum matched the fermentation products formed in pure culture and underscored its restriction to glucose as the substrate. However, several pathways present in the free-living strain, e.g., for the uptake and activation of glucose and its subsequent fermentation, ammonium assimilation, and outer membrane biogenesis, were absent or disrupted in the endosymbiont, probably lost during the massive genome rearrangements that occurred during symbiogenesis. While the majority of the genes in strain Rs-D17 have orthologs in Endomicrobium proavitum, the endosymbiont also possesses a number of functions that are absent from the free-living strain and may represent adaptations to the intracellular lifestyle. Phylogenetic analysis revealed that the genes encoding glucose 6-phosphate and amino acid transporters, acetaldehyde/alcohol dehydrogenase, and the pathways of glucuronic acid catabolism and thiamine pyrophosphate biosynthesis were either acquired by horizontal gene transfer or may represent ancestral traits that were lost in the free-living strain. The polyphyletic origin of Endomicrobia in different flagellate hosts makes them excellent models for future studies of convergent and parallel evolution during symbiogenesis.IMPORTANCE The isolation of a free-living relative of intracellular symbionts provides the rare opportunity to identify the evolutionary processes that occur in the course of symbiogenesis. Our study documents that the genome of "Candidatus Endomicrobium trichonymphae," which represents a clade of endosymbionts that have coevolved with termite gut flagellates for more than 40 million years, is not simply a subset of the genes present in Endomicrobium proavitum, a member of the ancestral, free-living lineage. Rather, comparative genomics revealed that the endosymbionts possess several relevant functions that were either prerequisites for colonization of the intracellular habitat or might have served to compensate for genes losses that occurred during genome erosion. Some gene sets found only in the endosymbiont were apparently acquired by horizontal transfer from other gut bacteria, which suggests that the intracellular bacteria of flagellates are not entirely cut off from gene flow.
Collapse
|
22
|
Izawa K, Kuwahara H, Sugaya K, Lo N, Ohkuma M, Hongoh Y. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:411-418. [PMID: 28556617 DOI: 10.1111/1758-2229.12549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The genus Endomicrobium is a dominant bacterial group in the gut of lower termites, and most phylotypes are intracellular symbionts of gut protists. Here we report the discovery of Endomicrobium ectosymbionts of termite gut protists. We found that bristle-like Endomicrobium cells attached to the surface of spirotrichosomid protist cells inhabiting the termite Stolotermes victoriensis. Transmission electron microscopy revealed that a putative Endomicrobium cell likely attached to the protist surface via a protrusion from the tip of the bacterium. A phylotype, sharing 98.9% 16S rRNA sequence identity with the Endomicrobium ectosymbionts of the spirotrichosomid protists, was also found on the cell surface of the protist Trichonympha magna in the gut of the termite Porotermes adamsoni. We propose the novel species 'Candidatus Endomicrobium superficiale' for these bacteria. T. magna simultaneously harboured another Endomicrobium ectosymbiont that shared 93.5-94.2% 16S rRNA sequence identities with 'Ca. Endomicrobium superficiale'. Furthermore, Spirotrichonympha-like protists in P. adamsoni guts were associated with an Endomicrobium phylotype that possibly attached to the host flagella. A phylogenetic analysis suggested that these ectosymbiotic lineages have evolved multiple times from free-living Endomicrobium lineages and are relatively distant from the endosymbionts. Our results provide novel insights into the ecology and evolution of the Endomicrobium.
Collapse
Affiliation(s)
- Kazuki Izawa
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kaito Sugaya
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Moriya Ohkuma
- RIKEN BioResource Center, Japan Collection of Microorganisms, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- RIKEN BioResource Center, Japan Collection of Microorganisms, Tsukuba, 305-0074, Japan
| |
Collapse
|
23
|
Pramono AK, Kuwahara H, Itoh T, Toyoda A, Yamada A, Hongoh Y. Discovery and Complete Genome Sequence of a Bacteriophage from an Obligate Intracellular Symbiont of a Cellulolytic Protist in the Termite Gut. Microbes Environ 2017; 32:112-117. [PMID: 28321010 PMCID: PMC5478533 DOI: 10.1264/jsme2.me16175] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Termites depend nutritionally on their gut microbes, and protistan, bacterial, and archaeal gut communities have been extensively studied. However, limited information is available on viruses in the termite gut. We herein report the complete genome sequence (99,517 bp) of a phage obtained during a genome analysis of “Candidatus Azobacteroides pseudotrichonymphae” phylotype ProJPt-1, which is an obligate intracellular symbiont of the cellulolytic protist Pseudotrichonympha sp. in the gut of the termite Prorhinotermes japonicus. The genome of the phage, designated ProJPt-Bp1, was circular or circularly permuted, and was not integrated into the two circular chromosomes or five circular plasmids composing the host ProJPt-1 genome. The phage was putatively affiliated with the order Caudovirales based on sequence similarities with several phage-related genes; however, most of the 52 protein-coding sequences had no significant homology to sequences in the databases. The phage genome contained a tRNA-Gln (CAG) gene, which showed the highest sequence similarity to the tRNA-Gln (CAA) gene of the host “Ca. A. pseudotrichonymphae” phylotype ProJPt-1. Since the host genome lacked a tRNA-Gln (CAG) gene, the phage tRNA gene may compensate for differences in codon usage bias between the phage and host genomes. The phage genome also contained a non-coding region with high nucleotide sequence similarity to a region in one of the host plasmids. No other phage-related sequences were found in the host ProJPt-1 genome. To the best of our knowledge, this is the first report of a phage from an obligate, mutualistic endosymbiont permanently associated with eukaryotic cells.
Collapse
Affiliation(s)
- Ajeng K Pramono
- Department of Biological Sciences, Tokyo Institute of Technology
| | | | - Takehiko Itoh
- Department of Biological Information, Tokyo Institute of Technology
| | | | - Akinori Yamada
- Department of Biological Sciences, Tokyo Institute of Technology.,Division of Marine Biomaterial Science, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology
| |
Collapse
|