1
|
Bell AD, Valencia F, Paaby AB. Stabilizing selection and adaptation shape cis and trans gene expression variation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618466. [PMID: 39464158 PMCID: PMC11507773 DOI: 10.1101/2024.10.15.618466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An outstanding question in the evolution of gene expression is the relative influence of neutral processes versus natural selection, including adaptive change driven by directional selection as well as stabilizing selection, which may include compensatory dynamics. These forces shape patterns of gene expression variation within and between species, including the regulatory mechanisms governing expression in cis and trans. In this study, we interrogate intraspecific gene expression variation among seven wild C. elegans strains, with varying degrees of genomic divergence from the reference strain N2, leveraging this system's unique advantages to comprehensively evaluate gene expression evolution. By capturing allele-specific and between-strain changes in expression, we characterize the regulatory architecture and inheritance mode of gene expression variation within C. elegans and assess their relationship to nucleotide diversity, genome evolutionary history, gene essentiality, and other biological factors. We conclude that stabilizing selection is a dominant influence in maintaining expression phenotypes within the species, and the discovery that genes with higher overall expression tend to exhibit fewer expression differences supports this conclusion, as do widespread instances of cis differences compensated in trans. Moreover, analyses of human expression data replicate our finding that higher expression genes have less variable expression. We also observe evidence for directional selection driving expression divergence, and that expression divergence accelerates with increasing genomic divergence. To provide community access to the data from this first analysis of allele-specific expression in C. elegans, we introduce an interactive web application, where users can submit gene-specific queries to view expression, regulatory pattern, inheritance mode, and other information: https://wildworm.biosci.gatech.edu/ase/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
2
|
Snyman M, Xu S. The effects of mutations on gene expression and alternative splicing. Proc Biol Sci 2023; 290:20230565. [PMID: 37403507 PMCID: PMC10320348 DOI: 10.1098/rspb.2023.0565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding the relationship between mutations and their genomic and phenotypic consequences has been a longstanding goal of evolutionary biology. However, few studies have investigated the impact of mutations on gene expression and alternative splicing on the genome-wide scale. In this study, we aim to bridge this knowledge gap by utilizing whole-genome sequencing data and RNA sequencing data from 16 obligately parthenogenetic Daphnia mutant lines to investigate the effects of ethyl methanesulfonate-induced mutations on gene expression and alternative splicing. Using rigorous analyses of mutations, expression changes and alternative splicing, we show that trans-effects are the major contributor to the variance in gene expression and alternative splicing between the wild-type and mutant lines, whereas cis mutations only affected a limited number of genes and do not always alter gene expression. Moreover, we show that there is a significant association between differentially expressed genes and exonic mutations, indicating that exonic mutations are an important driver of altered gene expression.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
3
|
Díaz-Valenzuela E, Sawers RH, Cibrián-Jaramillo A. Cis- and Trans-Regulatory Variations in the Domestication of the Chili Pepper Fruit. Mol Biol Evol 2020; 37:1593-1603. [PMID: 32031611 PMCID: PMC7253206 DOI: 10.1093/molbev/msaa027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The process of domestication requires the rapid transformation of the wild morphology into the cultivated forms that humans select for. This process often takes place through changes in the regulation of genes, yet, there is no definite pattern on the role of cis- and trans-acting regulatory variations in the domestication of the fruit among crops. Using allele-specific expression and network analyses, we characterized the regulatory patterns and the inheritance of gene expression in wild and cultivated accessions of chili pepper, a crop with remarkable fruit morphological variation. We propose that gene expression differences associated to the cultivated form are best explained by cis-regulatory hubs acting through trans-regulatory cascades. We show that in cultivated chili, the expression of genes associated with fruit morphology is partially recessive with respect to those in the wild relative, consistent with the hybrid fruit phenotype. Decreased expression of fruit maturation and growth genes in cultivated chili suggest that selection for loss-of-function took place in its domestication. Trans-regulatory changes underlie the majority of the genes showing regulatory divergence and had larger effect sizes on gene expression than cis-regulatory variants. Network analysis of selected cis-regulated genes, including ARP9 and MED25, indicated their interaction with many transcription factors involved in organ growth and fruit ripening. Differentially expressed genes linked to cis-regulatory variants and their interactions with downstream trans-acting genes have the potential to drive the morphological differences observed between wild and cultivated fruits and provide an attractive mechanism of morphological transformation during the domestication of the chili pepper.
Collapse
Affiliation(s)
- Erik Díaz-Valenzuela
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Guanajuato, México
| | - Ruairidh H Sawers
- Department of Plant Science, The Pennsylvania State University, University Park State College, University Park, PA
| | - Angélica Cibrián-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Guanajuato, México
| |
Collapse
|
4
|
Genetic Analysis of the Transition from Wild to Domesticated Cotton ( Gossypium hirsutum L.). G3-GENES GENOMES GENETICS 2020; 10:731-754. [PMID: 31843806 PMCID: PMC7003101 DOI: 10.1534/g3.119.400909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.
Collapse
|
5
|
Kane NA, Berthouly-Salazar C. Population Genomics of Pearl Millet. POPULATION GENOMICS 2020. [DOI: 10.1007/13836_2020_80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Lindholm A, Sutter A, Künzel S, Tautz D, Rehrauer H. Effects of a male meiotic driver on male and female transcriptomes in the house mouse. Proc Biol Sci 2019; 286:20191927. [PMID: 31718496 PMCID: PMC6892043 DOI: 10.1098/rspb.2019.1927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Not all genetic loci follow Mendel's rules, and the evolutionary consequences of this are not yet fully known. Genomic conflict involving multiple loci is a likely outcome, as restoration of Mendelian inheritance patterns will be selected for, and sexual conflict may also arise when sexes are differentially affected. Here, we investigate effects of the t haplotype, an autosomal male meiotic driver in house mice, on genome-wide gene expression patterns in males and females. We analysed gonads, liver and brain in adult same-sex sibling pairs differing in genotype, allowing us to identify t-associated differences in gene regulation. In testes, only 40% of differentially expressed genes mapped to the approximately 708 annotated genes comprising the t haplotype. Thus, much of the activity of the t haplotype occurs in trans, and as upregulation. Sperm maturation functions were enriched among both cis and trans acting t haplotype genes. Within the t haplotype, we observed more downregulation and differential exon usage. In ovaries, liver and brain, the majority of expression differences mapped to the t haplotype, and were largely independent of the differences seen in the testis. Overall, we found widespread transcriptional effects of this male meiotic driver in the house mouse genome.
Collapse
Affiliation(s)
- Anna Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andreas Sutter
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
8
|
de Meaux J. Cis-regulatory variation in plant genomes and the impact of natural selection. AMERICAN JOURNAL OF BOTANY 2018; 105:1788-1791. [PMID: 30358892 PMCID: PMC7610988 DOI: 10.1002/ajb2.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 05/04/2023]
Abstract
Understanding the molecular mechanisms that allow phenotypic diversification in response to natural or artificial selection is one of the major challenges of modern biology (Barrett and Hoekstra, 2011). The evolution of gene regulation is a prominent pillar for adaptation in sessile organisms like plants because the activity of genes must be tuned to the environment. Today, we can accurately document the genome-wide distribution of cis-regulatory variants. Here, I summarize how current data show that both positive selection and purifying selection contribute to shape cis-regulatory variation. To disentangle their relative impact, I argue that cis-regulatory and amino-acid evolutionary rates should be analyzed jointly.
Collapse
Affiliation(s)
- Juliette de Meaux
- Institute of Botany, University of Cologne, Zülpicherstr 47b, 50674 Cologne, Germany
- Author for correspondence ()
| |
Collapse
|
9
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|