1
|
Minadakis N, Jigisha J, Cornetti L, Kunz L, Müller MC, Torriani SFF, Menardo F. Genomic Surveillance and Molecular Evolution of Fungicide Resistance in European Populations of Wheat Powdery Mildew. MOLECULAR PLANT PATHOLOGY 2025; 26:e70071. [PMID: 40108778 PMCID: PMC11922816 DOI: 10.1111/mpp.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Fungicides are used in agriculture to manage fungal infections and maintain crop yield and quality. In Europe, their application on cereals increased drastically starting from the mid 1970s, contributing to a significant improvement in yields. However, extensive usage has led to the rapid evolution of resistant pathogen populations within just a few years of fungicide deployment. Here we focus on wheat powdery mildew, a disease caused by the ascomycete fungus Blumeria graminis forma specialis tritici (Bgt). Previous research on Bgt documented the emergence of resistance to different fungicides and identified various resistance mechanisms. Yet, the frequency, distribution and evolutionary dynamics of fungicide resistance in Bgt populations remain largely unexplored. In this study, we leveraged extensive sampling and whole-genome sequencing of Bgt populations in Europe and the Mediterranean to investigate the population genetics and molecular epidemiology of fungicide resistance towards five major fungicide classes. We analysed gene sequences and copy number variation of eight known fungicide target genes in 415 Bgt isolates sampled between 1980 and 2023. We observed that mutations conferring resistance to various fungicides increased in frequency over time and had distinct geographic distributions, probably due to diverse deployment of fungicides across different regions. For demethylation inhibitor fungicides, we identified multiple independent events of resistance emergence with distinct mutational profiles, and we tracked their rapid spread in the last decades. Overall, we revealed the evolutionary and epidemiological dynamics of fungicide resistance mutations in European Bgt populations. These results underscore the potential of genomic surveillance and population genetics to enhance our understanding of fungicide resistance.
Collapse
Affiliation(s)
- Nikolaos Minadakis
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Jigisha Jigisha
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | | | - Lukas Kunz
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Marion C. Müller
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | | | - Fabrizio Menardo
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
2
|
Bilstein-Schloemer M, Müller MC, Saur IML. Technical Advances Drive the Molecular Understanding of Effectors from Wheat and Barley Powdery Mildew Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:213-225. [PMID: 39799551 DOI: 10.1094/mpmi-12-24-0155-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts. In addition to the inhibition of the plant's immune components, these pathogens are under particular pressure to extract nutrients efficiently from the host. Understanding the molecular basis of infections mediated by obligate biotrophic pathogens is significant because of their impact in modern agriculture. In addition, powdery mildews serve as excellent models for obligate biotrophic cereal pathogens. Here, we summarize the current knowledge on the effectorome of the barley and wheat powdery mildews and putative molecular virulence functions of effectors. We emphasize the availability of comprehensive genomic, transcriptomic, and proteomic resources and discuss the methodological approaches used for identifying candidate effectors, assessing effector virulence traits, and identifying effector targets in the host. We highlight established and more recently employed methodologies, discuss limitations, and suggest additional strategies. We identify open questions and discuss how addressing them with currently available resources will enhance our understanding of Blumeria candidates for secretor effector proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Marion C Müller
- School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
4
|
Sotiropoulos AG, Arango-Isaza E, Ban T, Barbieri C, Bourras S, Cowger C, Czembor PC, Ben-David R, Dinoor A, Ellwood SR, Graf J, Hatta K, Helguera M, Sánchez-Martín J, McDonald BA, Morgounov AI, Müller MC, Shamanin V, Shimizu KK, Yoshihira T, Zbinden H, Keller B, Wicker T. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat Commun 2022; 13:4315. [PMID: 35882860 PMCID: PMC9315327 DOI: 10.1038/s41467-022-31975-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
The fungus Blumeria graminis f. sp. tritici causes wheat powdery mildew disease. Here, we study its spread and evolution by analyzing a global sample of 172 mildew genomes. Our analyses show that B.g. tritici emerged in the Fertile Crescent during wheat domestication. After it spread throughout Eurasia, colonization brought it to America, where it hybridized with unknown grass mildew species. Recent trade brought USA strains to Japan, and European strains to China. In both places, they hybridized with local ancestral strains. Thus, although mildew spreads by wind regionally, our results indicate that humans drove its global spread throughout history and that mildew rapidly evolved through hybridization.
Collapse
Affiliation(s)
| | - Epifanía Arango-Isaza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christina Cowger
- USDA-ARS Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Paweł C Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Roi Ben-David
- Department of Vegetables and Field crops, Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZion, 7528809, Israel
| | - Amos Dinoor
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Koichi Hatta
- Hokkaido Agricultural Research Center Field Crop Research and Development, National Agricultural Research Organization, Sapporo, Hokkaido, Japan
| | - Marcelo Helguera
- Centro de Investigaciones Agropecuarias (CIAP), INTA, Córdoba, Argentina
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Alexey I Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Marion C Müller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Taiki Yoshihira
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Helen Zbinden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat. Proc Natl Acad Sci U S A 2022; 119:e2108808119. [PMID: 35857869 PMCID: PMC9335242 DOI: 10.1073/pnas.2108808119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Domesticated and wild wheat relatives provide an important source of new immune receptors for wheat resistance breeding against fungal pathogens. The durability of these resistance genes is variable and difficult to predict, yet it is crucial for effective resistance breeding. We identified a fungal effector protein recognized by an immune receptor introgressed from rye to wheat. We found that variants of the effector allowing the fungus to overcome the resistance are ancient. They were already present in the wheat powdery mildew gene pool before the introgression of the immune receptor and are therefore responsible for the rapid resistance breakdown. Our study demonstrates that the effort to identify durable resistance genes cannot be dissociated from studies of pathogen avirulence genes. Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable—a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.
Collapse
|
6
|
Virulence Structure and Genetic Diversity of Blumeria graminis f. sp. avenae from Different Regions of Europe. PLANTS 2022; 11:plants11101358. [PMID: 35631783 PMCID: PMC9145444 DOI: 10.3390/plants11101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
The structure and dynamics of changes in pathogen populations can be analysed by assessing the level of virulence and genetic diversity. The aim of the present study was to determine the diversity of Blumeria graminis f. sp. avenae populations. Diversity and virulence of B. graminis f. sp. avenae was assessed based on 80 single-spore isolates collected in different European countries such as Poland (40 isolates), Germany (10), Finland (10), Czech Republic (10) and Ireland (10) using ISSR (Inter-Simple Sequence Repeats) and SCoT (Start Codon Targeted) markers. This work demonstrated differences in virulence of B. graminis f. sp. avenae isolates sampled from different countries. Molecular analysis showed that both systems were useful for assessing genetic diversity, but ISSR markers were superior and generated more polymorphic products, as well as higher PIC and RP values. UPMGA and PCoA divided the isolates into groups corresponding with their geographical origin. In conclusion, the low level of genetic differentiation of the analysed isolates has suggested that the evolution of B. graminis f. sp. Avenae population is slow, and thus the evolutionary potential of the pathogen is low. This work paves the way for future studies on B. graminis f. sp. Avenae population structure and dynamics based on genetic variability.
Collapse
|
7
|
Liu M, Braun U, Takamatsu S, Hambleton S, Shoukouhi P, Bisson KR, Hubbard K. Taxonomic revision of Blumeria based on multi-gene DNA sequences, host preferences and morphology. MYCOSCIENCE 2021; 62:143-165. [PMID: 37091321 PMCID: PMC9157761 DOI: 10.47371/mycosci.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023]
Abstract
A taxonomic revision of the hitherto monotypic genus Blumeria was conducted incorporating multi-gene sequence analyses, host preference data and morphological criteria. The sequenced loci included rDNA ITS, partial chitin synthase gene (CHS1), as well as fragments of two unnamed orthologous genes (Bgt-1929, Bgt-4572). The combined evidence led to a reassessment and a new neotypification of B. graminiss. str. (emend.), and the description of seven additional species, viz. B. americana sp. nov. (mainly on hosts of the Triticeae), B. avenae sp. nov. (on Avena spp.), B. bromi-cathartici sp. nov. (on Bromus catharticus), B. bulbigera comb. nov. (on Bromus spp.), B. dactylidis sp. nov. (on Dactylis glomerata as the main host, but also on various other hosts), B. graminicola sp. nov. (on Poa spp. as principal hosts, but also on various other hosts), and B. hordei sp. nov. (on Hordeum spp.). Synonyms were assessed, some were lectotypified, and questionable names previously associated with powdery mildew on monocots were discussed although their identities remained unresolved. Keys to the described species were developed.
Collapse
Affiliation(s)
- Miao Liu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada
- First two authors should be considered as having equal contribution
| | - Uwe Braun
- Martin Luther University, Institute of Biology, Department of Geobotany
- First two authors should be considered as having equal contribution
| | | | - Sarah Hambleton
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada
| | - Parivash Shoukouhi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada
| | | | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada
| |
Collapse
|
8
|
He H, Du H, Liu R, Liu T, Yang L, Gong S, Tang Z, Du H, Liu C, Han R, Sun W, Wang L, Zhu S. Characterization of a new gene for resistance to wheat powdery mildew on chromosome 1RL of wild rye Secale sylvestre. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:887-896. [PMID: 33388886 DOI: 10.1007/s00122-020-03739-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
PmSESY, a new wheat powdery mildew resistance gene was characterized and genetically mapped to the terminal region of chromosome 1RL of wild rye Secale sylvestre. The genus Secale is an important resource for wheat improvement. The Secale species are usually considered as non-adapted hosts of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew. However, as a wild species of cultivated rye, S. sylvestre is rarely studied. Here, we reported that 25 S. sylvestre accessions were susceptible to isolate BgtYZ01, whereas the other five confer effective resistance to all the tested isolates of Bgt. A population was then constructed by crossing the resistant accession SESY-01 with the susceptible accession SESY-11. Genetic analysis showed that the resistance in SESY-01 was controlled by a single dominant gene, temporarily designated as PmSESY. Subsequently, combining bulked segregant RNA-Seq (BSR-Seq) analysis with molecular analysis, PmSESY was mapped into a 1.88 cM genetic interval in the terminus of the long arm of 1R, which was closely flanked by markers Xss06 and Xss09 with genetic distances of 0.87 cM and 1.01 cM, respectively. Comparative mapping demonstrated that the corresponding physical region of the PmSESY locus was about 3.81 Mb in rye cv. Lo7 genome, where 30 disease resistance-related genes were annotated, including five NLR-type disease resistance genes, three kinase family protein genes, three leucine-rich repeat receptor-like protein kinase genes and so on. This study gives a new insight into S. sylvestre that shows divergence in response to Bgt and reports a new powdery mildew resistance gene that has potential to be used for resistance improvement in wheat.
Collapse
Affiliation(s)
- Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- School of Environment, Jiangsu University, Zhenjiang, 212013, China.
| | - Haonan Du
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Renkang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tianlei Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haimei Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cheng Liu
- Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ran Han
- Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Weihong Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Wang
- INDEL Biological Technology Corporation, Nanjing, 210000, China
| | - Shanying Zhu
- School of Environment, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Hessenauer P, Feau N, Gill U, Schwessinger B, Brar GS, Hamelin RC. Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. PHYTOPATHOLOGY 2021; 111:49-67. [PMID: 33200962 DOI: 10.1094/phyto-08-20-0358-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.
Collapse
Affiliation(s)
- Pauline Hessenauer
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
| | - Nicolas Feau
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Upinder Gill
- College of Agriculture, Food Systems, and Natural Resources, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Acton, ACT 2601 Australia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Richard C Hamelin
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
10
|
Garg KM, Sam K, Chattopadhyay B, Sadanandan KR, Koane B, Ericson PGP, Rheindt FE. Gene Flow in the Müllerian Mimicry Ring of a Poisonous Papuan Songbird Clade (Pitohui; Aves). Genome Biol Evol 2020; 11:2332-2343. [PMID: 31418795 PMCID: PMC6735254 DOI: 10.1093/gbe/evz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
Müllerian mimicry rings are remarkable symbiotic species assemblages in which multiple members share a similar phenotype. However, their evolutionary origin remains poorly understood. Although gene flow among species has been shown to generate mimetic patterns in some Heliconius butterflies, mimicry is believed to be due to true convergence without gene flow in many other cases. We investigated the evolutionary history of multiple members of a passerine mimicry ring in the poisonous Papuan pitohuis. Previous phylogenetic evidence indicates that the aposematic coloration shared by many, but not all, members of this genus is ancestral and has only been retained by members of the mimicry ring. Using a newly assembled genome and thousands of genomic DNA markers, we demonstrate gene flow from the hooded pitohui (Pitohui dichrous) into the southern variable pitohui (Pitohui uropygialis), consistent with shared patterns of aposematic coloration. The vicinity of putatively introgressed loci is significantly enriched for genes that are important in melanin pigment expression and toxin resistance, suggesting that gene flow may have been instrumental in the sharing of plumage patterns and toxicity. These results indicate that interspecies gene flow may be a more general mechanism in generating mimicry rings than hitherto appreciated.
Collapse
Affiliation(s)
- Kritika M Garg
- Department of Biological Sciences, National University of Singapore
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Per G P Ericson
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore
| |
Collapse
|
11
|
Sharma G, Aminedi R, Saxena D, Gupta A, Banerjee P, Jain D, Chandran D. Effector mining from the Erysiphe pisi haustorial transcriptome identifies novel candidates involved in pea powdery mildew pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1506-1522. [PMID: 31603276 PMCID: PMC6804345 DOI: 10.1111/mpp.12862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pea powdery mildew (PM) is an important fungal disease caused by an obligate biotroph, Erysiphe pisi (Ep), which significantly impacts pea production worldwide. The phytopathogen secretes a plethora of effectors, primarily through specialized infection structures termed haustoria, to establish a dynamic relationship with its host. To identify Ep effector candidates, a cDNA library of enriched haustoria from Ep-infected pea leaves was sequenced. The Ep transcriptome encodes 622 Ep candidate secreted proteins (CSPs), of which 167 were predicted to be candidate secreted effector proteins (CSEPs). Phylogenetic analysis indicates that Ep CSEPs are highly diverse, but, unlike cereal PM CSEPs, exhibit extensive sequence similarity with effectors from other PMs. Quantitative real-time PCR of a subset of EpCSEP/CSPs revealed that the majority are preferentially expressed in haustoria and exhibit infection stage-specific expression patterns. The functional roles of EpCSEP001, EpCSEP009 and EpCSP083 were probed by host-induced gene silencing (HIGS) via a double-stranded (ds) RNA-mediated RNAi approach. Foliar application of individual EpCSEP/CSP dsRNAs resulted in a marked reduction in PM disease symptoms. These findings were consistent with microscopic and molecular studies, suggesting that these Ep CSEP/CSPs play important roles in pea PM pathogenesis. Homology modelling revealed that EpCSEP001 and EpCSEP009 are analogous to fungal ribonucleases and belong to the RALPH family of effectors. This is the first study to identify and functionally validate candidate effectors from the agriculturally relevant pea PM, and highlights the utility of transcriptomics and HIGS to elucidate the key proteins associated with Ep pathogenesis.
Collapse
Affiliation(s)
- Gunjan Sharma
- Laboratory of Plant–Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Raghavendra Aminedi
- Laboratory of Plant–Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Divya Saxena
- Laboratory of Plant–Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
- School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Arunima Gupta
- Laboratory of Plant–Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
- Kalinga Institute of Industrial TechnologyBhubaneswarOrissaIndia
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Divya Chandran
- Laboratory of Plant–Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| |
Collapse
|
12
|
The Parauncinula polyspora Draft Genome Provides Insights into Patterns of Gene Erosion and Genome Expansion in Powdery Mildew Fungi. mBio 2019; 10:mBio.01692-19. [PMID: 31551331 PMCID: PMC6759760 DOI: 10.1128/mbio.01692-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Powdery mildew fungi are widespread and agronomically relevant phytopathogens causing major yield losses. Their genomes have disproportionately large numbers of mobile genetic elements, and they have experienced a significant loss of highly conserved fungal genes. In order to learn more about the evolutionary history of this fungal group, we explored the genome of an Asian oak tree pathogen, Parauncinula polyspora, a species that diverged early during evolution from the remaining powdery mildew fungi. We found that the P. polyspora draft genome is comparatively compact, has a low number of protein-coding genes, and, despite the absence of a dedicated genome defense system, lacks the massive proliferation of repetitive sequences. Based on these findings, we infer an evolutionary trajectory that shaped the genomes of powdery mildew fungi. Due to their comparatively small genome size and short generation time, fungi are exquisite model systems to study eukaryotic genome evolution. Powdery mildew fungi present an exceptional case because of their strict host dependency (termed obligate biotrophy) and the atypical size of their genomes (>100 Mb). This size expansion is largely due to the pervasiveness of transposable elements on 70% of the genome and is associated with the loss of multiple conserved ascomycete genes required for a free-living lifestyle. To date, little is known about the mechanisms that drove these changes, and information on ancestral powdery mildew genomes is lacking. We report genome analysis of the early-diverged and exclusively sexually reproducing powdery mildew fungus Parauncinula polyspora, which we performed on the basis of a natural leaf epiphytic metapopulation sample. In contrast to other sequenced species of this taxonomic group, the assembled P. polyspora draft genome is surprisingly small (<30 Mb), has a higher content of conserved ascomycete genes, and is sparsely equipped with transposons (<10%), despite the conserved absence of a common defense mechanism involved in constraining repetitive elements. We speculate that transposable element spread might have been limited by this pathogen’s unique reproduction strategy and host features and further hypothesize that the loss of conserved ascomycete genes may promote the evolutionary isolation and host niche specialization of powdery mildew fungi. Limitations associated with this evolutionary trajectory might have been in part counteracted by the evolution of plastic, transposon-rich genomes and/or the expansion of gene families encoding secreted virulence proteins.
Collapse
|
13
|
Bourras S, Kunz L, Xue M, Praz CR, Müller MC, Kälin C, Schläfli M, Ackermann P, Flückiger S, Parlange F, Menardo F, Schaefer LK, Ben-David R, Roffler S, Oberhaensli S, Widrig V, Lindner S, Isaksson J, Wicker T, Yu D, Keller B. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat. Nat Commun 2019; 10:2292. [PMID: 31123263 PMCID: PMC6533294 DOI: 10.1038/s41467-019-10274-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/03/2019] [Indexed: 12/25/2022] Open
Abstract
The wheat Pm3 resistance gene against the powdery mildew pathogen occurs as an allelic series encoding functionally different immune receptors which induce resistance upon recognition of isolate-specific avirulence (AVR) effectors from the pathogen. Here, we describe the identification of five effector proteins from the mildew pathogens of wheat, rye, and the wild grass Dactylis glomerata, specifically recognized by the PM3B, PM3C and PM3D receptors. Together with the earlier identified AVRPM3A2/F2, the recognized AVRs of PM3B/C, (AVRPM3B2/C2), and PM3D (AVRPM3D3) belong to a large group of proteins with low sequence homology but predicted structural similarities. AvrPm3b2/c2 and AvrPm3d3 are conserved in all tested isolates of wheat and rye mildew, and non-host infection assays demonstrate that Pm3b, Pm3c, and Pm3d are also restricting the growth of rye mildew on wheat. Furthermore, divergent AVR homologues from non-adapted rye and Dactylis mildews are recognized by PM3B, PM3C, or PM3D, demonstrating their involvement in host specificity.
Collapse
Affiliation(s)
- Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Lukas Kunz
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Minfeng Xue
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Ministry of Agriculture Key Laboratory of Integrated Pest Management in Crops in Central China, Wuhan, 430064, China
- College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Coraline Rosalie Praz
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Marion Claudia Müller
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Carol Kälin
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Michael Schläfli
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Patrick Ackermann
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Simon Flückiger
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Francis Parlange
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | | | - Roi Ben-David
- Institute of Plant Science, ARO-Volcani Center, 50250, Bet Dagan, Israel
| | - Stefan Roffler
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Simone Oberhaensli
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Stefan Lindner
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Jonatan Isaksson
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Dazhao Yu
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
- Ministry of Agriculture Key Laboratory of Integrated Pest Management in Crops in Central China, Wuhan, 430064, China.
- College of Life Science, Wuhan University, Wuhan, 430072, China.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| |
Collapse
|
14
|
Wemheuer B, Thomas T, Wemheuer F. Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes. Microorganisms 2019; 7:E37. [PMID: 30691243 PMCID: PMC6407066 DOI: 10.3390/microorganisms7020037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the importance of endophytic fungi for plant health, it remains unclear how these fungi are influenced by grassland management practices. Here, we investigated the effect of fertilizer application and mowing frequency on fungal endophyte communities and their life strategies in aerial tissues of three agriculturally important grass species (Dactylis glomerata L., Festuca rubra L. and Lolium perenne L.) over two consecutive years. Our results showed that the management practices influenced fungal communities in the plant holobiont, but observed effects differed between grass species and sampling year. Phylogenetic diversity of fungal endophytes in D. glomerata was significantly affected by mowing frequency in 2010, whereas fertilizer application and the interaction of fertilization with mowing frequency had a significant impact on community composition of L. perenne in 2010 and 2011, respectively. Taken together, our research provides a basis for future studies on responses of fungal endophytes towards management practices. To the best of our knowledge, this is the first study simultaneously assessing fungal endophyte communities in aerial parts of three agriculturally important grass species over two consecutive years.
Collapse
Affiliation(s)
- Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Franziska Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
| |
Collapse
|
15
|
Liang P, Liu S, Xu F, Jiang S, Yan J, He Q, Liu W, Lin C, Zheng F, Wang X, Miao W. Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse Effectors to Adapt to Obligate Biotrophic Lifestyle. Front Microbiol 2018; 9:3160. [PMID: 30619222 PMCID: PMC6305591 DOI: 10.3389/fmicb.2018.03160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
Powdery mildew is a widespread plant disease caused by obligate biotrophic fungal pathogens involving species-specific interactions between host and parasite. To gain genomic insights into the underlying obligate biotrophic mechanisms, we analyzed 15 microbial genomes covering powdery and downy mildews and rusts. We observed a genome-wide, massive contraction of multiple gene families in powdery mildews, such as enzymes in the carbohydrate metabolism pathway, when compared with ascomycete phytopathogens, while the fatty acid metabolism pathway maintained its integrity. We also observed significant differences in candidate secreted effector protein (CSEP) families between monocot and dicot powdery mildews, perhaps due to different selection forces. While CSEPs in monocot mildews are likely subject to positive selection causing rapid expansion, CSEP families in dicot mildews are shrinking under strong purifying selection. Our results not only illustrate obligate biotrophic mechanisms of powdery mildews driven by gene family evolution in nutrient metabolism, but also demonstrate how the divergence of CSEPs between monocot and dicot lineages might contribute to species-specific adaption.
Collapse
Affiliation(s)
- Peng Liang
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China.,Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Songyu Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Shuqin Jiang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jun Yan
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Qiguang He
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Chunhua Lin
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Fucong Zheng
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
16
|
Bourras S, Praz CR, Spanu PD, Keller B. Cereal powdery mildew effectors: a complex toolbox for an obligate pathogen. Curr Opin Microbiol 2018; 46:26-33. [DOI: 10.1016/j.mib.2018.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/25/2023]
|
17
|
Wu Y, Ma X, Pan Z, Kale SD, Song Y, King H, Zhang Q, Presley C, Deng X, Wei CI, Xiao S. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics 2018; 19:705. [PMID: 30253736 PMCID: PMC6156980 DOI: 10.1186/s12864-018-5069-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xianfeng Ma
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, 410128 China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shiv D. Kale
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Yi Song
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Harlan King
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Christian Presley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cheng-I Wei
- College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742 USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
18
|
Kusch S, Frantzeskakis L, Thieron H, Panstruga R. Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biol 2018; 122:1050-1063. [PMID: 30342621 DOI: 10.1016/j.funbio.2018.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Small RNAs (sRNAs) play a key role in eukaryotic gene regulation, for example by gene silencing via RNA interference (RNAi). The biogenesis of sRNAs depends on proteins that are generally conserved in all eukaryotic lineages, yet some species that lack part or all the components of the mechanism exist. Here we explored the presence of the RNAi machinery and its expression as well as the occurrence of sRNA candidates and their putative endogenous as well as host targets in phytopathogenic powdery mildew fungi. We focused on the species Blumeria graminis, which occurs in various specialized forms (formae speciales) that each have a strictly limited host range. B. graminis f. sp. hordei and B. graminis f. sp. tritici, colonizing barley and wheat, respectively, have genomes that are characterized by extensive gene loss. Nonetheless, we find that the RNAi machinery appears to be largely complete and expressed during infection. sRNA sequencing data enabled the identification of putative sRNAs in both pathogens. While a considerable part of the sRNA candidates have predicted target sites in endogenous genes and transposable elements, a small proportion appears to have targets in planta, suggesting potential cross-kingdom RNA transfer between powdery mildew fungi and their respective plant hosts.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| |
Collapse
|
19
|
Pizarro D, Divakar PK, Grewe F, Leavitt SD, Huang JP, Dal Grande F, Schmitt I, Wedin M, Crespo A, Lumbsch HT. Phylogenomic analysis of 2556 single-copy protein-coding genes resolves most evolutionary relationships for the major clades in the most diverse group of lichen-forming fungi. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0407-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C, Spanu PD, Maekawa T, Schulze-Lefert P, Panstruga R. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 2018; 19:381. [PMID: 29788921 PMCID: PMC5964911 DOI: 10.1186/s12864-018-4750-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
Background Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare). Results The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome. Conclusions The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a “one-speed” genome that differs in its architecture and (co-)evolutionary pattern from the “two-speed” genomes reported for several other filamentous phytopathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-4750-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamprinos Frantzeskakis
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Barbara Kracher
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Stefan Kusch
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Makoto Yoshikawa-Maekawa
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Saskia Bauer
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Pietro D Spanu
- Imperial College, Department of Life Sciences, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Takaki Maekawa
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
21
|
Shi-Kunne X, Faino L, van den Berg GCM, Thomma BPHJ, Seidl MF. Evolution within the fungal genus Verticillium is characterized by chromosomal rearrangement and gene loss. Environ Microbiol 2018; 20:1362-1373. [PMID: 29282842 DOI: 10.1111/1462-2920.14037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The fungal genus Verticillium contains ten species, some of which are notorious plant pathogens causing vascular wilt diseases in host plants, while others are known as saprophytes and opportunistic plant pathogens. Whereas the genome of V. dahliae, the most notorious plant pathogen of the genus, has been well characterized, evolution and speciation of other members of the genus received little attention thus far. Here, we sequenced the genomes of the nine haploid Verticillium spp. to study evolutionary trajectories of their divergence from a last common ancestor. Frequent occurrence of chromosomal rearrangement and gene family loss was identified. In addition to ∼11 000 genes that are shared at least between two species, only 200-600 species-specific genes occur. Intriguingly, these species-specific genes show different features than the shared genes.
Collapse
Affiliation(s)
- Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| |
Collapse
|
22
|
Menardo F, Praz CR, Wicker T, Keller B. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC Evol Biol 2017; 17:223. [PMID: 29089018 PMCID: PMC5664452 DOI: 10.1186/s12862-017-1064-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Background Grass powdery mildew (Blumeria graminis, Ascomycota) is a major pathogen of cereal crops and has become a model organism for obligate biotrophic fungal pathogens of plants. The sequenced genomes of two formae speciales (ff.spp.), B.g. hordei and B.g. tritici (pathogens of barley and wheat), were found to be enriched in candidate effector genes (CEGs). Similar to other filamentous pathogens, CEGs in B. graminis are under positive selection. Additionally, effectors are more likely to have presence-absence polymorphisms than other genes among different strains. Results Here we identified effectors in the genomes of three additional host-specific lineages of B. graminis (B.g. poae, B.g. avenae and B.g. infecting Lolium) which diverged between 24 and 5 million years ago (Mya). We found that most CEGs in B. graminis are clustered in families and that most families are present in both reference genomes (B.g. hordei and B.g. tritici) and in the genomes of all three newly annotated lineages. We identified conserved protein domains including a novel lipid binding domain. The phylogenetic analysis showed that frequent gene duplications and losses shaped the diversity of the effector repertoires of the different lineages through their evolutionary history. We observed several lineage-specific expansions where large clades of CEGs originated in only one lineage from a single gene through repeated gene duplications. When we applied a birth-death model we found that the turnover rate (the rate at which genes are deleted and duplicated) of CEG families is much higher than for non-CEG families. The analysis of genomic context revealed that the immediate surroundings of CEGs are enriched in transposable elements (TE) which could play a role in the duplication and deletion of CEGs. Conclusions The CEG repertoires of related pathogens diverged dramatically in short evolutionary times because of rapid turnover and of positive selection fixing non-synonymous mutations. While signatures of positive selection on effector sequences are the expected outcome of the evolutionary “arms race” between pathogen and plant immune system, it is more difficult to infer the mechanisms and evolutionary forces that maintained an extreme turnover rate in CEG families of B. graminis for several millions of years. Electronic supplementary material The online version of this article (10.1186/s12862-017-1064-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Coraline R Praz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| |
Collapse
|