1
|
Thomas PD, Ferrer MF, Lozano MJ, Gómez RM. A study on the codon usage bias of arenavirus common genes. Front Microbiol 2025; 15:1490076. [PMID: 39917269 PMCID: PMC11799557 DOI: 10.3389/fmicb.2024.1490076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction The Arenaviridae family consists of the genera Mammarenavirus, Reptarenavirus, Hartmanivirus, Antennavirus and Innmovirus. The codon usage bias between the different genera has not yet been studied comparatively. Methods We retrieved the arenavirus genome sequences from public databases and used bioinformatics tools to compare the codon usage bias between the different genera for the GPC, NP and L proteins, common to all arenaviruses. Results and discussion Hartmaniviruses show a larger codon usage bias, which can be partially explained by mutational bias. Patterns of relative use of synonymous codons were maintained within genera, with individual genera differing in their preference for the third nucleotide position in synonymous codons. Of the three proteins examined, the ARN polymerase L protein exhibited a slightly stronger codon usage bias, but overall, the patterns were repeated between genera for the three proteins examined. Our results suggest that codon usage pattern bias in arenaviruses is influenced by selection pressure and to a lesser extent by mutational selection.
Collapse
Affiliation(s)
- Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Mauricio J. Lozano
- Laboratorio de Genómica y Ecología Molecular de Microorganismos del Suelo Asociados con Plantas, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| |
Collapse
|
2
|
Chaudhuri D, Datta J, Majumder S, Giri K. Peptide based vaccine designing against endemic causing mammarenavirus using reverse vaccinology approach. Arch Microbiol 2024; 206:217. [PMID: 38619666 DOI: 10.1007/s00203-024-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Chiappelli F. CD71: Role in permafrost immunity. Bioinformation 2024; 20:208-211. [PMID: 38711995 PMCID: PMC11069603 DOI: 10.6026/973206300200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024] Open
Abstract
Iron, an essential constituent of cell metabolism, is transported intra-cellularly bound to the ubiquitous 76 kDa blood glycoprotein transferrin via the transferrin receptor, CD71. Because of its structure, CD71 facilitates the binding and penetration of a large variety of viruses into the host. Among which the hemorrhagic fever-causing New World mammarena viruses (family of single stranded ambisense segmented RNA Arenaviridae), the single stranded positive sense RNA hepatitis C virus, the single stranded negative sense segmented influenza A virus, the single stranded negative sense RNA rabies virus, the single stranded positive sense SARS-CoV2 and possibly many others. In this process, CD71 is associated with the target of the anti-proliferative antibody-1 (CD81) viral co-receptor. In light of the plethora of novel and ancient viruses and microbes emerging from melting eternal glacier ice and permafrost, it is timely and critical to define and characterize interventions, besides the soluble form of CD71 (sCD71), that can abrogate or minimize this novice non-canonical function of CD71.
Collapse
Affiliation(s)
- Francesco Chiappelli
- Dental Group of Sherman Oaks, Sherman Oaks, CA 91403, USA
- UCLA Center for the Health Sciences, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-Crimean Congo Haemorrhagic Fever Virus and Lassa Virus. APPLIED BIOSAFETY 2023; 28:216-229. [PMID: 38090357 PMCID: PMC10712363 DOI: 10.1089/apb.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Introduction Crimean Congo Hemorrhagic Fever (CCHF) virus and Lassa virus (LASV) are zoonotic agents regarded as high-consequence pathogens due to their high case fatality rates. CCHF virus is a vector-borne disease and is transmitted by tick bites. Lassa virus is spread via aerosolization of dried rat urine, ingesting infected rats, and direct contact with or consuming food and water contaminated with rat excreta. Methods The scientific literature for biosafety practices has been reviewed for both these two agents to assess the evidence base and biosafety-related knowledge gaps. The review focused on five main areas, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results There is a lack of data on the safe collection and handling procedures for tick specimens and the infectious dose from an infective tick bite for CCHF investigations. In addition, there are gaps in knowledge about gastrointestinal and contact infectious doses for Lassa virus, sample handling and transport procedures outside of infectious disease areas, and the contribution of asymptomatic carriers in viral circulation. Conclusion Due to the additional laboratory hazards posed by these two agents, the authors recommend developing protocols that work effectively and safely in highly specialized laboratories in non-endemic regions and a laboratory with limited resources in endemic areas.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control, Abuja and Prevention, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham, South Africa
| | | | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
5
|
Fan Y, Hou Y, Li Q, Dian Z, Wang B, Xia X. RNA virus diversity in rodents. Arch Microbiol 2023; 206:9. [PMID: 38038743 DOI: 10.1007/s00203-023-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Many zoonotic disease emergencies are associated with RNA viruses in rodents that substantially impact public health. With the widespread application of meta-genomics and meta-transcriptomics for virus discovery over the last decade, viral sequences deposited in public databases have expanded rapidly, and the number of novel viruses discovered in rodents has increased. As important reservoirs of zoonotic viruses, rodents have attracted increasing attention for the risk of potential spillover of rodent-borne viruses. However, knowledge of rodent viral diversity and the major factors contributing to the risk of zoonotic epidemic outbreaks remains limited. Therefore, this study analyzes the diversity and composition of rodent RNA viruses using virus records from the Database of Rodent-associated Viruses (DRodVir/ZOVER), which covers the published literatures and records in GenBank database, reviews the main rodent RNA virus-induced human infectious diseases, and discusses potential challenges in this field.
Collapse
Affiliation(s)
- Yayu Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
6
|
French RK, Anderson SH, Cain KE, Greene TC, Minor M, Miskelly CM, Montoya JM, Wille M, Muller CG, Taylor MW, Digby A, Holmes EC. Host phylogeny shapes viral transmission networks in an island ecosystem. Nat Ecol Evol 2023; 7:1834-1843. [PMID: 37679456 PMCID: PMC10627826 DOI: 10.1038/s41559-023-02192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
Virus transmission between host species underpins disease emergence. Both host phylogenetic relatedness and aspects of their ecology, such as species interactions and predator-prey relationships, may govern rates and patterns of cross-species virus transmission and hence zoonotic risk. To address the impact of host phylogeny and ecology on virus diversity and evolution, we characterized the virome structure of a relatively isolated island ecological community in Fiordland, New Zealand, that are linked through a food web. We show that phylogenetic barriers that inhibited cross-species virus transmission occurred at the level of host phyla (between the Chordata, Arthropoda and Streptophyta) as well as at lower taxonomic levels. By contrast, host ecology, manifest as predator-prey interactions and diet, had a smaller influence on virome composition, especially at higher taxonomic levels. The virus-host community comprised a 'small world' network, in which hosts with a high diversity of viruses were more likely to acquire new viruses, and generalist viruses that infect multiple hosts were more likely to infect additional species compared to host specialist viruses. Such a highly connected ecological community increases the likelihood of cross-species virus transmission, particularly among closely related species, and suggests that host generalist viruses present the greatest risk of disease emergence.
Collapse
Affiliation(s)
- Rebecca K French
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Sandra H Anderson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Terry C Greene
- Biodiversity Group, Department of Conservation, Christchurch, New Zealand
| | - Maria Minor
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Colin M Miskelly
- Te Papa Tongarewa Museum of New Zealand, Wellington, New Zealand
| | - Jose M Montoya
- Theoretical and Experimental Ecology Station, National Centre for Scientific Research (CNRS), Moulis, France
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Chris G Muller
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Kākāpō Recovery Team, Department of Conservation, Invercargill, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Luo XL, Lu S, Qin C, Shi M, Lu XB, Wang L, Ga S, Jin D, Ma XL, Yang J, Dai Y, Bao LL, Cheng YP, Ge YJ, Bai YB, Zhu WT, Pu J, Sun H, Huang YY, Xu MC, Lei WJ, Dong K, Yang CX, Jiao YF, Lv Q, Li FD, Xu J. Emergence of an ancient and pathogenic mammarenavirus. Emerg Microbes Infect 2023; 12:e2192816. [PMID: 36939609 DOI: 10.1080/22221751.2023.2192816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACTEmerging zoonoses of wildlife origin caused by previously unknown agents are one of the most important challenges for human health. The Qinghai-Tibet Plateau represents a unique ecological niche with diverse wildlife that harbors several human pathogens and numerous previously uncharacterized pathogens. In this study, we identified and characterized a novel arenavirus (namely, plateau pika virus, PPV) from plateau pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau by virome analysis. Isolated PPV strains could replicate in several mammalian cells. We further investigated PPV pathogenesis using animal models. PPV administered via an intraventricular route caused trembling and sudden death in IFNαβR-/- mice, and pathological inflammatory lesions in brain tissue were observed. According to a retrospective serological survey in the geographical region where PPV was isolated, PPV-specific IgG antibodies were detected in 8 (2.4%) of 335 outpatients with available sera. Phylogenetic analyses revealed that this virus was clearly separated from previously reported New and Old World mammarenaviruses. Under the co-speciation framework, the estimated divergence time of PPV was 77-88 million years ago (MYA), earlier than that of OW and NW mammarenaviruses (26-34 MYA).
Collapse
Affiliation(s)
- Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Bo Lu
- Infectious diseases department, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, China
| | - Lu Wang
- Kashi Center for Disease Control and Prevention, Kashi, Xinjiang Autonomous Region, China
| | - Sang Ga
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, Qinghai Province, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Li Ma
- Kashi first people's hospital, Kashi, Xinjiang Autonomous Region, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan Dai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Lin-Lin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yan-Peng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Ya-Jun Ge
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yi-Bo Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wen-Tao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yu-Yuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ming-Chao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen-Jing Lei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Kui Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Cai-Xin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Yi-Fan Jiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qi Lv
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Feng-Di Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China.,Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Whitlock AOB, Bird BH, Ghersi B, Davison AJ, Hughes J, Nichols J, Vučak M, Amara E, Bangura J, Lavalie EG, Kanu MC, Kanu OT, Sjodin A, Remien CH, Nuismer SL. Identifying the genetic basis of viral spillover using Lassa virus as a test case. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221503. [PMID: 36968239 PMCID: PMC10031424 DOI: 10.1098/rsos.221503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The rate at which zoonotic viruses spill over into the human population varies significantly over space and time. Remarkably, we do not yet know how much of this variation is attributable to genetic variation within viral populations. This gap in understanding arises because we lack methods of genetic analysis that can be easily applied to zoonotic viruses, where the number of available viral sequences is often limited, and opportunistic sampling introduces significant population stratification. Here, we explore the feasibility of using patterns of shared ancestry to correct for population stratification, enabling genome-wide association methods to identify genetic substitutions associated with spillover into the human population. Using a combination of phylogenetically structured simulations and Lassa virus sequences collected from humans and rodents in Sierra Leone, we demonstrate that existing methods do not fully correct for stratification, leading to elevated error rates. We also demonstrate, however, that the Type I error rate can be substantially reduced by confining the analysis to a less-stratified region of the phylogeny, even in an already-small dataset. Using this method, we detect two candidate single-nucleotide polymorphisms associated with spillover in the Lassa virus polymerase gene and provide generalized recommendations for the collection and analysis of zoonotic viruses.
Collapse
Affiliation(s)
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Bruno Ghersi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matej Vučak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Emmanuel Amara
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - James Bangura
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Edwin G. Lavalie
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Marilyn C. Kanu
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Osman T. Kanu
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Anna Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, USA
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
9
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
10
|
Abstract
Individuals living in endemic hotspots of Lassa fever have recurrent exposure to Lassa virus (LASV) via spillover from the primary host reservoir Mastomys natalensis. Despite M. natalensis being broadly distributed across sub-Saharan Africa, Lassa fever is only found in West Africa. In recent years, new LASV reservoirs have been identified. Erudition of rodent habitats, reproduction and fecundity, movement patterns, and spatial preferences are essential to institute preventative measures against Lassa fever. Evolutionary insights have also added to our knowledge of closely related mammarenavirus distribution amongst rodents throughout the continent.
Collapse
Affiliation(s)
- Allison R Smither
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Antoinette R Bell-Kareem
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Lübbert C, Ermisch J, Kellner N. Lassafieber. ZEITSCHRIFT FÜR GASTROENTEROLOGIE 2023. [DOI: 10.1055/a-1985-1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Khan T, Muzaffar A, Shoaib RM, Khan A, Waheed Y, Wei DQ. Towards specie-specific ensemble vaccine candidates against mammarenaviruses using optimized structural vaccinology pipeline and molecular modelling approaches. Microb Pathog 2022; 172:105793. [PMID: 36165863 DOI: 10.1016/j.micpath.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Mammarena viruses are emerging pathogenic agents and cause hemorrhagic fevers in humans. These viruses accomplish host immune system evasion to replicate and spread in the host. There are only few available therapeutic options developed for Mammarena Virus (also called MMV). Currently, only a single candidate vaccine called Candid#1 is available against Junin virus. Similarly, the effective treatment Ribavirin is used only in Lassa fever treatments. Herein, immune-informatics pipeline has been used to annotate whole proteome of the seven human infecting Mammarena strains. The extensive immune based analysis reveals specie specific epitopes with a crucial role in immune response induction. This was achieved by construction of immunogenic epitopes (CTL "Cytotoxic T-Lymphocytes", HTL "Helper T-Lymphocytes", and B cell "B-Lymphocytes") based vaccine designs against seven different Mammarena virus species. Furthermore, validation of the vaccine constructs through exploring physiochemical properties was performed to confirm experimental feasibility. Additionally, in-silico cloning and receptor based immune simulation was performed to ensure induction of primary and secondary immune response. This was confirmed through expression of immune factors such as IL, cytokines, and antibodies. The current study provides with novel vaccine designs which needs further demonstrations through potential processing against MMVs. Future studies may be directed towards advanced evaluations to determine the efficacy and safety of the designed vaccines through further experimental procedures.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | | | | | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China.
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
13
|
Host diversification is concurrent with linear motif evolution in a Mastadenovirus hub protein. J Mol Biol 2022; 434:167563. [PMID: 35351519 DOI: 10.1016/j.jmb.2022.167563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
Abstract
Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.
Collapse
|
14
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
15
|
Simo Tchetgna H, Descorps-Declère S, Selekon B, Kwasiborski A, Vandenbogaert M, Manuguerra JC, Gessain A, Caro V, Nakouné E, Berthet N. Molecular characterization of a new highly divergent Mobala related arenavirus isolated from Praomys sp. rodents. Sci Rep 2021; 11:10188. [PMID: 33986310 PMCID: PMC8119949 DOI: 10.1038/s41598-021-88046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Arenaviruses represent a family of viruses that are naturally present in rodents belonging to subfamily Murinae, Neotominae or Sigmodontinae. Except for Lassa virus, little information is available on other Old-World arenaviruses. Here, we describe strain AnRB3214, a virus isolated from a presumed Praomys sp. rodent in the Central African Republic in 1981 and assigned to Ippy virus based on antigenic similarity. The strain was simultaneously sequenced on Illumina NovaSeq 6000 and MinION Mk1B devices and analysed with various bioinformatics tools. We show that the best genome coverage and depth were obtained with the Kaiju and Minimap2 classification and identification tools, on either the MinION or the Illumina reads. The genetic analysis of AnRB3214 fragments showed 68% to 79% similarity with the Mobala and Gairo mammarenaviruses at the nucleic acid level. Strain AnRB3214 had a truncated nucleoprotein smaller than that of other Old World arenaviruses. Molecular clock analysis suggests that this strain diverged from Mobala virus at least 400 years ago. Finally, this study illustrates the importance of genomics in the identification of archived viruses and expands on the diversity of African arenaviruses, because strain AnRB3214 is either a variant or a close relative of Mobala virus, and not Ippy virus.
Collapse
Affiliation(s)
- Huguette Simo Tchetgna
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon.,The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai - Chinese Academy of Sciences, Discovery and Molecular Characterization of Pathogens, Shanghai, 200031, China
| | - Stephane Descorps-Declère
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | | | - Aurelia Kwasiborski
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Unité Environnement et Risques Infectieux, Paris, France
| | - Mathias Vandenbogaert
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Unité Environnement et Risques Infectieux, Paris, France
| | - Jean-Claude Manuguerra
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Unité Environnement et Risques Infectieux, Paris, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris, France.,Centre National de Recherche Scientifique (CNRS) UMR3569, Paris, France
| | - Valérie Caro
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Unité Environnement et Risques Infectieux, Paris, France
| | | | - Nicolas Berthet
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai - Chinese Academy of Sciences, Discovery and Molecular Characterization of Pathogens, Shanghai, 200031, China. .,Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Unité Environnement et Risques Infectieux, Paris, France.
| |
Collapse
|
16
|
Ushijima Y, Abe H, Ozeki T, Ondo GN, Mbadinga MJVM, Bikangui R, Nze-Nkogue C, Akomo-Okoue EF, Ella GWE, Koumba LBM, Nso BCBB, Mintsa-Nguema R, Makouloutou-Nzassi P, Makanga BK, Nguelet FLM, Zadeh VR, Urata S, Mbouna AVN, Massinga-Loembe M, Agnandji ST, Lell B, Yasuda J. Identification of potential novel hosts and the risk of infection with lymphocytic choriomeningitis virus in humans in Gabon, Central Africa. Int J Infect Dis 2021; 105:452-459. [PMID: 33667697 DOI: 10.1016/j.ijid.2021.02.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Lymphocytic choriomeningitis virus (LCMV), a human pathogenic arenavirus, is distributed worldwide. However, no human cases have been reported in Africa. This study aimed to investigate the current situation and potential risks of LCMV infection in Gabon, Central Africa. METHODS A total of 492 human samples were screened to detect LCMV genome RNA and anti-LCMV IgG antibodies using reverse transcription-quantitative PCR and enzyme-linked immunosorbent assay (ELISA), respectively. ELISA-positive samples were further examined using a neutralization assay. Viral RNAs and antibodies were also analyzed in 326 animal samples, including rodents, shrews, and bushmeat. RESULTS While no LCMV RNA was detected in human samples, the overall seroprevalence was 21.5% and was significantly higher in male and adult populations. The neutralization assay identified seven samples with neutralizing activity. LCMV RNA was detected in one species of rodent (Lophuromys sikapusi) and a porcupine, and anti-LCMV IgG antibodies were detected in four rodents and three shrews. CONCLUSIONS This study determined for the first time the seroprevalence of LCMV in Gabon, and revealed that local rodents, shrews, and porcupines in areas surrounding semi-urban cities posed an infection risk. Hence, LCMV infection should be considered a significant public health concern in Africa.
Collapse
Affiliation(s)
- Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Haruka Abe
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Takehiro Ozeki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | - Boris K Makanga
- Institut de Recherche en Ecologie Tropicale, Libreville, Gabon
| | | | - Vahid R Zadeh
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shuzo Urata
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | | | - Marguerite Massinga-Loembe
- African Society for Laboratory Medicine, Addis Ababa, Ethiopia; Africa Centres for Disease Control and Prevention, Johannesburg, South Africa
| | - Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany; Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
17
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide. Viruses 2019; 11:v11080750. [PMID: 31416162 PMCID: PMC6722660 DOI: 10.3390/v11080750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
A metatranscriptomic study of RNA viruses in cold-blooded vertebrates identified two related viruses from frogfish (Antennarius striatus) that represent a new genus Antennavirus in the family Arenaviridae (Order: Bunyavirales). Computational analyses were used to identify features common to class I viral fusion proteins (VFPs) in antennavirus glycoproteins, including an N-terminal fusion peptide, two extended alpha-helices, an intrahelical loop, and a carboxyl terminal transmembrane domain. Like mammarenavirus and hartmanivirus glycoproteins, the antennavirus glycoproteins have an intracellular zinc-binding domain and a long virion-associated stable signal peptide (SSP). The glycoproteins of reptarenaviruses are also class I VFPs, but do not contain zinc-binding domains nor do they encode SSPs. Divergent evolution from a common progenitor potentially explains similarities of antennavirus, mammarenavirus, and hartmanivirus glycoproteins, with an ancient recombination event resulting in a divergent reptarenavirus glycoprotein.
Collapse
|
19
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
20
|
Pontremoli C, Forni D, Sironi M. Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol 2019; 34:18-28. [DOI: 10.1016/j.coviro.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
|
21
|
Zapata JC, Medina-Moreno S, Guzmán-Cardozo C, Salvato MS. Improving the Breadth of the Host's Immune Response to Lassa Virus. Pathogens 2018; 7:E84. [PMID: 30373278 PMCID: PMC6313495 DOI: 10.3390/pathogens7040084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world's foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa virus (LASV) isolated from West African patient samples was far greater than that of the Ebola isolates from the West African epidemic of 2013⁻2016. Thus, vaccines produced against Lassa virus disease face the added challenge that they must be broadly-protective against a wide variety of LASV. In this review, we discuss what is known about the immune response to Lassa infection. We also discuss the approaches used to make broadly-protective influenza vaccines and how they could be applied to developing broad vaccine coverage against LASV disease. Recent advances in AIDS research are also potentially applicable to the design of broadly-protective medical countermeasures against LASV disease.
Collapse
Affiliation(s)
- Juan Carlos Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Camila Guzmán-Cardozo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Pontremoli C, Forni D, Cagliani R, Sironi M. Analysis of Reptarenavirus genomes indicates different selective forces acting on the S and L segments and recent expansion of common genotypes. INFECTION GENETICS AND EVOLUTION 2018; 64:212-218. [DOI: 10.1016/j.meegid.2018.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/20/2023]
|