1
|
Khandia R, Pandey MK, Khan AA, Baklanov I, Alanazi AM, Nepali P, Gurjar P, Choudhary OP. Synthetic biology approach revealed enhancement in haeme oxygenase-1 gene expression by codon pair optimization while reduction by codon deoptimization. Ann Med Surg (Lond) 2024; 86:1359-1369. [PMID: 38463112 PMCID: PMC10923308 DOI: 10.1097/ms9.0000000000001465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 03/12/2024] Open
Abstract
Haem oxygenase-1 (HO-1) is a ubiquitously expressed gene involved in cellular homoeostasis, and its imbalance in expression results in various disorders. To alleviate such disorders, HO-1 gene expression needs to be modulated. Codon usage bias results from evolutionary forces acting on any nucleotide sequence and determines the gene expression. Like codon usage bias, codon pair bias also exists, playing a role in gene expression. In the present study, HO-1 gene was recoded by manipulating codon and codon pair bias, and four such constructs were made through codon/codon pair deoptimization and codon/codon pair optimization to reduce and enhance the HO-1 gene expression. Codon usage analysis was done for these constructs for four tissues brain, heart, pancreas and liver. Based on codon usage in different tissues, gene expression of these tissues was determined in terms of the codon adaptation index. Based on the codon adaptation index, minimum free energy, and translation efficiency, constructs were evaluated for enhanced or decreased HO-1 expression. The analysis revealed that for enhancing gene expression, codon pair optimization, while for reducing gene expression, codon deoptimization is efficacious. The recoded constructs developed in the study could be used in gene therapy regimens to cure HO-1 over or underexpression-associated disorders.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, MP, India
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal, MP, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Igor Baklanov
- Department of Philosophy, North Caucasus Federal University, Pushkina, Stavropol, Russia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prakash Nepali
- Bhimad Primary Health Care Center, Government of Nepal, Tanahun, Nepal
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
2
|
Jain A, Begum T, Ahmad S. Analysis and Prediction of Pathogen Nucleic Acid Specificity for Toll-like Receptors in Vertebrates. J Mol Biol 2023; 435:168208. [PMID: 37479078 DOI: 10.1016/j.jmb.2023.168208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Identification of key sequence, expression and function related features of nucleic acid-sensing host proteins is of fundamental importance to understand the dynamics of pathogen-specific host responses. To meet this objective, we considered toll-like receptors (TLRs), a representative class of membrane-bound sensor proteins, from 17 vertebrate species covering mammals, birds, reptiles, amphibians, and fishes in this comparative study. We identified the molecular signatures of host TLRs that are responsible for sensing pathogen nucleic acids or other pathogen-associated molecular patterns (PAMPs), and potentially play important roles in host defence mechanism. Interestingly, our findings reveal that such host-specific features are directly related to the strand (single or double) specificity of nucleic acid from pathogens. However, during host-pathogen interactions, such features were unable to explain the pathogenic PAMP (i.e., DNA, RNA or other) selectivity, suggesting a more complex mechanism. Using these features, we developed a number of machine learning models, of which Random Forest achieved a high performance (94.57% accuracy) to predict strand specificity of TLRs from protein-derived features. We applied the trained model to propose strand specificity of some previously uncharacterized distinct fish-specific novel TLRs (TLR18, TLR23, TLR24, TLR25, TLR27).
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India. https://twitter.com/@Anuja334
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Alonso AM, Diambra L. Dicodon-based measures for modeling gene expression. Bioinformatics 2023; 39:btad380. [PMID: 37307098 PMCID: PMC10287933 DOI: 10.1093/bioinformatics/btad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023] Open
Abstract
MOTIVATION Codon usage preference patterns have been associated with modulation of translation efficiency, protein folding, and mRNA decay. However, new studies support that codon pair usage has also a remarkable effect at the gene expression level. Here, we expand the concept of CAI to answer if codon pair usage patterns can be understood in terms of codon usage bias, or if they offer new information regarding coding translation efficiency. RESULTS Through the implementation of a weighting strategy to consider the dicodon contributions, we observe that the dicodon-based measure has greater correlations with gene expression level than CAI. Interestingly, we have noted that dicodons associated with a low value of adaptiveness are related to dicodons which mediate strong translational inhibition in yeast. We have also noticed that some codon-pairs have a smaller dicodon contribution than estimated by the product of the respective codon contributions. AVAILABILITY AND IMPLEMENTATION Scripts, implemented in Python, are freely available for download at https://zenodo.org/record/7738276#.ZBIDBtLMIdU.
Collapse
Affiliation(s)
- Andres M Alonso
- Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino km 8.2, Chascomús, 7130 Provincia de Buenos Aires, Argentina
- CCT-La Plata, CONICET, Calle 8 Nº 1467, La Plata, B1904CMC Provincia de Buenos Aires, Argentina
| | - Luis Diambra
- CCT-La Plata, CONICET, Calle 8 Nº 1467, La Plata, B1904CMC Provincia de Buenos Aires, Argentina
- Centro Regional de Estudios Genómicos, FCE-UNLP, Blvd 120 N∘ 1461, La Plata, 1900 Provincia de Buenos Aires, Argentina
| |
Collapse
|
4
|
Khandia R, Pandey MK, Rzhepakovsky IV, Khan AA, Alexiou A. Synonymous Codon Variant Analysis for Autophagic Genes Dysregulated in Neurodegeneration. Mol Neurobiol 2023; 60:2252-2267. [PMID: 36637744 DOI: 10.1007/s12035-022-03081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative disorders are often a culmination of the accumulation of abnormally folded proteins and defective organelles. Autophagy is a process of removing these defective proteins, organelles, and harmful substances from the body, and it works to maintain homeostasis. If autophagic removal of defective proteins has interfered, it affects neuronal health. Some of the autophagic genes are specifically found to be associated with neurodegenerative phenotypes. Non-functional, mutated, or gene copies having silent mutations, often termed synonymous variants, might explain this. However, these synonymous variant which codes for exactly similar proteins have different translation rates, stability, and gene expression profiling. Hence, it would be interesting to study the pattern of synonymous variant usage. In the study, synonymous variant usage in various transcripts of autophagic genes ATG5, ATG7, ATG8A, ATG16, and ATG17/FIP200 reported to cause neurodegeneration (if dysregulated) is studied. These genes were analyzed for their synonymous variant usage; nucleotide composition; any possible nucleotide skew in a gene; physical properties of autophagic protein including GRAVY and AROMA; hydropathicity; instability index; and frequency of acidic, basic, neutral amino acids; and gene expression level. The study will help understand various evolutionary forces acting on these genes and the possible augmentation of a gene if showing unusual behavior.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, India.
| | - Megha Katare Pandey
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, 462020, India
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| |
Collapse
|
5
|
Li Y, Khandia R, Papadakis M, Alexiou A, Simonov AN, Khan AA. An investigation of codon usage pattern analysis in pancreatitis associated genes. BMC Genom Data 2022; 23:81. [PMID: 36434531 PMCID: PMC9700901 DOI: 10.1186/s12863-022-01089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatitis is an inflammatory disorder resulting from the autoactivation of trypsinogen in the pancreas. The genetic basis of the disease is an old phenomenon, and evidence is accumulating for the involvement of synonymous/non-synonymous codon variants in disease initiation and progression. RESULTS The present study envisaged a panel of 26 genes involved in pancreatitis for their codon choices, compositional analysis, relative dinucleotide frequency, nucleotide disproportion, protein physical properties, gene expression, codon bias, and interrelated of all these factors. In this set of genes, gene length was positively correlated with nucleotide skews and codon usage bias. Codon usage of any gene is dependent upon its AT and GC component; however, AGG, CGT, and CGA encoding for Arg, TCG for Ser, GTC for Val, and CCA for Pro were independent of nucleotide compositions. In addition, Codon GTC showed a correlation with protein properties, isoelectric point, instability index, and frequency of basic amino acids. We also investigated the effect of various evolutionary forces in shaping the codon usage choices of genes. CONCLUSIONS This study will enable us to gain insight into the molecular signatures associated with the disease that might help identify more potential genes contributing to enhanced risk for pancreatitis. All the genes associated with pancreatitis are generally associated with physiological function, and mutations causing loss of function, over or under expression leads to an ailment. Therefore, the present study attempts to envisage the molecular signature in a group of genes that lead to pancreatitis in case of malfunction.
Collapse
Affiliation(s)
- Yuanyang Li
- Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China ,grid.254148.e0000 0001 0033 6389College of Medical Science, China Three Gorges University, Yichang, China
| | - Rekha Khandia
- grid.411530.20000 0001 0694 3745Department of Biochemistry and Genetics, Barkatullah University, Bhopal, MP 462026 India
| | - Marios Papadakis
- grid.412581.b0000 0000 9024 6397Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia ,AFNP Med Austria, Vienna, Austria
| | | | - Azmat Ali Khan
- grid.56302.320000 0004 1773 5396Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
6
|
Hugaboom M, Hatmaker EA, LaBella AL, Rokas A. Evolution and codon usage bias of mitochondrial and nuclear genomes in Aspergillus section Flavi. G3 (BETHESDA, MD.) 2022; 13:6777267. [PMID: 36305682 PMCID: PMC9836360 DOI: 10.1093/g3journal/jkac285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The fungal genus Aspergillus contains a diversity of species divided into taxonomic sections of closely related species. Section Flavi contains 33 species, many of industrial, agricultural, or medical relevance. Here, we analyze the mitochondrial genomes (mitogenomes) of 20 Flavi species-including 18 newly assembled mitogenomes-and compare their evolutionary history and codon usage bias patterns to their nuclear counterparts. Codon usage bias refers to variable frequencies of synonymous codons in coding DNA and is shaped by a balance of neutral processes and natural selection. All mitogenomes were circular DNA molecules with highly conserved gene content and order. As expected, genomic content, including GC content, and genome size differed greatly between mitochondrial and nuclear genomes. Phylogenetic analysis based on 14 concatenated mitochondrial genes predicted evolutionary relationships largely consistent with those predicted by a phylogeny constructed from 2,422 nuclear genes. Comparing similarities in interspecies patterns of codon usage bias between mitochondrial and nuclear genomes showed that species grouped differently by patterns of codon usage bias depending on whether analyses were performed using mitochondrial or nuclear relative synonymous usage values. We found that patterns of codon usage bias at gene level are more similar between mitogenomes of different species than the mitogenome and nuclear genome of the same species. Finally, we inferred that, although most genes-both nuclear and mitochondrial-deviated from the neutral expectation for codon usage, mitogenomes were not under translational selection while nuclear genomes were under moderate translational selection. These results contribute to the study of mitochondrial genome evolution in filamentous fungi.
Collapse
Affiliation(s)
- Miya Hugaboom
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Elizabeth Anne Hatmaker
- Corresponding author: Department of Biological Sciences, Vanderbilt University, VU Station B 35-1364, Nashville, TN 37235, USA. (AH)
| | - Abigail L LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Antonis Rokas
- Corresponding author: Department of Biological Sciences, Vanderbilt University, VU Station B 35-1364, Nashville, TN 37235, USA. (AR)
| |
Collapse
|
7
|
Khandia R, Pandey M, Rzhepakovsky IV, Khan AA, Legaz I. Codon Pattern and Compositional Constraints Determination of Genes Associated with Chronic Periodontitis. Genes (Basel) 2022; 13:genes13111934. [PMID: 36360171 PMCID: PMC9689538 DOI: 10.3390/genes13111934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies showed the relationship of NIN, ABHD12B, WHAMM, AP3B2, and SIGLEC5 with chronic periodontitis. The study’s objective was to investigate different molecular patterns and evolutionary forces acting on the mentioned genes. The investigation of molecular patterns encompasses the study of compositional parameters, expression profile, physical properties of genes, codon preferences, degree of codon bias, determination of the most influential codons, and assessment of actions of evolutionary forces, such as mutations and natural selection. The overall compositional analysis revealed the dominance of A and G nucleotides compared to T and C. A relatively low codon usage bias is observed. The CTG codon is the most overused codon, followed by TCC. The genes, AP3B2 and SIGLEC5, preferred GC-ending codons, while NIN, ABHD12B, and WHAMM preferred AT-ending codons. The presence of directional mutational force and natural selection was found to operate codon usage in genes envisaged, and selective forces were dominant over mutational forces. Apart from mutation and selection forces, compositional constraints also played imperative roles. The study enriched our knowledge of specific molecular patterns associated with the set of genes significantly associated with chronic periodontitis. Further studies are warranted to identify more genetic signatures associated with the disease.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah Universty, Bhopal 462026, India
- Correspondence: or (R.K.); (I.L.)
| | - Megha Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal 462020, India
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, E-30120 Murcia, Spain
- Correspondence: or (R.K.); (I.L.)
| |
Collapse
|
8
|
Miller JB, Meurs TE, Hodgman MW, Song B, Miller KN, Ebbert MTW, Kauwe JSK, Ridge PG. The Ramp Atlas: facilitating tissue and cell-specific ramp sequence analyses through an intuitive web interface. NAR Genom Bioinform 2022; 4:lqac039. [PMID: 35664804 PMCID: PMC9155233 DOI: 10.1093/nargab/lqac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Ramp sequences occur when the average translational efficiency of codons near the 5′ end of highly expressed genes is significantly lower than the rest of the gene sequence, which counterintuitively increases translational efficiency by decreasing downstream ribosomal collisions. Here, we show that the relative codon adaptiveness within different tissues changes the existence of a ramp sequence without altering the underlying genetic code. We present the first comprehensive analysis of tissue and cell type-specific ramp sequences and report 3108 genes with ramp sequences that change between tissues and cell types, which corresponds with increased gene expression within those tissues and cells. The Ramp Atlas (https://ramps.byu.edu/) allows researchers to query precomputed ramp sequences in 18 388 genes across 62 tissues and 66 cell types and calculate tissue-specific ramp sequences from user-uploaded FASTA files through an intuitive web interface. We used The Ramp Atlas to identify seven SARS-CoV-2 genes and seven human SARS-CoV-2 entry factor genes with tissue-specific ramp sequences that may help explain viral proliferation within those tissues. We anticipate that The Ramp Atlas will facilitate personalized and creative tissue-specific ramp sequence analyses for both human and viral genes that will increase our ability to utilize this often-overlooked regulatory region.
Collapse
Affiliation(s)
- Justin B Miller
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Taylor E Meurs
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Matthew W Hodgman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Benjamin Song
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kyle N Miller
- Department of Computer Science, Utah Valley University, Orem, UT 84058, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
9
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Analysis of codon usage patterns in open reading frame 4 of hepatitis E viruses. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:65. [PMID: 35573872 PMCID: PMC9086417 DOI: 10.1186/s43088-022-00244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a member of the family Hepeviridae and causes acute HEV infections resulting in thousands of deaths worldwide. The zoonotic nature of HEV in addition to its tendency from human to human transmission has led scientists across the globe to work on its different aspects. HEV also accounts for about 30% mortality rates in case of pregnant women. The genome of HEV is organized into three open reading frames (ORFs): ORF1 ORF2 and ORF3. A reading frame encoded protein ORF4 has recently been discovered which is exclusive to GT 1 isolates of HEV. The ORF4 is suggested to play crucial role in pregnancy-associated pathology and enhanced replication. Though studies have documented the ORF4's importance, the genetic features of ORF4 protein genes in terms of compositional patterns have not been elucidated. As codon usage performs critical role in establishment of the host-pathogen relationship, therefore, the present study reports the codon usage analysis (based on nucleotide sequences of HEV ORF4 available in the public database) in three hosts along with the factors influencing the codon usage patterns of the protein genes of ORF4 of HEV. RESULTS The nucleotide composition analysis indicated that ORF4 protein genes showed overrepresentation of C nucleotide and while A nucleotide was the least-represented, with random distribution of G and T(U) nucleotides. The relative synonymous codon usage (RSCU) analysis revealed biasness toward C/G-ended codons (over U/A) in all three natural HEV-hosts (human, rat and ferret). It was observed that all the ORF4 genes were richly endowed with GC content. Further, our results showed the occurrence of both coincidence and antagonistic codon usage patterns among HEV-hosts. The findings further emphasized that both mutational and selection forces influenced the codon usage patterns of ORF4 protein genes. CONCLUSIONS To the best of our knowledge, this is first bioinformatics study evaluating codon usage patterns in HEV ORF4 protein genes. The findings from this study are expected to increase our understanding toward significant factors involved in evolutionary changes of ORF4. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43088-022-00244-w.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
10
|
Allen SR, Stewart RK, Rogers M, Ruiz IJ, Cohen E, Laederach A, Counter CM, Sawyer JK, Fox DT. Distinct responses to rare codons in select Drosophila tissues. eLife 2022; 11:e76893. [PMID: 35522036 PMCID: PMC9116940 DOI: 10.7554/elife.76893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Codon usage bias has long been appreciated to influence protein production. Yet, relatively few studies have analyzed the impacts of codon usage on tissue-specific mRNA and protein expression. Here, we use codon-modified reporters to perform an organism-wide screen in Drosophila melanogaster for distinct tissue responses to codon usage bias. These reporters reveal a cliff-like decline of protein expression near the limit of rare codon usage in endogenously expressed Drosophila genes. Near the edge of this limit, however, we find the testis and brain are uniquely capable of expressing rare codon-enriched reporters. We define a new metric of tissue-specific codon usage, the tissue-apparent Codon Adaptation Index (taCAI), to reveal a conserved enrichment for rare codon usage in the endogenously expressed genes of both Drosophila and human testis. We further demonstrate a role for rare codons in an evolutionarily young testis-specific gene, RpL10Aa. Optimizing RpL10Aa codons disrupts female fertility. Our work highlights distinct responses to rarely used codons in select tissues, revealing a critical role for codon bias in tissue biology.
Collapse
Affiliation(s)
- Scott R Allen
- Department of Cell Biology, Duke UniversityDurhamUnited States
| | - Rebeccah K Stewart
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| | - Michael Rogers
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| | - Ivan Jimenez Ruiz
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Erez Cohen
- Department of Cell Biology, Duke UniversityDurhamUnited States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| | - Donald T Fox
- Department of Cell Biology, Duke UniversityDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| |
Collapse
|
11
|
McGrath C. Synonymous but Not Equal: A Special Section and Virtual Issue on Phenotypic Effects of Synonymous Mutations. Genome Biol Evol 2021. [PMCID: PMC8410135 DOI: 10.1093/gbe/evab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Kokate PP, Techtmann SM, Werner T. Codon usage bias and dinucleotide preference in 29 Drosophila species. G3 GENES|GENOMES|GENETICS 2021; 11:6291245. [PMID: 34849812 PMCID: PMC8496323 DOI: 10.1093/g3journal/jkab191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022]
Abstract
Abstract
Codon usage bias, where certain codons are used more frequently than their synonymous counterparts, is an interesting phenomenon influenced by three evolutionary forces: mutation, selection, and genetic drift. To better understand how these evolutionary forces affect codon usage bias, an extensive study to detect how codon usage patterns change across species is required. This study investigated 668 single-copy orthologous genes independently in 29 Drosophila species to determine how the codon usage patterns change with phylogenetic distance. We found a strong correlation between phylogenetic distance and codon usage bias and observed striking differences in codon preferences between the two subgenera Drosophila and Sophophora. As compared to the subgenus Sophophora, species of the subgenus Drosophila showed reduced codon usage bias and a reduced preference specifically for codons ending with C, except for codons with G in the second position. We found that codon usage patterns in all species were influenced by the nucleotides in the codon’s 2nd and 3rd positions rather than the biochemical properties of the amino acids encoded. We detected a concordance between preferred codons and preferred dinucleotides (at positions 2 and 3 of codons). Furthermore, we observed an association between speciation, codon preferences, and dinucleotide preferences. Our study provides the foundation to understand how selection acts on dinucleotides to influence codon usage bias.
Collapse
Affiliation(s)
- Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
13
|
Whittle CA, Kulkarni A, Chung N, Extavour CG. Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes. BMC Genomics 2021; 22:234. [PMID: 33823803 PMCID: PMC8022432 DOI: 10.1186/s12864-021-07411-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For multicellular organisms, much remains unknown about the dynamics of synonymous codon and amino acid use in highly expressed genes, including whether their use varies with expression in different tissue types and sexes. Moreover, specific codons and amino acids may have translational functions in highly transcribed genes, that largely depend on their relationships to tRNA gene copies in the genome. However, these relationships and putative functions are poorly understood, particularly in multicellular systems. RESULTS Here, we studied codon and amino acid use in highly expressed genes from reproductive and nervous system tissues (male and female gonad, somatic reproductive system, brain and ventral nerve cord, and male accessory glands) in the cricket Gryllus bimaculatus. We report an optimal codon, defined as the codon preferentially used in highly expressed genes, for each of the 18 amino acids with synonymous codons in this organism. The optimal codons were mostly shared among tissue types and both sexes. However, the frequency of optimal codons was highest in gonadal genes. Concordant with translational selection, a majority of the optimal codons had abundant matching tRNA gene copies in the genome, but sometimes obligately required wobble tRNAs. We suggest the latter may comprise a mechanism for slowing translation of abundant transcripts, particularly for cell-cycle genes. Non-optimal codons, defined as those least commonly used in highly transcribed genes, intriguingly often had abundant tRNAs, and had elevated use in a subset of genes with specialized functions (gametic and apoptosis genes), suggesting their use promotes the translational upregulation of particular mRNAs. In terms of amino acids, we found evidence suggesting that amino acid frequency, tRNA gene copy number, and amino acid biosynthetic costs (size/complexity) had all interdependently evolved in this insect model, potentially for translational optimization. CONCLUSIONS Collectively, the results suggest a model whereby codon use in highly expressed genes, including optimal, wobble, and non-optimal codons, and their tRNA abundances, as well as amino acid use, have been influenced by adaptation for various functional roles in translation within this cricket. The effects of expression in different tissue types and the two sexes are discussed.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Nina Chung
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, 02138, MA, USA.
| |
Collapse
|
14
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Signatures of optimal codon usage in metabolic genes inform budding yeast ecology. PLoS Biol 2021; 19:e3001185. [PMID: 33872297 PMCID: PMC8084343 DOI: 10.1371/journal.pbio.3001185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/29/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Reverse ecology is the inference of ecological information from patterns of genomic variation. One rich, heretofore underutilized, source of ecologically relevant genomic information is codon optimality or adaptation. Bias toward codons that match the tRNA pool is robustly associated with high gene expression in diverse organisms, suggesting that codon optimization could be used in a reverse ecology framework to identify highly expressed, ecologically relevant genes. To test this hypothesis, we examined the relationship between optimal codon usage in the classic galactose metabolism (GAL) pathway and known ecological niches for 329 species of budding yeasts, a diverse subphylum of fungi. We find that optimal codon usage in the GAL pathway is positively correlated with quantitative growth on galactose, suggesting that GAL codon optimization reflects increased capacity to grow on galactose. Optimal codon usage in the GAL pathway is also positively correlated with human-associated ecological niches in yeasts of the CUG-Ser1 clade and with dairy-associated ecological niches in the family Saccharomycetaceae. For example, optimal codon usage of GAL genes is greater than 85% of all genes in the genome of the major human pathogen Candida albicans (CUG-Ser1 clade) and greater than 75% of genes in the genome of the dairy yeast Kluyveromyces lactis (family Saccharomycetaceae). We further find a correlation between optimization in the GALactose pathway genes and several genes associated with nutrient sensing and metabolism. This work suggests that codon optimization harbors information about the metabolic ecology of microbial eukaryotes. This information may be particularly useful for studying fungal dark matter-species that have yet to be cultured in the lab or have only been identified by genomic material.
Collapse
Affiliation(s)
- Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Whittle CA, Kulkarni A, Extavour CG. Evidence of multifaceted functions of codon usage in translation within the model beetle Tribolium castaneum. DNA Res 2020; 26:473-484. [PMID: 31922535 PMCID: PMC6993815 DOI: 10.1093/dnares/dsz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon use is non-random. Codons most used in highly transcribed genes, often called optimal codons, typically have high gene counts of matching tRNA genes (tRNA abundance) and promote accurate and/or efficient translation. Non-optimal codons, those least used in highly expressed genes, may also affect translation. In multicellular organisms, codon optimality may vary among tissues. At present, however, tissue specificity of codon use remains poorly understood. Here, we studied codon usage of genes highly transcribed in germ line (testis and ovary) and somatic tissues (gonadectomized males and females) of the beetle Tribolium castaneum. The results demonstrate that: (i) the majority of optimal codons were organism-wide, the same in all tissues, and had numerous matching tRNA gene copies (Opt-codon↑tRNAs), consistent with translational selection; (ii) some optimal codons varied among tissues, suggesting tissue-specific tRNA populations; (iii) wobble tRNA were required for translation of certain optimal codons (Opt-codonwobble), possibly allowing precise translation and/or protein folding; and (iv) remarkably, some non-optimal codons had abundant tRNA genes (Nonopt-codon↑tRNAs), and genes using those codons were tightly linked to ribosomal and stress-response functions. Thus, Nonopt-codon↑tRNAs codons may regulate translation of specific genes. Together, the evidence suggests that codon use and tRNA genes regulate multiple translational processes in T. castaneum.
Collapse
Affiliation(s)
| | | | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Kames J, Alexaki A, Holcomb DD, Santana-Quintero LV, Athey JC, Hamasaki-Katagiri N, Katneni U, Golikov A, Ibla JC, Bar H, Kimchi-Sarfaty C. TissueCoCoPUTs: Novel Human Tissue-Specific Codon and Codon-Pair Usage Tables Based on Differential Tissue Gene Expression. J Mol Biol 2020; 432:3369-3378. [PMID: 31982380 DOI: 10.1016/j.jmb.2020.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023]
Abstract
Protein expression in multicellular organisms varies widely across tissues. Codon usage in the transcriptome of each tissue is derived from genomic codon usage and the relative expression level of each gene. We created a comprehensive computational resource that houses tissue-specific codon, codon-pair, and dinucleotide usage data for 51 Homo sapiens tissues (TissueCoCoPUTs: https://hive.biochemistry.gwu.edu/review/tissue_codon), using transcriptome data from the Broad Institute Genotype-Tissue Expression (GTEx) portal. Distances between tissue-specific codon and codon-pair frequencies were used to generate a dendrogram based on the unique patterns of codon and codon-pair usage in each tissue that are clearly distinct from the genomic distribution. This novel resource may be useful in unraveling the relationship between codon usage and tRNA abundance, which could be critical in determining translation kinetics and efficiency across tissues. Areas of investigation such as biotherapeutic development, tissue-specific genetic engineering, and genetic disease prediction will greatly benefit from this resource.
Collapse
Affiliation(s)
- Jacob Kames
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - David D Holcomb
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Luis V Santana-Quintero
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - John C Athey
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Upendra Katneni
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Anton Golikov
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Juan C Ibla
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, 06268, USA
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|