1
|
Ma W, Chaisson M. Genotyping sequence-resolved copy number variation using pangenomes reveals paralog-specific global diversity and expression divergence of duplicated genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.11.607269. [PMID: 39149335 PMCID: PMC11326217 DOI: 10.1101/2024.08.11.607269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Copy number variant (CNV) genes are important in evolution and disease, yet sequence variation in CNV genes remains a blind spot in large-scale studies. We present ctyper, a method that leverages pangenomes to produce allele-specific copy numbers with locally phased variants from next-generation sequencing (NGS) reads. Benchmarking on 3,351 CNV genes, including HLA, SMN, and CYP2D6, and 212 challenging medically relevant (CMR) genes that are poorly mapped by NGS, ctyper captures 96.5% of phased variants with ≥99.1% correctness of copy number on CNV genes and 94.8% of phased variants on CMR genes. Applying alignment-free algorithms, ctyper requires 1.5 hours per genome on a single CPU. The results improve prediction of gene expression compared to known expression quantitative trait loci (eQTL) variants. Allele-specific expression quantified divergent expression on 7.94% of paralogs and tissue-specific biases on 4.68% of paralogs. We found reduced expression of SMN-2 due to SMN1 conversion, potentially affecting spinal muscular atrophy, and increased expression of translocated duplications of AMY2B. Overall, ctyper enables biobank-scale genotyping of CNV and CMR genes.
Collapse
|
2
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Yan SM, Sherman RM, Taylor DJ, Nair DR, Bortvin AN, Schatz MC, McCoy RC. Local adaptation and archaic introgression shape global diversity at human structural variant loci. eLife 2021; 10:e67615. [PMID: 34528508 PMCID: PMC8492059 DOI: 10.7554/elife.67615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation - a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Rachel M Sherman
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Divya R Nair
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| |
Collapse
|
4
|
Hollox EJ, Zuccherato LW, Tucci S. Genome structural variation in human evolution. Trends Genet 2021; 38:45-58. [PMID: 34284881 DOI: 10.1016/j.tig.2021.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.
Collapse
Affiliation(s)
- Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, UK.
| | - Luciana W Zuccherato
- Núcleo de Ensino e Pesquisa, Instituto Mário Penna, Belo Horizonte, Brazil; Departmento de Bioquímica e Imunologia, Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Lee YG, Lee JY, Kim J, Kim YJ. Insertion variants missing in the human reference genome are widespread among human populations. BMC Biol 2020; 18:167. [PMID: 33187521 PMCID: PMC7666470 DOI: 10.1186/s12915-020-00894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Background Structural variants comprise diverse genomic arrangements including deletions, insertions, inversions, and translocations, which can generally be detected in humans through sequence comparison to the reference genome. Among structural variants, insertions are the least frequently identified variants, mainly due to ascertainment bias in the reference genome, lack of previous sequence knowledge, and low complexity of typical insertion sequences. Though recent developments in long-read sequencing deliver promise in annotating individual non-reference insertions, population-level catalogues on non-reference insertion variants have not been identified and the possible functional roles of these hidden variants remain elusive. Results To detect non-reference insertion variants, we developed a pipeline, InserTag, which generates non-reference contigs by local de novo assembly and then infers the full-sequence of insertion variants by tracing contigs from non-human primates and other human genome assemblies. Application of the pipeline to data from 2535 individuals of the 1000 Genomes Project helped identify 1696 non-reference insertion variants and re-classify the variants as retention of ancestral sequences or novel sequence insertions based on the ancestral state. Genotyping of the variants showed that individuals had, on average, 0.92-Mbp sequences missing from the reference genome, 92% of the variants were common (allele frequency > 5%) among human populations, and more than half of the variants were major alleles. Among human populations, African populations were the most divergent and had the most non-reference sequences, which was attributed to the greater prevalence of high-frequency insertion variants. The subsets of insertion variants were in high linkage disequilibrium with phenotype-associated SNPs and showed signals of recent continent-specific selection. Conclusions Non-reference insertion variants represent an important type of genetic variation in the human population, and our developed pipeline, InserTag, provides the frameworks for the detection and genotyping of non-reference sequences missing from human populations. Supplementary information Supplementary information accompanies this paper at 10.1186/s12915-020-00894-1.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Integrated Omics for Biomedical Science, WCU Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Young-Joon Kim
- Department of Integrated Omics for Biomedical Science, WCU Graduate School, Yonsei University, Seoul, Republic of Korea. .,Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|