1
|
Lewin TD, Royall AH, Holland PWH. Dynamic Molecular Evolution of Mammalian Homeobox Genes: Duplication, Loss, Divergence and Gene Conversion Sculpt PRD Class Repertoires. J Mol Evol 2021; 89:396-414. [PMID: 34097121 PMCID: PMC8208926 DOI: 10.1007/s00239-021-10012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The majority of homeobox genes are highly conserved across animals, but the eutherian-specific ETCHbox genes, embryonically expressed and highly divergent duplicates of CRX, are a notable exception. Here we compare the ETCHbox genes of 34 mammalian species, uncovering dynamic patterns of gene loss and tandem duplication, including the presence of a large tandem array of LEUTX loci in the genome of the European rabbit (Oryctolagus cuniculus). Despite extensive gene gain and loss, all sampled species possess at least two ETCHbox genes, suggesting their collective role is indispensable. We find evidence for positive selection and show that TPRX1 and TPRX2 have been the subject of repeated gene conversion across the Boreoeutheria, homogenising their sequences and preventing divergence, especially in the homeobox region. Together, these results are consistent with a model where mammalian ETCHbox genes are dynamic in evolution due to functional overlap, yet have collective indispensable roles.
Collapse
Affiliation(s)
- Thomas D Lewin
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Amy H Royall
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
2
|
Mohammadi S, Yang L, Harpak A, Herrera-Álvarez S, Del Pilar Rodríguez-Ordoñez M, Peng J, Zhang K, Storz JF, Dobler S, Crawford AJ, Andolfatto P. Concerted evolution reveals co-adapted amino acid substitutions in Na +K +-ATPase of frogs that prey on toxic toads. Curr Biol 2021; 31:2530-2538.e10. [PMID: 33887183 DOI: 10.1016/j.cub.2021.03.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
Although gene duplication is an important source of evolutionary innovation, the functional divergence of duplicates can be opposed by ongoing gene conversion between them. Here, we report on the evolution of a tandem duplication of Na+,K+-ATPase subunit α1 (ATP1A1) shared by frogs in the genus Leptodactylus, a group of species that feeds on toxic toads. One ATP1A1 paralog evolved resistance to toad toxins although the other retained ancestral susceptibility. Within species, frequent non-allelic gene conversion homogenized most of the sequence between the two copies but was counteracted by strong selection on 12 amino acid substitutions that distinguish the two paralogs. Protein-engineering experiments show that two of these substitutions substantially increase toxin resistance, whereas the additional 10 mitigate their deleterious effects on ATPase activity. Our results reveal how examination of neo-functionalized gene duplicate evolution can help pinpoint key functional substitutions and interactions with the genetic backgrounds on which they arise.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Lu Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Arbel Harpak
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | - Julie Peng
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Karen Zhang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Susanne Dobler
- Molecular Evolutionary Biology, Zoological Institute, Universität Hamburg, Hamburg, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia.
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Li S, Chen S, Xie X, Dong S, Li X. Identification of Wild-Type CYP321A2 and Comparison of Allelochemical-Induced Expression Profiles of CYP321A2 with Its Paralog CYP321A1 in Helicoverpa zea. INSECTS 2021; 12:75. [PMID: 33467534 PMCID: PMC7830528 DOI: 10.3390/insects12010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
One possible way to overcome the diversity of toxic plant allelochemicals idiosyncratically distributed among potential host plants is to have more counterdefense genes via gene duplication or fewer gene losses. Cytochrome P450 is the most important gene family responsible for detoxification of the diversity of plant allelochemicals. We have recently reported the identification and cloning of the transposon (HzSINE1)-disrupted non-functional CYP321A2, a duplicated paralog of the xenobiotic-metabolizing P450 CYP321A1 from a laboratory colony of Helicoverpa zea. Here we report the identification of the wild-type intact allele of CYP321A2 from another H. zea colony. This CYP321A2 allele encodes a deduced protein of 498 amino acids and has the P450 signature motifs. Quantitative RT-PCR experiments showed that this CYP321A2 allele was highly expressed in midgut and fat body and achieved the highest expression level in the developmental stage of 5th and 3rd instar larvae. CYP321A2 and CYP321A1 were constitutively expressed in low levels but can be differentially and significantly induced by a range of the plant allelochemicals and plant signal molecules, among which xanthotoxin, flavone, and coumarin were the most prominent inducers of CYP321A2 both in midgut and fat body, whereas flavone, coumarin, and indole-3-carbinol were the prominent inducers of CYP321A1 in midgut and fat body. Moreover, xanthotoxin- and flavone-responsive regulatory elements of CYP321A1 were also detected in the promoter region of CYP321A2. Our results enrich the P450 inventory by identifying an allelochemical broadly induced CYP321A2, a paralog of CYP321A1 in H. zea. Our data also suggest that the CYP321A2/CYP321A1 paralogs are a pair of duplicated genes of multigene families and CYP321A2 could potentially be involved in the detoxification of plant allelochemicals and adaptation of H. zea to its chemical environment.
Collapse
Affiliation(s)
- Shengyun Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (S.C.); (X.X.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Song Chen
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (S.C.); (X.X.)
| | - Xingcheng Xie
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (S.C.); (X.X.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuanglin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (S.C.); (X.X.)
| |
Collapse
|
4
|
Sieriebriennikov B, Prabh N, Dardiry M, Witte H, Röseler W, Kieninger MR, Rödelsperger C, Sommer RJ. A Developmental Switch Generating Phenotypic Plasticity Is Part of a Conserved Multi-gene Locus. Cell Rep 2019; 23:2835-2843.e4. [PMID: 29874571 DOI: 10.1016/j.celrep.2018.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023] Open
Abstract
Switching between alternative complex phenotypes is often regulated by "supergenes," polymorphic clusters of linked genes such as in butterfly mimicry. In contrast, phenotypic plasticity results in alternative complex phenotypes controlled by environmental influences rather than polymorphisms. Here, we show that the developmental switch gene regulating predatory versus non-predatory mouth-form plasticity in the nematode Pristionchus pacificus is part of a multi-gene locus containing two sulfatases and two α-N-acetylglucosaminidases (nag). We provide functional characterization of all four genes, using CRISPR-Cas9-based reverse genetics, and show that nag genes and the previously identified eud-1/sulfatase have opposing influences. Members of the multi-gene locus show non-overlapping neuronal expression and epistatic relationships. The locus architecture is conserved in the entire genus Pristionchus. Interestingly, divergence between paralogs is counteracted by gene conversion, as inferred from phylogenies and genotypes of CRISPR-Cas9-induced mutants. Thus, we found that physical linkage accompanies regulatory linkage between switch genes controlling plasticity in P. pacificus.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Neel Prabh
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Manuela R Kieninger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:467-488. [PMID: 30810961 DOI: 10.1007/s11427-018-9458-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Complex regions in eukaryotic genomes are typically characterized by duplications of chromosomal stretches that often include one or more genes repeated in a tandem array or in relatively close proximity. Nevertheless, the repetitive nature of these regions, together with the often high sequence identity among repeats, have made complex regions particularly recalcitrant to proper molecular characterization, often being misassembled or completely absent in genome assemblies. This limitation has prevented accurate functional and evolutionary analyses of these regions. This is becoming increasingly relevant as evidence continues to support a central role for complex genomic regions in explaining human disease, developmental innovations, and ecological adaptations across phyla. With the advent of long-read sequencing technologies and suitable assemblers, the development of algorithms that can accommodate sample heterozygosity, and the adoption of a pangenomic-like view of these regions, accurate reconstructions of complex regions are now within reach. These reconstructions will finally allow for accurate functional and evolutionary studies of complex genomic regions, underlying the generation of genotype-phenotype maps of unprecedented resolution.
Collapse
|
6
|
Hartasánchez DA, Brasó-Vives M, Heredia-Genestar JM, Pybus M, Navarro A. Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol 2018; 10:2899-2905. [PMID: 30364947 PMCID: PMC6239678 DOI: 10.1093/gbe/evy223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The study of segmental duplications (SDs) and copy-number variants (CNVs) is of great importance in the fields of genomics and evolution. However, SDs and CNVs are usually excluded from genome-wide scans for natural selection. Because of high identity between copies, SDs and CNVs that are not included in reference genomes are prone to be collapsed-that is, mistakenly aligned to the same region-when aligning sequence data from single individuals to the reference. Such collapsed duplications are additionally challenging because concerted evolution between duplications alters their site frequency spectrum and linkage disequilibrium patterns. To investigate the potential effect of collapsed duplications upon natural selection scans we obtained expectations for four summary statistics from simulations of duplications evolving under a range of interlocus gene conversion and crossover rates. We confirm that summary statistics traditionally used to detect the action of natural selection on DNA sequences cannot be applied to SDs and CNVs since in some cases values for known duplications mimic selective signatures. As a proof of concept of the pervasiveness of collapsed duplications, we analyzed data from the 1,000 Genomes Project. We find that, within regions identified as variable in copy number, diversity between individuals with the duplication is consistently higher than between individuals without the duplication. Furthermore, the frequency of single nucleotide variants (SNVs) deviating from Hardy-Weinberg Equilibrium is higher in individuals with the duplication, which strongly suggests that higher diversity is a consequence of collapsed duplications and incorrect evaluation of SNVs within these CNV regions.
Collapse
Affiliation(s)
- Diego A Hartasánchez
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Marina Brasó-Vives
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jose Maria Heredia-Genestar
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Marc Pybus
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,National Institute for Bioinformatics (INB), Barcelona, Catalonia, Spain.,Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Puig Giribets M, García Guerreiro MP, Santos M, Ayala FJ, Tarrío R, Rodríguez-Trelles F. Chromosomal inversions promote genomic islands of concerted evolution of Hsp70 genes in the Drosophila subobscura species subgroup. Mol Ecol 2018; 28:1316-1332. [PMID: 29412486 DOI: 10.1111/mec.14511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/31/2023]
Abstract
Heat-shock (HS) assays to understand the connection between standing inversion variation and evolutionary response to climate change in Drosophila subobscura found that "warm-climate" inversion O3+4 exhibits non-HS levels of Hsp70 protein like those of "cold-climate" OST after HS induction. This was unexpected, as overexpression of Hsp70 can incur multiple fitness costs. To understand the genetic basis of this finding, we have determined the genomic sequence organization of the Hsp70 family in four different inversions, including OST , O3+4 , O3+4+8 and O3+4+16 , using as outgroups the remainder of the subobscura species subgroup, namely Drosophila madeirensis and Drosophila guanche. We found (i) in all the assayed lines, the Hsp70 family resides in cytological locus 94A and consists of only two genes, each with four HS elements (HSEs) and three GAGA sites on its promoter. Yet, in OST , the family is comparatively more compact; (ii) the two Hsp70 copies evolve in concert through gene conversion, except in D. guanche; (iii) within D. subobscura, the rate of concerted evolution is strongly structured by inversion, being higher in OST than in O3+4 ; and (iv) in D. guanche, the two copies accumulated multiple differences, including a newly evolved "gap-type" HSE2. The absence of concerted evolution in this species may be related to a long-gone-unnoticed observation that it lacks Hsp70 HS response, perhaps because it has evolved within a narrow thermal range in an oceanic island. Our results point to a previously unrealized link between inversions and concerted evolution, with potentially major implications for understanding genome evolution.
Collapse
Affiliation(s)
- Marta Puig Giribets
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - María Pilar García Guerreiro
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauro Santos
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Rosa Tarrío
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco Rodríguez-Trelles
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
8
|
Clifton BD, Librado P, Yeh SD, Solares ES, Real DA, Jayasekera SU, Zhang W, Shi M, Park RV, Magie RD, Ma HC, Xia XQ, Marco A, Rozas J, Ranz JM. Rapid Functional and Sequence Differentiation of a Tandemly Repeated Species-Specific Multigene Family in Drosophila. Mol Biol Evol 2016; 34:51-65. [PMID: 27702774 DOI: 10.1093/molbev/msw212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan City, Zhongli District, Taiwan
| | - Edwin S Solares
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Daphne A Real
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Suvini U Jayasekera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ronni V Park
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Robert D Magie
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Hsiu-Ching Ma
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Antonio Marco
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadistica, and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
9
|
Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity. Genetics 2015; 202:297-312. [PMID: 26584902 DOI: 10.1534/genetics.115.178004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms.
Collapse
|
10
|
Verma D, Das L, Gambhir V, Dikshit KL, Varshney GC. Heterogeneity among Homologs of Cutinase-Like Protein Cut5 in Mycobacteria. PLoS One 2015; 10:e0133186. [PMID: 26177502 PMCID: PMC4503659 DOI: 10.1371/journal.pone.0133186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022] Open
Abstract
The study of genomic variability within various pathogenic and non-pathogenic strains of mycobacteria provides insight into their evolution and pathogenesis. The mycobacterial genome encodes seven cutinase-like proteins and each one of these exhibit distinct characteristics. We describe the presence of Cut5, a member of the cutinase family, in mycobacteria and the existence of a unique genomic arrangement in the cut5 gene of M. tuberculosis (Mtb) strains. A single nucleotide (T) insertion is observed in the cut5 gene, which is specific for Mtb strains. Using in silico analysis and RT-PCR, we demonstrate the transcription of Rv3724/cut5 as Rv3724a/cut5a and Rv3724b/cut5b in Mtb H37Rv and as full length cut5 in M. bovis. Cut5b protein of Mtb H37Rv (MtbCut5b) was found to be antigenically similar to its homologs in M. bovis and M. smegmatis, without any observed cross-reactivity with other Mtb cutinases. Also, the presence of Cut5b in Mtb and its homologs in M. bovis and M. smegmatis were confirmed by western blotting using antibodies raised against recombinant Cut5b. In Mtb H37Rv, Cut5b was found to be localized in the cell wall, cytosol and membrane fractions. We also report the vast prevalence of Cut5 homologs in pathogenic and non pathogenic species of mycobacteria. In silico analysis revealed that this protein has three possible organizations in mycobacteria. Also, a single nucleotide (T) insertion in Mtb strains and varied genomic arrangements within mycobacterial species make Rv3724/Cut5 a potential candidate that can be exploited as a biomarker in Mtb infection.
Collapse
Affiliation(s)
- Deepshikha Verma
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Lahari Das
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Vandana Gambhir
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Kanak Lata Dikshit
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Grish C. Varshney
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
- * E-mail:
| |
Collapse
|
11
|
Abstract
Retroposon presence/absence patterns in orthologous genomic loci are known to be strong and almost homoplasy-free phylogenetic markers of common ancestry. This is evidenced by the comprehensive reconstruction of various species trees of vertebrate lineages in recent years, as well as the inference of the evolution of genes via retroposon-based gene trees of paralogous genes. Recently, it has been shown that retroposon markers are also suitable for the inference of differentiation events of gametologous genes, i.e., homologous genes on opposite sex chromosomes. This is because sex chromosomes evolved via stepwise cessation of recombination, making the presence or absence of a particular retroposon insertion among the two different gametologs in more or less closely related species a clear-cut indicator of the timing of differentiation events. Here, I examine the advantages and current limitations of this novel perspective for understanding avian sex chromosome evolution, compare the retroposon-based and sequence-based insights into gametolog differentiation and show that retroposons promise to be equally applicable to other sex chromosomal systems, such as the human X and Y chromosomes.
Collapse
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology (ZMBE); University of Münster; Münster, Germany
| |
Collapse
|
12
|
McGrath CL, Gout JF, Johri P, Doak TG, Lynch M. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res 2014; 24:1665-75. [PMID: 25085612 PMCID: PMC4199370 DOI: 10.1101/gr.173740.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by >10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs’ lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA; National Center for Genome Analysis Support at Indiana University, Bloomington, Indiana 47408, USA
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
| |
Collapse
|
13
|
Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario. G3-GENES GENOMES GENETICS 2014; 4:1479-89. [PMID: 24906640 PMCID: PMC4132178 DOI: 10.1534/g3.114.012435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interlocus gene conversion is a major evolutionary force that drives the concerted evolution of duplicated genomic regions. Theoretical models successfully have addressed the effects of interlocus gene conversion and the importance of crossover in the evolutionary fate of gene families and duplications but have not considered complex recombination scenarios, such as the presence of hotspots. To study the interplay between interlocus gene conversion and crossover, we have developed a forward-time simulator that allows the exploration of a wide range of interlocus gene conversion rates under different crossover models. Using it, we have analyzed patterns of nucleotide variation and linkage disequilibrium within and between duplicate regions, focusing on a neutral scenario with constant population size and validating our results with the existing theoretical models. We show that the interaction of gene conversion and crossover is nontrivial and that the location of crossover junctions is a fundamental determinant of levels of variation and linkage disequilibrium in duplicated regions. We also show that if crossover activity between duplications is strong enough, recurrent interlocus gene conversion events can break linkage disequilibrium within duplicates. Given the complex nature of interlocus gene conversion and crossover, we provide a framework to explore their interplay to help increase knowledge on molecular evolution within segmental duplications under more complex scenarios, such as demographic changes or natural selection.
Collapse
|
14
|
Gjini E, Haydon DT, David Barry J, Cobbold CA. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification. J Theor Biol 2014; 341:111-22. [PMID: 24120993 DOI: 10.1016/j.jtbi.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
Abstract
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion.
Collapse
Affiliation(s)
- Erida Gjini
- Instituto Gulbenkian de Ciência Oeiras, Portugal.
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - J David Barry
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Willett CS. Gene conversion yields novel gene combinations in paralogs of GOT1 in the copepod Tigriopus californicus. BMC Evol Biol 2013; 13:148. [PMID: 23845062 PMCID: PMC3728101 DOI: 10.1186/1471-2148-13-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022] Open
Abstract
Background Gene conversion of duplicated genes can slow the divergence of paralogous copies over time but can also result in other interesting evolutionary patterns. Islands of genetic divergence that persist in the face of gene conversion can point to gene regions undergoing selection for new functions. Novel combinations of genetic variation that differ greatly from the original sequence can result from the transfer of genetic variation between paralogous genes by rare gene conversion events. Genetically divergent populations of the copepod Tigriopus californicus provide an excellent model to look at the patterns of divergence among paralogs across multiple independent evolutionary lineages. Results In this study the evolution of a set of paralogous genes encoding putative aspartate transaminase proteins (called GOT1 here) are examined in populations of the copepod T. californicus. One pair of duplicated genes, GOT1p1 and GOT1p2, has regions of high divergence between the copies in the face of apparent on-going gene conversion. The GOT1p2 gene also has unique haplotypes in two populations that appear to have resulted from a transfer of genetic variation via inter-paralog gene conversion. A second pair of duplicated genes GOT1Sr and GOT1Sd also shows evidence of gene conversion, but this gene conversion does not appear to have maintained each as a functional copy in all populations. Conclusions The patterns of conservation and sequence divergence across this set of paralogous genes among populations of T. californicus suggest that some interesting evolutionary patterns are occurring at these loci. The results for the GOT1p1/GOT1p2 paralogs illustrate how gene conversion can factor in the creation of a mosaic pattern of regions of high divergence and low divergence. When coupled with rare gene conversion events of divergent regions, this pattern can result in the formation of novel proteins differing substantially from either original protein. The evolutionary patterns across these paralogs show how gene conversion can both constrain and facilitate diversification of genetic sequences.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
16
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
17
|
Marotta M, Piontkivska H, Tanaka H. Molecular trajectories leading to the alternative fates of duplicate genes. PLoS One 2012; 7:e38958. [PMID: 22720000 PMCID: PMC3375281 DOI: 10.1371/journal.pone.0038958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/14/2012] [Indexed: 11/21/2022] Open
Abstract
Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate: DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2 (GSTT2) gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in chimpanzees (Pan troglodytes), whereas a deletion polymorphism is prevalent in humans. The alternative fates are associated with expression divergence between these species, and reduced expression in humans is regulated by silencing mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying duplicates are significantly more similar to each other (99.4%) than preserved ones. Such molecular trajectories could provide insights for the mechanisms underlying duplicate life and death in extant genomes.
Collapse
Affiliation(s)
- Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
18
|
Campo D, García-Vázquez E. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera. Genome 2011; 55:33-44. [PMID: 22171996 DOI: 10.1139/g11-074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).
Collapse
Affiliation(s)
- Daniel Campo
- Departamento de Biologia Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
19
|
McDougall C, Korchagina N, Tobin JL, Ferrier DE. Annelid Distal-less/Dlx duplications reveal varied post-duplication fates. BMC Evol Biol 2011; 11:241. [PMID: 21846345 PMCID: PMC3199776 DOI: 10.1186/1471-2148-11-241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022] Open
Abstract
Background Dlx (Distal-less) genes have various developmental roles and are widespread throughout the animal kingdom, usually occurring as single copy genes in non-chordates and as multiple copies in most chordate genomes. While the genomic arrangement and function of these genes is well known in vertebrates and arthropods, information about Dlx genes in other organisms is scarce. We investigate the presence of Dlx genes in several annelid species and examine Dlx gene expression in the polychaete Pomatoceros lamarckii. Results Two Dlx genes are present in P. lamarckii, Capitella teleta and Helobdella robusta. The C. teleta Dlx genes are closely linked in an inverted tail-to-tail orientation, reminiscent of the arrangement of vertebrate Dlx pairs, and gene conversion appears to have had a role in their evolution. The H. robusta Dlx genes, however, are not on the same genomic scaffold and display divergent sequences, while, if the P. lamarckii genes are linked in a tail-to-tail orientation they are a minimum of 41 kilobases apart and show no sign of gene conversion. No expression in P. lamarckii appendage development has been observed, which conflicts with the supposed conserved role of these genes in animal appendage development. These Dlx duplications do not appear to be annelid-wide, as the polychaete Platynereis dumerilii likely possesses only one Dlx gene. Conclusions On the basis of the currently accepted annelid phylogeny, we hypothesise that one Dlx duplication occurred in the annelid lineage after the divergence of P. dumerilii from the other lineages and these duplicates then had varied evolutionary fates in different species. We also propose that the ancestral role of Dlx genes is not related to appendage development.
Collapse
Affiliation(s)
- Carmel McDougall
- The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews KY168LB, UK.
| | | | | | | |
Collapse
|
20
|
The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol 2011; 11:151. [PMID: 21627815 PMCID: PMC3123226 DOI: 10.1186/1471-2148-11-151] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.
Collapse
|
21
|
Arguello JR, Connallon T. Gene duplication and ectopic gene conversion in Drosophila. Genes (Basel) 2011; 2:131-51. [PMID: 24710141 PMCID: PMC3924832 DOI: 10.3390/genes2010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 01/26/2011] [Accepted: 02/27/2011] [Indexed: 11/26/2022] Open
Abstract
The evolutionary impact of gene duplication events has been a theme of Drosophila genetics dating back to the Morgan School. While considerable attention has been placed on the genetic novelties that duplicates are capable of introducing, and the role that positive selection plays in their early stages of duplicate evolution, much less attention has been given to the potential consequences of ectopic (non-allelic) gene conversion on these evolutionary processes. In this paper we consider the historical origins of ectopic gene conversion models and present a synthesis of the current Drosophila data in light of several primary questions in the field.
Collapse
Affiliation(s)
- J Roman Arguello
- Department of Molecular Biology and Genetics, Cornell University, 107 Biotechnology Building, Ithaca, NY 14853, USA.
| | - Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, 107 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Arthropod CYPomes illustrate the tempo and mode in P450 evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:19-28. [DOI: 10.1016/j.bbapap.2010.06.012] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/03/2010] [Accepted: 06/16/2010] [Indexed: 02/07/2023]
|
23
|
Genomic and Population-Level Effects of Gene Conversion in Caenorhabditis Paralogs. Genes (Basel) 2010; 1:452-68. [PMID: 24710096 PMCID: PMC3966223 DOI: 10.3390/genes1030452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 12/06/2010] [Indexed: 11/17/2022] Open
|
24
|
Meinersmann RJ, Ladely SR, Lindsey RL. Ribosomal operon intergenic sequence region (ISR) heterogeneity in Campylobacter coli and Campylobacter jejuni. Lett Appl Microbiol 2010; 51:539-45. [PMID: 20849393 DOI: 10.1111/j.1472-765x.2010.02930.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The intergenic sequence regions (ISR) between the 16S and 23S genes of Campylobacter jejuni and Campylobacter coli are markedly different for each species. However, in the genomic sequence for Camp. coli RM2228, two rRNA operons have an ISR that is characteristic of Camp. coli, and the third operon is characteristic of Camp. jejuni. The aim of this study was to determine the prevalence of ISR heterogeneity in these organisms. METHODS AND RESULTS PCR primers were designed to yield a 327-base pair (bp) product for Camp. coli and 166-bp product for Camp. jejuni. A strain like Camp. coli RM2228 should yield products of both sizes. DNA from a panel of Camp. coli (n=133) and Camp. jejuni (n=134) isolates were tested. All of the isolates yielded products of the predicted size for the species. To verify the data for Camp. coli RM2228, each ribosomal operon from the isolate was individually amplified by PCR and tested with the ISR primer pair. Products of both sizes were produced as predicted. CONCLUSIONS The cross-species heterogeneity of the ISR seen in Camp. coli RM2228 is uncommon. SIGNIFICANCE AND IMPACT OF THE STUDY The heterogeneity must have been caused by horizontal gene transfer at a frequency lower than predicted from housekeeping gene data. Thus, it can be expected that species identification based on the ISR can be confused in rare isolates.
Collapse
|
25
|
Ponnuvel KM, Subhasri N, Sirigineedi S, Murthy GN, Vijayaprakash NB. Molecular evolution of the cecropin multigene family in silkworm Bombyx mori. Bioinformation 2010; 5:97-103. [PMID: 21364788 PMCID: PMC3040484 DOI: 10.6026/97320630005097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/26/2010] [Indexed: 11/23/2022] Open
Abstract
Cecropins constitute one of the largest and most potent immune protein families found in insect species with diversified numbers and features. In view of the large number of cecropin proteins existing with much sequence variations among them, an overview of the multigene cecropin family in silkworm Bombyx mori was attempted in this study. Cecropin encodes an inducible 64 residue anti-bacterial peptide and was clustered into two groups; first group viz. A and second group including B, D, E and Enbocin. Cecropin A consisted of two sub-groups located on chromosome number 6 of B.mori genome. Cecropin B consisted of six sub-groups, cecropin D and E of one each and Enbocin of two. The second sub-group formed in tandem array of multigene family locus over a length of 78.62 kb on chromosome number 26 in B.mori genome and was organized in positive as well as opposite orientation. The results indicated that cecropin B genes were organized in a close cluster with the intergenic sequence ranging from 1366 bp to 23526 bp. Interestingly a distantly related cecropin E was also located within the cecropin B multigene locus. Similarly distant members like cecropin D and Enbocin were also located in the 3' region of cecropin B locus. The maximum intergenic region of 23526 bp observed between Cecropin D and Enbocin indicates that the two genes were distantly evolved. The phylogenetic analysis clearly indicates a positive correlation between the clusters and physical location on the chromosome, as the length of the intergenic region plays a major role to create newer cecropin families. EST database analysis suggests that most of the cecropin A members were expressed in the microbial fat body while, the cecropin B was equally expressed in fat body and other target tissues. The signal peptides were conserved in all the twelve paralogous gene sequences.
Collapse
Affiliation(s)
- Kangayam M Ponnuvel
- Seribiotech Research Laboratory, Carmelaram‐ Post, Sarjapura Road, Kodathi, Bangalore‐ 560 035, INDIA
| | - Natarajan Subhasri
- Seribiotech Research Laboratory, Carmelaram‐ Post, Sarjapura Road, Kodathi, Bangalore‐ 560 035, INDIA
| | - Sasibhushan Sirigineedi
- Seribiotech Research Laboratory, Carmelaram‐ Post, Sarjapura Road, Kodathi, Bangalore‐ 560 035, INDIA
| | - Geetha N Murthy
- Seribiotech Research Laboratory, Carmelaram‐ Post, Sarjapura Road, Kodathi, Bangalore‐ 560 035, INDIA
| | - Nanjappa B Vijayaprakash
- Seribiotech Research Laboratory, Carmelaram‐ Post, Sarjapura Road, Kodathi, Bangalore‐ 560 035, INDIA
| |
Collapse
|
26
|
Eda M, Kuro-o M, Higuchi H, Hasegawa H, Koike H. Mosaic gene conversion after a tandem duplication of mtDNA sequence in Diomedeidae (albatrosses). Genes Genet Syst 2010; 85:129-39. [PMID: 20558899 DOI: 10.1266/ggs.85.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although the tandem duplication of mitochondrial (mt) sequences, especially those of the control region (CR), has been detected in metazoan species, few studies have focused on the features of the duplicated sequence itself, such as the gene conversion rate, distribution patterns of the variation, and relative rates of evolution between the copies. To investigate the features of duplicated mt sequences, we partially sequenced the mt genome of 16 Phoebastria albatrosses belonging to three species (P. albatrus, P. nigripes, and P. immutabilis). More than 2,300 base pairs of tandemly-duplicated sequence were shared by all three species. The observed gene arrangement was shared in the three Phoebastria albatrosses and suggests that the duplication event occurred in the common ancestor of the three species. Most of the copies in each individual were identical or nearly identical, and were maintained through frequent gene conversions. By contrast, portions of CR domains I and III had different phylogenetic signals, suggesting that gene conversion had not occurred in those sections after the speciation of the three species. Several lines of data, including the heterogeneity of the rate of molecular evolution, nucleotide differences, and putative secondary structures, suggests that the two sequences in CR domain I are maintained through selection; however, additional studies into the mechanisms of gene conversion and mtDNA synthesis are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Masaki Eda
- Graduate School of Social and Cultural Studies, Kyusyu University.
| | | | | | | | | |
Collapse
|
27
|
Dai L, Wu J, Li X, Wang X, Liu X, Jantasuriyarat C, Kudrna D, Yu Y, Wing RA, Han B, Zhou B, Wang GL. Genomic structure and evolution of the Pi2/9 locus in wild rice species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:295-309. [PMID: 20229250 DOI: 10.1007/s00122-010-1310-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/21/2010] [Indexed: 05/07/2023]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a devastating disease of rice worldwide. Among the 85 mapped resistance (R) genes against blast, 13 have been cloned and characterized. However, how these genes originated and how they evolved in the Oryza genus remains unclear. We previously cloned the rice blast R-genes Pi2, Pi9, and Piz-t, and analyzed their genomic structure and evolution in cultivated rice. In this study, we determined the genomic sequences of the Pi2/9 locus in four wild Oryza species representing three genomes (AA, BB and CC). The number of Pi2/9 family members in the four wild species ranges from two copies to 12 copies. Although these genes are conserved in structure and categorized into the same subfamily, sequence duplications and subsequent inversions or uneven crossing overs were observed, suggesting that the locus in different wild species has undergone dynamic changes. Positive selection was found in the leucine-rich repeat region of most members, especially in the largest clade where Pi9 is included. We also provide evidence that the Pi9 gene is more related to its homologues in the recurrent line and other rice cultivars than to those in its alleged donor species O. minuta, indicating a possible origin of the Pi9 gene from O. sativa. Comparative sequence analysis between the four wild Oryza species and the previously established reference sequences in cultivated rice species at the Pi2/9 locus has provided extensive and unique information on the genomic structure and evolution of a complex R-gene cluster in the Oryza genus.
Collapse
Affiliation(s)
- Liangying Dai
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rane HS, Smith JM, Bergthorsson U, Katju V. Gene conversion and DNA sequence polymorphism in the sex-determination gene fog-2 and its paralog ftr-1 in Caenorhabditis elegans. Mol Biol Evol 2010; 27:1561-9. [PMID: 20133352 DOI: 10.1093/molbev/msq039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gene conversion, a form of concerted evolution, bears enormous potential to shape the trajectory of sequence and functional divergence of gene paralogs subsequent to duplication events. fog-2, a sex-determination gene unique to Caenorhabditis elegans and implicated in the origin of hermaphroditism in this species, resulted from the duplication of ftr-1, an upstream gene of unknown function. Synonymous sequence divergence in regions of fog-2 and ftr-1 (excluding recent gene conversion tracts) suggests that the duplication occurred 46 million generations ago. Gene conversion between fog-2 and ftr-1 was previously discovered in experimental fog-2 knockout lines of C. elegans, whereby hermaphroditism was restored in mutant obligately outcrossing male-female populations. We analyzed DNA-sequence variation in fog-2 and ftr-1 within 40 isolates of C. elegans from diverse geographic locations in order to evaluate the contribution of gene conversion to genetic variation in the two gene paralogs. The analysis shows that gene conversion contributes significantly to DNA-sequence diversity in fog-2 and ftr-1 (22% and 34%, respectively) and may have the potential to alter sexual phenotypes in natural populations. A radical amino acid change in a conserved region of the F-box domain of fog-2 was found in natural isolates of C. elegans with significantly lower fecundity. We hypothesize that the lowered fecundity is due to reduced masculinization and less sperm production and that amino acid replacement substitutions and gene conversion in fog-2 may contribute significantly to variation in the degree of inbreeding and outcrossing in natural populations.
Collapse
Affiliation(s)
- Hallie S Rane
- Department of Biology, University of New Mexico, NM, USA
| | | | | | | |
Collapse
|
29
|
Genetic recombination as a major cause of mutagenesis in the human globin gene clusters. Clin Biochem 2009; 42:1839-50. [DOI: 10.1016/j.clinbiochem.2009.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 11/18/2022]
|
30
|
Arav-Boger R, Zong JC, Foster CB. Loss of linkage disequilibrium and accelerated protein divergence in duplicated cytomegalovirus chemokine genes. Virus Genes 2009; 31:65-72. [PMID: 15965610 DOI: 10.1007/s11262-005-2201-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 01/09/2005] [Indexed: 12/17/2022]
Abstract
Human CMV (hCMV) encodes several captured chemokine ligand and chemokine receptor genes that may play a role in immune evasion. The adjacent viral alpha-chemokine genes UL146 and UL147 appear to have duplicated subsequent to a recent gene capture event. Sequence data from multiple hCMV isolates suggest accelerated protein evolution in one of the paralogues, UL146. Extensive sequence variation was noted throughout the more rapidly evolving paralogue, although significant variation was also observed within the more slowly evolving gene, especially within a region corresponding to a possible signal peptide. In contrast to the haplotype structure observed for other hCMV genes, the distribution of nucleotide variants indicates a marked loss of linkage disequilibrium within UL146 and to a lesser extent UL147. Despite evidence of accelerated protein evolution, the rate of nonsynonymous to synonymous substitutions (d(N)/d(S)) in the more rapidly evolving paralogue was not indicative of neutral evolution, but of moderate purifying selection. The data presented here provides a unique opportunity to study the mechanisms by which a recently duplicated pair of genes has diverged and suggests a role for recombination.
Collapse
Affiliation(s)
- Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins Hospital, Baltimore, Maryland 21287-4933, USA.
| | | | | |
Collapse
|
31
|
Identifying concerted evolution and gene conversion in mammalian gene pairs lasting over 100 million years. BMC Evol Biol 2009; 9:156. [PMID: 19583854 PMCID: PMC2720389 DOI: 10.1186/1471-2148-9-156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Concerted evolution occurs in multigene families and is characterized by stretches of homogeneity and higher sequence similarity between paralogues than between orthologues. Here we identify human gene pairs that have undergone concerted evolution, caused by ongoing gene conversion, since at least the human-mouse divergence. Our strategy involved the identification of duplicated genes with greater similarity within a species than between species. These genes were required to be present in multiple mammalian genomes, suggesting duplication early in mammalian divergence. To eliminate genes that have been conserved due to strong purifying selection, our analysis also required at least one intron to have retained high sequence similarity between paralogues. RESULTS We identified three human gene pairs undergoing concerted evolution (BMP8A/B, DDX19A/B, and TUBG1/2). Phylogenetic investigations reveal that in each case the duplication appears to have occurred prior to eutherian mammalian radiation, with exactly two paralogues present in all examined species. This indicates that all three gene duplication events were established over 100 million years ago. CONCLUSION The extended duration of concerted evolution in multiple distant lineages suggests that there has been prolonged homogenization of specific segments within these gene pairs. Although we speculate that selection for homogenization could have been utilized in order to maintain crucial homo- or hetero- binding domains, it remains unclear why gene conversion has persisted for such extended periods of time. Through these analyses, our results demonstrate additional examples of a process that plays a definite, although unspecified, role in molecular evolution.
Collapse
|
32
|
Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes. Immunogenetics 2009; 61:529-39. [DOI: 10.1007/s00251-009-0381-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/08/2009] [Indexed: 01/15/2023]
|
33
|
Abrantes J, Posada D, Guillon P, Esteves PJ, Le Pendu J. Widespread gene conversion of alpha-2-fucosyltransferase genes in mammals. J Mol Evol 2009; 69:22-31. [PMID: 19533213 PMCID: PMC2706377 DOI: 10.1007/s00239-009-9239-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/13/2009] [Accepted: 04/15/2009] [Indexed: 11/25/2022]
Abstract
The alpha-2-fucosyltransferases (alpha2FTs) are enzymes involved in the biosynthesis of alpha2fucosylated glycan structures. In mammalian genomes, there are three alpha2FT genes located in tandem-FUT1, FUT2, and Sec1-each contained within a single exon. It has been suggested that these genes originated from two successive duplications, with FUT1 being generated first and FUT2 and Sec1 second. Despite gene conversion being considered the main mechanism of concerted evolution in gene families, previous studies of primates alpha2FTs failed to detect it, although the occurrence of gene conversion between FUT2 and Sec1 was recently reported in a human allele. The primary aim of our work was to initiate a broader study on the molecular evolution of mammalian alpha2FTs. Sequence comparison leads us to confirm that the three genes appeared by two rounds of duplication. In addition, we were able to detect multiple gene-conversion events at the base of primates and within several nonprimate species involving FUT2 and Sec1. Gene conversion involving FUT1 and either FUT2 or Sec1 was also detected in rabbit. The extent of gene conversion between the alpha2FTs genes appears to be species-specific, possibly related to functional differentiation of these genes. With the exception of rabbits, gene conversion was not observed in the region coding the C-terminal part of the catalytic domain. In this region, the number of amino acids that are identical between FUT1 and FUT2, but different in Sec1, is higher than in other parts of the protein. The biologic meaning of this observation may be related to functional constraints.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairao, Portugal
- INSERM, U892, Institut de Biologie, Université de Nantes, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - David Posada
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Campus Lagoas-Marcosende, Universidad de Vigo, Vigo, 36310 Spain
| | - Patrice Guillon
- INSERM, U892, Institut de Biologie, Université de Nantes, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France
| | - Pedro J. Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairao, Portugal
- CITS, Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| | - Jacques Le Pendu
- INSERM, U892, Institut de Biologie, Université de Nantes, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France
| |
Collapse
|
34
|
Hussain S, Livingston BT. Tracing misalignment and unequal crossing over during evolution of the repetitive region of the SM50 gene in sea urchins. ACTA ACUST UNITED AC 2009; 311:143-54. [PMID: 19048602 DOI: 10.1002/jez.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The location of misalignment and unequal crossover involved in concerted evolution of tandemly repetitive sequences is difficult to document owing to the homogeneity of sequences that are subject to this process. However, the repetitive domain of the SM50 gene in sea urchins contains variation, within the gene itself, between alleles, and between species that has allowed us to determine where misalignment and unequal crossing over occurred during evolution of this gene. We have therefore analyzed the SM50 repeat regions in a variety of species to determine where recent changes in repeat numbers have occurred, and from this have deduced the mechanisms that lead to these changes. We next tried to determine whether recent misalignment and unequal crossover has produced allelic variation in current populations of sea urchins. We found SM50 alleles within three species that have different numbers of repeats. This marks the first reported documentation of allelic variation in the number of repeats in the SM50 gene. We also show how a single unequal crossover event could have produced the allelic variation. We have found that substitutions and small deletions in the sequences within the repeats can substantially affect how misalignment occurs, resulting in different patterns of repeats after concerted evolution.
Collapse
Affiliation(s)
- Sofia Hussain
- Division of Cell Biology, Microbiology and Molecular Biology, Department of Biology, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
35
|
Population genetic models of duplicated genes. Genetica 2009; 137:19-37. [PMID: 19266289 DOI: 10.1007/s10709-009-9355-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/28/2008] [Indexed: 01/08/2023]
Abstract
Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.
Collapse
|
36
|
Feder JL, Velez S. Intergenic exchange, geographic isolation, and the evolution of bioluminescent color for Pyrophorus click beetles. Evolution 2009; 63:1203-16. [PMID: 19154393 DOI: 10.1111/j.1558-5646.2009.00623.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene duplication is an evolutionary process in which the emergent property of the whole can become greater and different than the sum of its parts. One potential outcome for gene duplication is for loci to evolve different, yet related functions. In this case, intergenic exchange can shuffle blocks of differentiated nucleotides between paralogues to create new alleles and phenotypes rather than simply homogenize loci. Bioluminescent click beetles in the genus Pyrophorus (Coleoptera: Elateridae) provide an opportunity to explore the creative potential of intergenic exchange for gene family evolution. Pyrophorus beetles bioluminesce different light colors from a pair of dorsal light organs and a ventral light organ. The light organs are under the separate genetic control of dorsal and ventral luciferase loci. Here, we report that intergenic exchange is common between dorsal and ventral loci for beetles from Jamaica (P. plagiophthalamus), the Dominican Republic (P. mellifluous), Belize (P. luscus), and Trinidad (P. noctilucus). We also present evidence that periods of past geographic isolation for beetles on Jamaica, probably acting in concert with selection, built differentiated blocks of substitutions within dorsal and ventral P. plagiophthalamus luciferase loci. Gene flow and intergenic exchange subsequently shuffled these substitutions between dorsal and ventral loci to produce new color phenotypes on Jamaica, including a yellow-green polymorphism. We discuss the possibility of a previously unrecognized emergent evolutionary property of intergenic exchange for luciferase involving cycles of bioluminescent color change related to differences in selective constrains acting on dorsal versus ventral loci. We also explore whether intergenic exchange may commonly create novel variation and the potential for cyclic evolution in other multigene family systems.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
37
|
Isabel S, Leblanc E, Boissinot M, Boudreau DK, Grondin M, Picard FJ, Martel EA, Parham NJ, Chain PSG, Bader DE, Mulvey MR, Bryden L, Roy PH, Ouellette M, Bergeron MG. Divergence among genes encoding the elongation factor Tu of Yersinia Species. J Bacteriol 2008; 190:7548-58. [PMID: 18790860 PMCID: PMC2576667 DOI: 10.1128/jb.01067-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/27/2008] [Indexed: 01/02/2023] Open
Abstract
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.
Collapse
Affiliation(s)
- Sandra Isabel
- Centre de recherche en infectiologie de l'Université Laval, Centre hospitalier universitaire de Québec, Québec, Canada G1V 4G2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cornman RS, Willis JH. Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:661-76. [PMID: 18510978 PMCID: PMC4276373 DOI: 10.1016/j.ibmb.2008.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 05/03/2023]
Abstract
Annotation of the Anopheles gambiae genome has revealed a large increase in the number of genes encoding cuticular proteins with the Rebers and Riddiford Consensus (the CPR gene family) relative to Drosophila melanogaster. This increase reflects an expansion of the RR-2 group of CPR genes, particularly the amplification of sets of highly similar paralogs. Patterns of nucleotide variation indicate that extensive concerted evolution is occurring within these clusters. The pattern of concerted evolution is complex, however, as sequence similarity within clusters is uncorrelated with gene order and orientation, and no comparable clusters occur within similarly compact arrays of the RR-1 group in mosquitoes or in either group in D. melanogaster. The dearth of pseudogenes suggests that sequence clusters are maintained by selection for high gene-copy number, perhaps due to selection for high expression rates. This hypothesis is consistent with the apparently parallel evolution of compact gene architectures within sequence clusters relative to single-copy genes. We show that RR-2 proteins from sequence-cluster genes have complex repeats and extreme amino-acid compositions relative to single-copy CPR proteins in An. gambiae, and that the amino-acid composition of the N-terminal and C-terminal sequence flanking the chitin-binding consensus region evolves in a correlated fashion.
Collapse
Affiliation(s)
- R Scott Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
39
|
Abstract
Neofunctionalization occurs when a neofunctionalized allele is fixed in one of duplicated genes. This is a simple fixation process if duplicated genes accumulate mutations independently. However, the process is very complicated when duplicated genes undergo concerted evolution by gene conversion. Our simulations demonstrate that the process could be described with three distinct stages. First, a newly arisen neofunctionalized allele increases in frequency by selection, but gene conversion prevents its complete fixation. These two factors (selection and gene conversion) that work in opposite directions create an equilibrium, and the time during which the frequency of the neofunctionalized allele drifts around the equilibrium value is called the temporal equilibrium stage. During this temporal equilibrium stage, it is possible that gene conversion is inactivated by mutations, which allow the complete fixation of the neofunctionalized allele. And then, permanent neofunctionalization is achieved. This article develops basic population genetics theories on the process to permanent neofunctionalization under the pressure of gene conversion. We obtain the probability and time that the frequency of a newly arisen neofunctionalized allele reaches the equilibrium value. It is also found that during the temporal equilibrium stage, selection exhibits strong signature in the divergence in the DNA sequences between the duplicated genes. The spatial distribution of the divergence likely has a peak around the site targeted by selection. We provide an analytical expression of the pattern of divergence and apply it to the human red- and green-opsin genes. The theoretical prediction well fits the data when we assume that selection is operating for the two amino acid differences in exon 5, which are believed to account for the major part of the functional difference between the red and green opsins.
Collapse
|
40
|
Cerqueira GC, Bartholomeu DC, DaRocha WD, Hou L, Freitas-Silva DM, Machado CR, El-Sayed NM, Teixeira SMR. Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Mol Biochem Parasitol 2007; 157:65-72. [PMID: 18023889 DOI: 10.1016/j.molbiopara.2007.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Several copies of genes belonging to three multigene families present in the genome of Trypanosoma cruzi were sequenced and comparatively analyzed across six different strains of the parasite belonging to the T. cruzi I lineage (Colombiana, Silvio X10 and Dm28c), the T. cruzi II lineage (Esmeraldo and JG) and a hybrid strain (CL Brener). For all three gene families analyzed, our results support the division in T. cruzi I and II lineages. Furthermore, in agreement with its hybrid nature, sequences derived from the CL Brener clone clustered together with T. cruzi II sequences as well as with a third group of sequences. Paralogous sequences encoding Amastin, an amastigote surface glycoprotein and TcAG48, an antigenic RNA binding protein, which are clustered in the parasite genome, present higher intragenomic variability in T. cruzi II and CL Brener strains, when compared to T. cruzi I strains. Paralogous sequences derived from the TcADC gene family, which encode various isoforms of adenylyl cyclases and are dispersed throughout the T. cruzi genome, exhibit similar degree of variability in all strains, except in the CL Brener strain, in which the sequences were more divergent. Several factors including mutation rates and gene conversion mechanisms, acting differently within the T. cruzi population, may contribute to create such distinct levels of sequence diversity in multigene families that are clustered in the T. cruzi genome.
Collapse
Affiliation(s)
- Gustavo C Cerqueira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Stewart FJ, Cavanaugh CM. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 2007; 65:44-67. [PMID: 17568983 DOI: 10.1007/s00239-006-0235-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Variation in the internal transcribed spacer (ITS) of the rRNA (rrn) operon is increasingly used to infer population-level diversity in bacterial communities. However, intragenomic ITS variation may skew diversity estimates that do not correct for multiple rrn operons within a genome. This study characterizes variation in ITS length, tRNA composition, and intragenomic nucleotide divergence across 155 Bacteria genomes. On average, these genomes encode 4.8 rrn operons (range: 2-15) and contain 2.4 unique ITS length variants (range: 1-12) and 2.8 unique sequence variants (range: 1-12). ITS variation stems primarily from differences in tRNA gene composition, with ITS regions containing tRNA-Ala + tRNA-Ile (48% of sequences), tRNA-Ala or tRNA-Ile (10%), tRNA-Glu (11%), other tRNAs (3%), or no tRNA genes (27%). Intragenomic divergence among paralogous ITS sequences grouped by tRNA composition ranges from 0% to 12.11% (mean: 0.94%). Low divergence values indicate extensive homogenization among ITS copies. In 78% of alignments, divergence is <1%, with 54% showing zero variation and 81% containing at least two identical sequences. ITS homogenization occurs over relatively long sequence tracts, frequently spanning the entire ITS, and is largely independent of the distance (basepairs) between operons. This study underscores the potential contribution of interoperon ITS variation to bacterial microdiversity studies, as well as unequivocally demonstrates the pervasiveness of concerted evolution in the rrn gene family.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, Harvard University, The Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
42
|
Kondrashov FA, Gurbich TA, Vlasov PK. Selection for functional uniformity of tuf duplicates in gamma-proteobacteria. Trends Genet 2007; 23:215-8. [PMID: 17383049 DOI: 10.1016/j.tig.2007.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 02/14/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Having an extra copy of a gene is thought to provide some functional redundancy, which results in a higher rate of evolution in duplicated genes. In this article, we estimate the impact of gene duplication on the selection of tuf paralogs, and we find that in the absence of gene conversion, tuf paralogs have evolved significantly slower than when gene conversion has been a factor in their evolution. Thus, tuf gene copies evolve under a selective pressure that ensures their functional uniformity, and gene conversion reduces selection against amino acid substitutions that affect the function of the encoded protein, EF-Tu.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Section on Ecology, Behavior and Evolution, Division of Biological Sciences, University of California at San Diego, 2218 Muir Biology Building, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
43
|
Peel AD, Telford MJ, Akam M. The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proc Biol Sci 2006; 273:1733-42. [PMID: 16790405 PMCID: PMC1634793 DOI: 10.1098/rspb.2006.3497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum. Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation.
Collapse
Affiliation(s)
- Andrew D Peel
- Laboratory for Development and Evolution, Department of Zoology, University Museum of Zoology, Cambridge, UK.
| | | | | |
Collapse
|
44
|
|
45
|
Guzik MT, Norman MD, Crozier RH. Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Mol Phylogenet Evol 2006; 37:235-48. [PMID: 16009571 DOI: 10.1016/j.ympev.2005.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 05/09/2005] [Accepted: 05/13/2005] [Indexed: 11/28/2022]
Abstract
Octopus has been regarded as a "catch all" genus, yet its monophyly is questionable and has been untested. We inferred a broad-scale phylogeny of the benthic shallow-water octopuses (subfamily Octopodinae) using amino acid sequences of two mitochondrial DNA genes: Cytochrome oxidase subunit III and Cytochrome b apoenzyme, and the nuclear DNA gene Elongation Factor-1alpha. Sequence data were obtained from 26 Octopus species and from four related genera. Maximum likelihood and Bayesian approaches were implemented to estimate the phylogeny, and non-parametric bootstrapping was used to verify confidence for Bayesian topologies. Phylogenetic relationships between closely related species were generally well resolved, and groups delineated, but the genes did not resolve deep divergences well. The phylogenies indicated strongly that Octopus is not monophyletic, but several monophyletic groups were identified within the genus. It is therefore clear that octopodid systematics requires major revision.
Collapse
Affiliation(s)
- Michelle T Guzik
- School of Tropical Biology, James Cook University, Townsville, Qld, Australia
| | | | | |
Collapse
|
46
|
Abstract
Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and1 Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Alejandro P. Rooney
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois 61604;
| |
Collapse
|
47
|
|
48
|
Sugino RP, Innan H. Estimating the time to the whole-genome duplication and the duration of concerted evolution via gene conversion in yeast. Genetics 2005; 171:63-9. [PMID: 15972458 PMCID: PMC1456531 DOI: 10.1534/genetics.105.043869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/13/2005] [Indexed: 11/18/2022] Open
Abstract
A maximum-likelihood (ML) method is developed to estimate the duration of concerted evolution and the time to the whole-genome duplication (WGD) event in baker's yeast (Saccharomyces cerevisiae). The models with concerted evolution fit the data significantly better than the molecular clock model, indicating a crucial role of concerted evolution via gene conversion after gene duplication in yeast. Our ML estimate of the time to the WGD is nearly identical to the time to the speciation event between S. cerevisiae and Kluyveromyces waltii, suggesting that the WGD occurred in very early stages after speciation or the WGD might have been involved in the speciation event.
Collapse
Affiliation(s)
- Ryuichi P Sugino
- Human Genetics Center, School of Public Health, Unversity of Texas Health Science Center, Houston 77030, USA
| | | |
Collapse
|
49
|
Abstract
A simple model for the evolutionary process of a pair of duplicated genes under concerted evolution is developed. The model considers mutation, recombination and gene conversion between two genes in a finite population. Based on diffusion theory, the expected amount of DNA variation within and between two genes are obtained. To investigate the pattern of DNA polymorphism, a coalescent tool to simulate patterns of polymorphism is developed. The theoretical results are well in agreement with polymorphism data in duplicated genes. The effect of selection on the pattern of polymorphism is also considered.
Collapse
Affiliation(s)
- Hideki Innan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, 1200 Hermann Pressler, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Abstract
Nonindependent evolution of duplicated genes is called concerted evolution. In this article, we study the evolutionary process of duplicated regions that involves concerted evolution. The model incorporates mutation and gene conversion: the former increases d, the divergence between two duplicated regions, while the latter decreases d. It is demonstrated that the process consists of three phases. Phase I is the time until d reaches its equilibrium value, d(0). In phase II d fluctuates around d(0), and d increases again in phase III. Our simulation results demonstrate that the length of concerted evolution (i.e., phase II) is highly variable, while the lengths of the other two phases are relatively constant. It is also demonstrated that the length of phase II approximately follows an exponential distribution with mean tau, which is a function of many parameters including gene conversion rate and the length of gene conversion tract. On the basis of these findings, we obtain the probability distribution of the level of divergence between a pair of duplicated regions as a function of time, mutation rate, and tau. Finally, we discuss potential problems in genomic data analysis of duplicated genes when it is based on the molecular clock but concerted evolution is common.
Collapse
Affiliation(s)
- Kosuke M Teshima
- Center for Genome Information, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|