1
|
Paralog-Specific Functions of RPL7A and RPL7B Mediated by Ribosomal Protein or snoRNA Dosage in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:591-606. [PMID: 28007835 PMCID: PMC5295604 DOI: 10.1534/g3.116.035931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most ribosomal proteins in Saccharomyces cerevisiae are encoded by two paralogs that additively produce the optimal protein level for cell growth. Nonetheless, deleting one paralog of most ribosomal protein gene pairs results in a variety of phenotypes not observed when the other paralog is deleted. To determine whether paralog-specific phenotypes associated with deleting RPL7A or RPL7B stem from distinct functions or different levels of the encoded isoforms, the coding region and introns of one paralog, including an intron-embedded snoRNA (small nucleolar RNA) gene, were exchanged with that of the other paralog. Among mutants harboring a single native or chimeric RPL7 allele, expression from the RPL7A locus exceeded that from the RPL7B locus, and more Rpl7a was expressed from either locus than Rpl7b. Phenotypic differences in tunicamycin sensitivity, ASH1 mRNA localization, and mobility of the Ty1 retrotransposon were strongly correlated with Rpl7 and ribosome levels, but not with the Rpl7 or snoRNA isoform expressed. Although Ty1 RNA is cotranslationally localized, depletion of Rpl7 minimally affected synthesis of Ty1 Gag protein, but strongly influenced Ty1 RNA localization. Unlike the other processes studied, Ty1 cDNA accumulation was influenced by both the level and isoform of Rpl7 or snoRNA expressed. These cellular processes had different minimal threshold values for Rpl7 and ribosome levels, but all were functional when isoforms of either paralog were expressed from the RPL7A locus or both RPL7 loci. This study illustrates the broad range of phenotypes that can result from depleting ribosomes to different levels.
Collapse
|
2
|
Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome. Sci Rep 2016; 6:27720. [PMID: 27296282 PMCID: PMC4906347 DOI: 10.1038/srep27720] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023] Open
Abstract
Amicoumacin A is an antibiotic that was recently shown to target bacterial ribosomes. It affects translocation and provides an additional contact interface between the ribosomal RNA and mRNA. The binding site of amicoumacin A is formed by universally conserved nucleotides of rRNA. In this work, we showed that amicoumacin A inhibits translation in yeast and mammalian systems by affecting translation elongation. We determined the structure of the amicoumacin A complex with yeast ribosomes at a resolution of 3.1 Å. Toxicity measurement demonstrated that human cancer cell lines are more susceptible to the inhibition by this compound as compared to non-cancerous ones. This might be used as a starting point to develop amicoumacin A derivatives with clinical value.
Collapse
|
3
|
Structural basis for the inhibition of the eukaryotic ribosome. Nature 2014; 513:517-22. [DOI: 10.1038/nature13737] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022]
|
4
|
Wu GF, Hou YL, Hou WR, Song Y, Zhang T. Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression. GENETICS AND MOLECULAR RESEARCH 2010; 9:2004-15. [PMID: 20957604 DOI: 10.4238/vol9-4gmr899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RPS14 is a component of the 40S ribosomal subunit encoded by the RPS14 gene and is required for its maturation. The cDNA and the genomic sequence of RPS14 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively; they were both sequenced and analyzed. The length of the cloned cDNA fragment was 492 bp; it contained an open-reading frame of 456 bp, encoding 151 amino acids. The length of the genomic sequence is 3421 bp; it contains four exons and three introns. Alignment analysis indicates that the nucleotide sequence shares a high degree of homology with those of Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, and Danio rerio (93.64, 83.37, 92.54, 91.89, 87.28, 84.21, and 84.87%, respectively). Comparison of the deduced amino acid sequences of the giant panda with those of these other species revealed that the RPS14 of giant panda is highly homologous with those of B. taurus, R. norvegicus and D. rerio (85.99, 99.34 and 99.34%, respectively), and is 100% identical with the others. This degree of conservation of RPS14 suggests evolutionary selection. Topology prediction shows that there are two N-glycosylation sites, three protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, four N-myristoylation sites, two amidation sites, and one ribosomal protein S11 signature in the RPS14 protein of the giant panda. The RPS14 gene can be readily expressed in Escherichia coli. When it was fused with the N-terminally His-tagged protein, it gave rise to accumulation of an expected 22-kDa polypeptide, in good agreement with the predicted molecular weight. The expression product obtained can be purified for studies of its function.
Collapse
Affiliation(s)
- G-F Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | | | | | | | | |
Collapse
|
5
|
The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Mol Cell Biol 2010; 30:4415-34. [PMID: 20584985 DOI: 10.1128/mcb.00280-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal domain (CTD) of the a/Tif32 subunit of budding yeast eukaryotic translation initiation factor 3 (eIF3) interacts with eIF3 subunits j/Hcr1 and b/Prt1 and can bind helices 16 to 18 of 18S rRNA, suggesting proximity to the mRNA entry channel of the 40S subunit. We have identified substitutions in the conserved Lys-Glu-Arg-Arg (KERR) motif and in residues of the nearby box6 element of the a/Tif32 CTD that impair mRNA recruitment by 43S preinitiation complexes (PICs) and confer phenotypes indicating defects in scanning and start codon recognition. The normally dispensable CTD of j/Hcr1 is required for its binding to a/Tif32 and to mitigate the growth defects of these a/Tif32 mutants, indicating physical and functional interactions between these two domains. The a/Tif32 CTD and the j/Hcr1 N-terminal domain (NTD) also interact with the RNA recognition motif (RRM) in b/Prt1, and mutations in both subunits that disrupt their interactions with the RRM increase leaky scanning of an AUG codon. These results, and our demonstration that the extreme CTD of a/Tif32 binds to Rps2 and Rps3, lead us to propose that the a/Tif32 CTD directly stabilizes 43S subunit-mRNA interaction and that the b/Prt1-RRM-j/Hcr1-a/Tif32-CTD module binds near the mRNA entry channel and regulates the transition between scanning-conducive and initiation-competent conformations of the PIC.
Collapse
|
6
|
Abstract
Van Den Berghe established 5q- syndrome as a discrete clinical entity in 1974 when he described patients with macrocytic anaemia, thrombocytosis, dyserythropoiesis, hypolobulated megakaryocytes and an interstitial deletion within chromosome 5q. With del(5q) as the sole cytogenetic abnormality, 5q- syndrome represents an opportunity to define precisely the molecular defect(s) underlying the pathogenesis of this disease. The commonly deleted region in 5q- syndrome, which is distinct from that in patients with complex cytogenetic changes that include del(5q), includes the ribosomal protein S14 locus and it has been proposed that that loss of an RPS14 allele accounts for the 5q- syndrome phenotype. However, this hypothesis fails to explain the growth advantage of the 5q- syndrome clone and it is evident that ribosomal protein defects are not specific to 5q- syndrome, as they are found in other bone marrow failure syndromes. Lenalidomide therapy leads to normalization of both haematological and cytogenetic parameters in the majority of 5q- syndrome patients. This review examines the potential role of several genes, including RPS14, in the pathogenesis of the 5q- syndrome and recent advances in clinical management, with particular emphasis on the role and mechanism of action of lenalidomide.
Collapse
Affiliation(s)
- Azim Mohamedali
- Department of Haematological Medicine, Kings College London, London, UK
| | | |
Collapse
|
7
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
8
|
Bernstein KA, Baserga SJ. The small subunit processome is required for cell cycle progression at G1. Mol Biol Cell 2004; 15:5038-46. [PMID: 15356263 PMCID: PMC524768 DOI: 10.1091/mbc.e04-06-0515] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.
Collapse
Affiliation(s)
- Kara A Bernstein
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
9
|
Jakovljevic J, de Mayolo PA, Miles TD, Nguyen TML, Léger-Silvestre I, Gas N, Woolford JL. The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol Cell 2004; 14:331-42. [PMID: 15125836 DOI: 10.1016/s1097-2765(04)00215-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/17/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.
Collapse
Affiliation(s)
- Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Yeast ribosomal protein S14 (rpS14) binds to two different RNA molecules: (1). helix 23 of 18S rRNA during its assembly into 40S ribosomal subunits and (2). a stem-loop structure in RPS14B pre-mRNA to repress expression of the RPS14B gene. We used the three-dimensional structure of Thermus thermophilus ribosomal protein S11, a bacterial homologue of rpS14, as a guide to identify conserved, surface-exposed amino acid residues that are likely to contact RNA. Eight residues that met these criteria were mutated to alanine. Most of these mutations affected interaction of rpS14 with either helix 23 or the RPS14B stem-loop RNA or both. Assembly of 40S ribosomal subunits and repression of RPS14B were also affected. S11 contains an extended carboxy-terminal domain rich in basic amino acids, which interacts with rRNA. We systematically evaluated the importance of each of the last ten amino acid residues in the basic, carboxy-terminal tail of yeast rpS14 for binding to RNA, by mutating each to alanine. Mutations in nine of these residues decreased binding of rpS14 to one or both of its RNA ligands. In addition, we examined the importance of four structural motifs in helix 23 of 18S rRNA for binding to rpS14. Mutations that altered either the terminal loop, the G-U base-pair closing the terminal loop, or the internal loop affected binding of rpS14 to helix 23.
Collapse
Affiliation(s)
- Pamela Antúnez de Mayolo
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
11
|
Olivera R, SanMartin R, Tellitu I, Domı́nguez E. The amine exchange/biaryl coupling sequence: a direct entry to the phenanthro[9,10-d]heterocyclic framework. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00194-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Carr-Schmid A, Pfund C, Craig EA, Kinzy TG. Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol Cell Biol 2002; 22:2564-74. [PMID: 11909951 PMCID: PMC133728 DOI: 10.1128/mcb.22.8.2564-2574.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/14/2001] [Accepted: 01/11/2002] [Indexed: 11/20/2022] Open
Abstract
G proteins, which bind and hydrolyze GTP, are involved in regulating a variety of critical cellular processes, including the process of protein synthesis. Many members of the subfamily of elongation factor class G proteins interact with the ribosome and function to regulate discrete steps during the process of protein synthesis. Despite sequence similarity to factors involved in translation, a role for the yeast Hbs1 protein has not been defined. In this work we have identified a genetic relationship between genes encoding components of the translational apparatus and HBS1. HBS1, while not essential for viability, is important for efficient growth and protein synthesis under conditions of limiting translation initiation. The identification of an Hbs1p-interacting factor, Dom34p, which shares a similar genetic relationship with components of the translational apparatus, suggests that Hbs1p and Dom34p may function as part of a complex that facilitates gene expression. Dom34p contains an RNA binding motif present in several ribosomal proteins and factors that regulate translation of specific mRNAs. Thus, Hbs1p and Dom34p may function together to help directly or indirectly facilitate the expression either of specific mRNAs or under certain cellular conditions.
Collapse
Affiliation(s)
- Anne Carr-Schmid
- Department of Molecular Genetics and Microbiology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
13
|
Albig AR, Decker CJ. The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2001; 12:3428-38. [PMID: 11694578 PMCID: PMC60265 DOI: 10.1091/mbc.12.11.3428] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Revised: 08/29/2001] [Accepted: 08/31/2001] [Indexed: 11/11/2022] Open
Abstract
The target of rapamycin (TOR) signaling pathway is an important mechanism by which cell growth is regulated by nutrient availability in eukaryotes. We provide evidence that the TOR signaling pathway controls mRNA turnover in Saccharomyces cerevisiae. During nutrient limitation (diauxic shift) or after treatment with rapamycin (a specific inhibitor of TOR), multiple mRNAs were destabilized, whereas the decay of other mRNAs was unaffected. Our findings suggest that the regulation of mRNA decay by the TOR pathway may play a significant role in controlling gene expression in response to nutrient depletion. The inhibition of the TOR pathway accelerated the major mRNA decay mechanism in yeast, the deadenylation-dependent decapping pathway. Of the destabilized mRNAs, two different responses to rapamycin were observed. Some mRNAs were destabilized rapidly, while others were affected only after prolonged exposure. Our data suggest that the mRNAs that respond rapidly are destabilized because they have short poly(A) tails prematurely either as a result of rapid deadenylation or reduced polyadenylation. In contrast, the mRNAs that respond slowly are destabilized by rapid decapping. In summary, the control of mRNA turnover by the TOR pathway is complex in that it specifically regulates the decay of some mRNAs and not others and that it appears to control decay by multiple mechanisms.
Collapse
Affiliation(s)
- A R Albig
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| | | |
Collapse
|
14
|
Sasaki T, Toh-E A, Kikuchi Y. Yeast Krr1p physically and functionally interacts with a novel essential Kri1p, and both proteins are required for 40S ribosome biogenesis in the nucleolus. Mol Cell Biol 2000; 20:7971-9. [PMID: 11027267 PMCID: PMC86407 DOI: 10.1128/mcb.20.21.7971-7979.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a two-hybrid screening with TOM1, a putative ubiquitin-ligase gene of Saccharomyces cerevisiae, we isolated KRR1, a homologue of human HRB2 (for human immunodeficiency virus type 1 Rev-binding protein 2). To characterize the gene function, we constructed temperature-sensitive krr1 mutants and isolated two multicopy suppressors. One suppressor is RPS14A, encoding a 40S ribosomal protein. The C-terminal-truncated rpS14p, which was reported to have diminished binding activity to 18S rRNA, failed to suppress the krr1 mutant. The other suppressor is a novel gene, KRI1 (for KRR1 interacting protein; YNL308c). KRI1 is essential for viability, and Kri1p is localized to the nucleolus. We constructed a galactose-dependent kri1 strain by placing KRI1 under control of the GAL1 promoter, so that expression of KRI1 was shut off when transferring the culture to glucose medium. Polysome and 40S ribosome fractions were severely decreased in the krr1 mutant and Kri1p-depleted cells. Pulse-chase analysis of newly synthesized rRNAs demonstrated that 18S rRNA is not produced in either mutant. However, wild-type levels of 25S rRNA are made in either mutant. Northern analysis revealed that the steady-state levels of 18S rRNA and 20S pre-rRNAs were reduced in both mutants. Precursors for 18S rRNA were detected but probably very unstable in both mutants. A myc-tagged Kri1p coimmunoprecipitated with a hemagglutinin-tagged Krr1p. Furthermore, the krr1 mutant protein was defective in its interaction with Kri1p. These data lead us to conclude that Krr1p physically and functionally interacts with Kri1p to form a complex which is required for 40S ribosome biogenesis in the nucleolus.
Collapse
Affiliation(s)
- T Sasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
15
|
Fewell SW, Woolford JL. Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA. Mol Cell Biol 1999; 19:826-34. [PMID: 9858605 PMCID: PMC83939 DOI: 10.1128/mcb.19.1.826] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 09/24/1998] [Indexed: 11/20/2022] Open
Abstract
Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure.
Collapse
Affiliation(s)
- S W Fewell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
16
|
Petitjean A, Bonneaud N, Lacroute F. The duplicated Saccharomyces cerevisiae gene SSM1 encodes a eucaryotic homolog of the eubacterial and archaebacterial L1 ribosomal proteins. Mol Cell Biol 1995; 15:5071-81. [PMID: 7651424 PMCID: PMC230754 DOI: 10.1128/mcb.15.9.5071] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A previously unknown Saccharomyces cerevisiae gene, SSM1a, was isolated by screening for high-copy-number suppressors of thermosensitive mutations in the RNA14 gene, which encodes a component from the polyadenylation complex. The SSM1 a gene codes for a 217-amino-acid protein, Ssm1p, which is significantly homologous to eubacterial and archaebacterial ribosomal proteins of the L1 family. Comparison of the Ssm1p amino acid sequence with that of eucaryotic polypeptides with unknown functions reveals that Ssm1p is the prototype of a new eucaryotic protein family. Biochemical analysis shows that Ssm1p is a structural protein that forms part of the largest 60S ribosomal subunit, which does not exist in a pool of free proteins. SSM1 a is duplicated. The second gene copy, SSM1b, is functional and codes for an identical and functionally interchangeable Ssm1p protein. In wild-type cells, SSM1b transcripts accumulate to twice the level of SSM1a transcripts, suggesting that SSM1b is responsible for the majority of the Ssm1p pool. Haploid cells lacking both SSM1 genes are inviable, demonstrating that, in contrast with its Escherichia coli homolog, Ssm1p is an essential ribosomal protein. Deletion of the most expressed SSM1b gene leads to a severe decrease in the level of SSM1 transcript, associated with a reduced growth rate. Polysome profile analysis suggests that the primary defect caused by the depletion in Ssm1p is at the level of translation initiation.
Collapse
Affiliation(s)
- A Petitjean
- Centre de Génétique Moléculaire, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
17
|
The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 1994. [PMID: 8196640 DOI: 10.1128/mcb.14.6.4011] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and sequenced the CRY1 gene, encoding ribosomal protein S14 in Chlamydomonas reinhardtii, and found that it is highly similar to S14/rp59 proteins from other organisms, including mammals, Drosophila melanogaster, and Saccharomyces cerevisiae. We isolated a mutant strain resistant to the eukaryotic translational inhibitors cryptopleurine and emetine in which the resistance was due to a missense mutation (CRY1-1) in the CRY1 gene; resistance was dominant in heterozygous stable diploids. Cotransformation experiments using the CRY1-1 gene and the gene for nitrate reductase (NIT1) produced a low level of resistance to cryptopleurine and emetine. Resistance levels were increased when the CRY1-1 gene was placed under the control of a constitutive promoter from the ribulose bisphosphate carboxylase/oxygenase small subunit 2 (RBCS2) gene. We also found that the 5' untranslated region of the CRY1 gene was required for expression of the CRY1-1 transgene. Direct selection of emetine-resistant transformants was possible when transformed cells were first induced to differentiate into gametes by nitrogen starvation and then allowed to dedifferentiate back to vegetative cells before emetine selection was applied. With this transformation protocol, the RBCS2/CRY1-1 dominant selectable marker gene is a powerful tool for many molecular genetic applications in C. reinhardtii.
Collapse
|
18
|
Nelson JA, Savereide PB, Lefebvre PA. The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 1994; 14:4011-9. [PMID: 8196640 PMCID: PMC358767 DOI: 10.1128/mcb.14.6.4011-4019.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have cloned and sequenced the CRY1 gene, encoding ribosomal protein S14 in Chlamydomonas reinhardtii, and found that it is highly similar to S14/rp59 proteins from other organisms, including mammals, Drosophila melanogaster, and Saccharomyces cerevisiae. We isolated a mutant strain resistant to the eukaryotic translational inhibitors cryptopleurine and emetine in which the resistance was due to a missense mutation (CRY1-1) in the CRY1 gene; resistance was dominant in heterozygous stable diploids. Cotransformation experiments using the CRY1-1 gene and the gene for nitrate reductase (NIT1) produced a low level of resistance to cryptopleurine and emetine. Resistance levels were increased when the CRY1-1 gene was placed under the control of a constitutive promoter from the ribulose bisphosphate carboxylase/oxygenase small subunit 2 (RBCS2) gene. We also found that the 5' untranslated region of the CRY1 gene was required for expression of the CRY1-1 transgene. Direct selection of emetine-resistant transformants was possible when transformed cells were first induced to differentiate into gametes by nitrogen starvation and then allowed to dedifferentiate back to vegetative cells before emetine selection was applied. With this transformation protocol, the RBCS2/CRY1-1 dominant selectable marker gene is a powerful tool for many molecular genetic applications in C. reinhardtii.
Collapse
Affiliation(s)
- J A Nelson
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
19
|
Manolson M, Wu B, Proteau D, Taillon B, Roberts B, Hoyt M, Jones E. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36755-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|