1
|
Kapperud Ø. Breakpoint-chiasma interference in pericentric inversion heterokaryotypes. Genetics 2025:iyaf070. [PMID: 40326787 DOI: 10.1093/genetics/iyaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 05/07/2025] Open
Abstract
Heterozygous inversion breakpoints inhibit the formation of chiasmata in their vicinity, and it has been suggested that they do so through the same mechanism that also causes interference between chiasmata. In this paper, I therefore extend my earlier model of chiasma interference to account for interference between breakpoints and chiasmata in pericentric inversion heterokaryotypes. Using this model to analyze recombination and sterility datasets for Drosophila melanogaster, I find support for the hypothesis that inversion breakpoints interfere with chiasmata in the same way and to the same degree that other chiasmata do. I also find that breakpoints, like chiasmata, appear to show negative interference in the pericentromeric region, and positive interference elsewhere. I discuss the implications of these findings in light of the recent HEI10 coarsening interference hypothesis, and conclude with some remarks about the evolutionary origin of chiasma interference.
Collapse
Affiliation(s)
- Øystein Kapperud
- Norwegian Institute of Public Health, IT Systems Oslo, P.O. Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
2
|
Abstract
Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.
Collapse
Affiliation(s)
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
3
|
Pazhayam NM, Turcotte CA, Sekelsky J. Meiotic Crossover Patterning. Front Cell Dev Biol 2021; 9:681123. [PMID: 34368131 PMCID: PMC8344875 DOI: 10.3389/fcell.2021.681123] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Proper number and placement of meiotic crossovers is vital to chromosome segregation, with failures in normal crossover distribution often resulting in aneuploidy and infertility. Meiotic crossovers are formed via homologous repair of programmed double-strand breaks (DSBs). Although DSBs occur throughout the genome, crossover placement is intricately patterned, as observed first in early genetic studies by Muller and Sturtevant. Three types of patterning events have been identified. Interference, first described by Sturtevant in 1915, is a phenomenon in which crossovers on the same chromosome do not occur near one another. Assurance, initially identified by Owen in 1949, describes the phenomenon in which a minimum of one crossover is formed per chromosome pair. Suppression, first observed by Beadle in 1932, dictates that crossovers do not occur in regions surrounding the centromere and telomeres. The mechanisms behind crossover patterning remain largely unknown, and key players appear to act at all scales, from the DNA level to inter-chromosome interactions. There is also considerable overlap between the known players that drive each patterning phenomenon. In this review we discuss the history of studies of crossover patterning, developments in methods used in the field, and our current understanding of the interplay between patterning phenomena.
Collapse
Affiliation(s)
- Nila M. Pazhayam
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn A. Turcotte
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Smith GR, Nambiar M. New Solutions to Old Problems: Molecular Mechanisms of Meiotic Crossover Control. Trends Genet 2020; 36:337-346. [PMID: 32294414 PMCID: PMC7162993 DOI: 10.1016/j.tig.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023]
Abstract
During scientific investigations, the explanation of remarkably interesting phenomena must often await development of new methods or accrual of new observations that in retrospect can lead to lucid answers to the initial problem. A case in point is the control of genetic recombination during meiosis, which leads to crossovers between chromosomes critical for production of healthy offspring. Crossovers must be properly placed along meiotic chromosomes for their accurate segregation. Here, we review observations on two aspects of meiotic crossover control - crossover interference and repression of crossovers near centromeres, both observed more than 85 years ago. Only recently have relatively simple molecular mechanisms for these phenomena become clear through advances in both methods and understanding the molecular basis of meiotic recombination.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
5
|
Abstract
Through recombination, genes are freed to evolve more independently of one another, unleashing genetic variance hidden in the linkage disequilibrium that accumulates through selection combined with drift. Yet crossover numbers are evolutionarily constrained, with at least one and not many more than one crossover per bivalent in most taxa. Crossover interference, whereby a crossover reduces the probability of a neighboring crossover, contributes to this homogeneity. The mechanisms by which interference is achieved and crossovers are regulated are a major current subject of inquiry, facilitated by novel methods to visualize crossovers and to pinpoint recombination events. Here, we review patterns of crossover interference and the models built to describe this process. We then discuss the selective forces that have likely shaped interference and the regulation of crossover numbers.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Abstract
During meiosis, homologous chromosomes of a diploid cell are replicated and, without a second replication, are segregated during two nuclear divisions to produce four haploid cells (including discarded polar bodies in females of many species). Proper segregation of chromosomes at the first division requires in most species that homologous chromosomes be physically connected. Tension generated by connected chromosomes moving to opposite sides of the cell signals proper segregation. In the absence of the required connections, called crossovers, chromosomes often segregate randomly and produce aneuploid gametes and, thus, dead or disabled progeny. To be effective, crossovers must be properly distributed along chromosomes. Crossovers within or too near the centromere interfere with proper segregation; crossovers too near each other can ablate the required tension; and crossovers too concentrated in only one or a few regions would not re-assort most genetic characters important for evolution. Here, we discuss current knowledge of how the optimal distribution of crossovers is achieved in the fission yeast Schizosaccharomyces pombe, with reference to other well-studied species for comparison and illustration of the diversity of biology.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98112, United States
| | - Yu-Chien Chuang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98112, United States
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98112, United States.
| |
Collapse
|
7
|
Nolan JP. Erlang renewal models for genetic recombination. JOURNAL OF STATISTICAL DISTRIBUTIONS AND APPLICATIONS 2017. [DOI: 10.1186/s40488-017-0064-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Variation in crossover frequencies perturb crossover assurance without affecting meiotic chromosome segregation in Saccharomyces cerevisiae. Genetics 2014; 199:399-412. [PMID: 25467183 PMCID: PMC4317650 DOI: 10.1534/genetics.114.172320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The segregation of homologous chromosomes during the Meiosis I division requires an obligate crossover per homolog pair (crossover assurance). In Saccharomyces cerevisiae and mammals, Msh4 and Msh5 proteins stabilize Holliday junctions and its progenitors to facilitate crossing over. S. cerevisiae msh4/5 hypomorphs that reduce crossover levels up to twofold at specific loci on chromosomes VII, VIII, and XV without affecting homolog segregation were identified recently. We use the msh4–R676W hypomorph to ask if the obligate crossover is insulated from variation in crossover frequencies, using a S. cerevisiae S288c/YJM789 hybrid to map recombination genome-wide. The msh4–R676W hypomorph made on average 64 crossovers per meiosis compared to 94 made in wild type and 49 in the msh4Δ mutant confirming the defect seen at individual loci on a genome-wide scale. Crossover reductions in msh4–R676W and msh4Δ were significant across chromosomes regardless of size, unlike previous observations made at specific loci. The msh4–R676W hypomorph showed reduced crossover interference. Although crossover reduction in msh4–R676W is modest, 42% of the four viable spore tetrads showed nonexchange chromosomes. These results, along with modeling of crossover distribution, suggest the significant reduction in crossovers across chromosomes and the loss of interference compromises the obligate crossover in the msh4 hypomorph. The high spore viability of the msh4 hypomorph is maintained by efficient segregation of the natural nonexchange chromosomes. Our results suggest that variation in crossover frequencies can compromise the obligate crossover and also support a mechanistic role for interference in obligate crossover formation.
Collapse
|
9
|
Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 2012; 8:e1002905. [PMID: 23071443 PMCID: PMC3469467 DOI: 10.1371/journal.pgen.1002905] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/02/2012] [Indexed: 01/06/2023] Open
Abstract
Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should be included in a new generation of population genetic models of the interaction between selection and linkage.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
10
|
Reyes-Valdés MH, Ji Y, Crane CF, Islam-Faridi MN, Price HJ, Stelly DM, Taylor JF. ISH-facilitated analysis of meiotic bivalent pairing. Genome 2012; 39:784-92. [PMID: 18469936 DOI: 10.1139/g96-098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chiasmata constitute one of the cornerstones of sexual reproduction in most eukaryotes. They mediate the reciprocal genetic exchange between homologues and are essential to the proper orientation of the homologous centromeres in meiosis I. As markers of recombination, they offer a cytological means of mapping. Rather than trying to accurately count individual chiasmata, we have examined properties of the mathematical relationship between frequencies of nonadorned disomic configurations in meiosis (ring, rods, and univalents) and the probabilities at which arms of the respective chromosomes are chiasmate (one or more chiasma per arm). Numerical analyses indicated that conventionally analyzed bivalents with nonidentified arms yield statistically biased estimates of chiasma probabilities under a broad range of circumstances. We subsequently analyzed estimators derived from adorned configurations with ISH-marked arms, which were found to be statistically far superior, and with no assumptions concerning interference across the centromere. We applied this methodology in the study of chromosomes 16 and 23 of cotton (Gossypium hirsutum), and estimated their arm lengths in centimorgans. The results for chromosome 23, the only one of the two chromosomes with a documented RFLP map, were consistent with the literature. Similar molecular-meiotic configuration analyses can be used for a wide variety of eukaryotic organisms and purposes: for example, providing far more powerful meiotic comparisons of genomes of chromosomes, and a rapid means of evaluating effects on recombination. Key words : meiotic configurations, chiasma frequencies, in situ hybridization, cotton.
Collapse
|
11
|
Salomé PA, Bomblies K, Fitz J, Laitinen RAE, Warthmann N, Yant L, Weigel D. The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb) 2012; 108:447-55. [PMID: 22072068 PMCID: PMC3313057 DOI: 10.1038/hdy.2011.95] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/29/2011] [Accepted: 08/27/2011] [Indexed: 12/20/2022] Open
Abstract
Recombination during meiosis shapes the complement of alleles segregating in the progeny of hybrids, and has important consequences for phenotypic variation. We examined allele frequencies, as well as crossover (XO) locations and frequencies in over 7000 plants from 17 F(2) populations derived from crosses between 18 Arabidopsis thaliana accessions. We observed segregation distortion between parental alleles in over half of our populations. The potential causes of distortion include variation in seed dormancy and lethal epistatic interactions. Such a high occurrence of distortion was only detected here because of the large sample size of each population and the number of populations characterized. Most plants carry only one or two XOs per chromosome pair, and therefore inherit very large, non-recombined genomic fragments from each parent. Recombination frequencies vary between populations but consistently increase adjacent to the centromeres. Importantly, recombination rates do not correlate with whole-genome sequence differences between parental accessions, suggesting that sequence diversity within A. thaliana does not normally reach levels that are high enough to exert a major influence on the formation of XOs. A global knowledge of the patterns of recombination in F(2) populations is crucial to better understand the segregation of phenotypic traits in hybrids, in the laboratory or in the wild.
Collapse
Affiliation(s)
- P A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - K Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - J Fitz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - R A E Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - N Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - L Yant
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - D Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
12
|
Berchowitz LE, Copenhaver GP. Genetic interference: don't stand so close to me. Curr Genomics 2011; 11:91-102. [PMID: 20885817 PMCID: PMC2874225 DOI: 10.2174/138920210790886835] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/26/2009] [Accepted: 11/29/2009] [Indexed: 11/30/2022] Open
Abstract
Meiosis is a dynamic process during which chromosomes undergo condensation, pairing, crossing-over and disjunction. Stringent regulation of the distribution and quantity of meiotic crossovers is critical for proper chromosome segregation in many organisms. In humans, aberrant crossover placement and the failure to faithfully segregate meiotic chromosomes often results in severe genetic disorders such as Down syndrome and Edwards syndrome. In most sexually reproducing organisms, crossovers are more evenly spaced than would be expected from a random distribution. This phenomenon, termed interference, was first reported in the early 20th century by Drosophila geneticists and has been subsequently observed in a vast range of organisms from yeasts to humans. Yet, many questions regarding the behavior and mechanism of interference remain poorly understood. In this review, we examine results new and old, from a wide range of organisms, to begin to understand the progress and remaining challenges to understanding the fundamental unanswered questions regarding genetic interference.
Collapse
Affiliation(s)
- Luke E Berchowitz
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
13
|
Abstract
Recombination, together with mutation, generates the raw material of evolution, is essential for reproduction and lies at the heart of all genetic analysis. Recent advances in our ability to construct genome-scale, high-resolution recombination maps and new molecular techniques for analysing recombination products have substantially furthered our understanding of this important biological phenomenon in humans and mice: from describing the properties of recombination hot spots in male and female meiosis to the recombination landscape along chromosomes. This progress has been accompanied by the identification of trans-acting systems that regulate the location and relative activity of individual hot spots.
Collapse
|
14
|
Global analysis of the meiotic crossover landscape. Dev Cell 2008; 15:401-415. [PMID: 18691940 PMCID: PMC2628562 DOI: 10.1016/j.devcel.2008.07.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/05/2008] [Accepted: 07/18/2008] [Indexed: 12/21/2022]
Abstract
Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the difficulty in determining crossover distributions. Here, we present a microarray-based method to analyze multiple aspects of crossover control simultaneously and rapidly, at high resolution, genome-wide, and on a cell-by-cell basis. Using this approach, we show that loss of interference in zip2 and zip4/spo22 mutants is accompanied by a reduction in crossover homeostasis, thus connecting these two levels of crossover control. We also provide evidence to suggest that repression of crossing over at telomeres and centromeres arises from different mechanisms. Lastly, we uncover a surprising role for the synaptonemal complex component Zip1 in repressing crossing over at the centromere.
Collapse
|
15
|
Reduced mismatch repair of heteroduplexes reveals "non"-interfering crossing over in wild-type Saccharomyces cerevisiae. Genetics 2008; 178:1251-69. [PMID: 18385111 DOI: 10.1534/genetics.106.067603] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using small palindromes to monitor meiotic double-strand-break-repair (DSBr) events, we demonstrate that two distinct classes of crossovers occur during meiosis in wild-type yeast. We found that crossovers accompanying 5:3 segregation of a palindrome show no conventional (i.e., positive) interference, while crossovers with 6:2 or normal 4:4 segregation for the same palindrome, in the same cross, do manifest interference. Our observations support the concept of a "non"-interference class and an interference class of meiotic double-strand-break-repair events, each with its own rules for mismatch repair of heteroduplexes. We further show that deletion of MSH4 reduces crossover tetrads with 6:2 or normal 4:4 segregation more than it does those with 5:3 segregation, consistent with Msh4p specifically promoting formation of crossovers in the interference class. Additionally, we present evidence that an ndj1 mutation causes a shift of noncrossovers to crossovers specifically within the "non"-interference class of DSBr events. We use these and other data in support of a model in which meiotic recombination occurs in two phases-one specializing in homolog pairing, the other in disjunction-and each producing both noncrossovers and crossovers.
Collapse
|
16
|
Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets. Nat Protoc 2008; 3:41-50. [PMID: 18193020 DOI: 10.1038/nprot.2007.491] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In most organisms, one crossover (CO) event inhibits the chances of another nearby event. The term used to describe this phenomenon is 'CO interference'. Here, we describe a protocol for quickly generating large data sets that are amenable to CO interference analysis in the flowering plant, Arabidopsis thaliana. We employ a visual assay that utilizes transgenic marker constructs encoding pollen-expressed fluorescent proteins of three colors in the quartet mutant background. In this genetic background, male meiotic products--the pollen grains--remain physically attached thereby facilitating tetrad analysis. We have developed a library of mapped marker insertions that, when crossed together, create adjacent intervals that can be rapidly and simultaneously screened for COs. This assay system is capable of detecting and differentiating single COs as well as two-, three- and four-strand double COs. We also describe how to analyze the data that are produced by this method. To generate and score a double interval in a wild-type and mutant background using this protocol will take 22-27 weeks.
Collapse
|
17
|
Stahl FW, Foss HM, Young LS, Borts RH, Abdullah MFF, Copenhaver GP. Does crossover interference count in Saccharomyces cerevisiae? Genetics 2005; 168:35-48. [PMID: 15454525 PMCID: PMC1448104 DOI: 10.1534/genetics.104.027789] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously proposed a "counting model" for meiotic crossover interference, in which double-strand breaks occur independently and a fixed number of noncrossovers occur between neighboring crossovers. Whereas in some organisms (group I) this simple model alone describes the crossover distribution, in other organisms (group II) an additional assumption--that some crossovers lack interference--improves the fit. Other differences exist between the groups: Group II needs double-strand breaks and some repair functions to achieve synapsis, while repair in group I generally occurs after synapsis is achieved; group II, but not group I, has recombination proteins Dmc1, Mnd1, and Hop2. Here we report experiments in msh4 mutants that are designed to test predictions of the revised model in a group II organism. Further, we interpret these experiments, the above-mentioned differences between group I and II meiosis, and other data to yield the following proposal: Group II organisms use the repair of leptotene breaks to promote synapsis by generating double-Holliday-junction intermediates that lock homologs together (pairing pathway). The possible crossover or noncrossover resolution products of these structures lack interference. In contrast, for both group I and group II, repair during pachytene (disjunction pathway) is associated with interference and generates only two resolution types, whose structures suggest that the Holliday junctions of the repair intermediates are unligated. A crossover arises when such an intermediate is stabilized by a protein that prevents its default resolution to a noncrossover. The protein-binding pattern required for interference depends on clustering of sites that have received, or are normally about to receive, meiotic double-strand breaks.
Collapse
Affiliation(s)
- Franklin W Stahl
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The crossover distribution in meiotic tetrads of Arabidopsis thaliana differs from those previously described for Drosophila and Neurospora. Whereas a chi-square distribution with an even number of degrees of freedom provides a good fit for the latter organisms, the fit for Arabidopsis was substantially improved by assuming an additional set of crossovers sprinkled, at random, among those distributed as per chi square. This result is compatible with the view that Arabidopsis has two pathways for meiotic crossing over, only one of which is subject to interference. The results further suggest that Arabidopsis meiosis has >10 times as many double-strand breaks as crossovers.
Collapse
Affiliation(s)
- G P Copenhaver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
19
|
Abstract
We present an analysis of crossover interference in the mouse genome, on the basis of high-density genotype data from two reciprocal interspecific backcrosses, comprising 188 meioses. Overwhelming evidence was found for strong positive crossover interference with average strength greater than that implied by the Carter-Falconer map function. There was some evidence for interchromosomal variation in the level of interference, with smaller chromosomes exhibiting stronger interference. We further compared the observed numbers of crossovers to previous cytological observations on the numbers of chiasmata and evaluated evidence for the obligate chiasma hypothesis.
Collapse
Affiliation(s)
- Karl W Broman
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
20
|
Novak JE, Ross-Macdonald PB, Roeder GS. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 2001; 158:1013-25. [PMID: 11454751 PMCID: PMC1461720 DOI: 10.1093/genetics/158.3.1013] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The budding yeast MSH4 gene encodes a MutS homolog produced specifically in meiotic cells. Msh4 is not required for meiotic mismatch repair or gene conversion, but it is required for wild-type levels of crossing over. Here, we show that a msh4 null mutation substantially decreases crossover interference. With respect to the defect in interference and the level of crossing over, msh4 is similar to the zip1 mutant, which lacks a structural component of the synaptonemal complex (SC). Furthermore, epistasis tests indicate that msh4 and zip1 affect the same subset of meiotic crossovers. In the msh4 mutant, SC formation is delayed compared to wild type, and full synapsis is achieved in only about half of all nuclei. The simultaneous defects in synapsis and interference observed in msh4 (and also zip1 and ndj1/tam1) suggest a role for the SC in mediating interference. The Msh4 protein localizes to discrete foci on meiotic chromosomes and colocalizes with Zip2, a protein involved in the initiation of chromosome synapsis. Both Zip2 and Zip1 are required for the normal localization of Msh4 to chromosomes, raising the possibility that the zip1 and zip2 defects in crossing over are indirect, resulting from the failure to localize Msh4 properly.
Collapse
Affiliation(s)
- J E Novak
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- J E Haber
- Brandeis University, Rosenstiel Center, Mailstop 029, Waltham, MA 02454-9110, USA.
| |
Collapse
|
22
|
Broman KW, Weber JL. Characterization of human crossover interference. Am J Hum Genet 2000; 66:1911-26. [PMID: 10801387 PMCID: PMC1378063 DOI: 10.1086/302923] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2000] [Accepted: 03/24/2000] [Indexed: 11/04/2022] Open
Abstract
We present an analysis of crossover interference over the entire human genome, on the basis of genotype data from more than 8,000 polymorphisms in eight CEPH families. Overwhelming evidence was found for strong positive crossover interference, with average strength lying between the levels of interference implied by the Kosambi and Carter-Falconer map functions. Five mathematical models of interference were evaluated: the gamma model and four versions of the count-location model. The gamma model fit the data far better than did any of the other four models. Analysis of intercrossover distances was greatly superior to the analysis of crossover counts, in both demonstrating interference and distinguishing between the five models. In contrast to earlier suggestions, interference was found to continue uninterrupted across the centromeres. No convincing differences in the levels of interference were found between the sexes or among chromosomes; however, we did detect possible individual variation in interference among the eight mothers. Finally, we present an equation that provides the probability of the occurrence of a double crossover between two nonrecombinant, informative polymorphisms.
Collapse
Affiliation(s)
- K W Broman
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
23
|
Thompson DA, Stahl FW. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 1999; 153:621-41. [PMID: 10511544 PMCID: PMC1460802 DOI: 10.1093/genetics/153.2.621] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.
Collapse
Affiliation(s)
- D A Thompson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| | | |
Collapse
|
24
|
Kaback DB, Barber D, Mahon J, Lamb J, You J. Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 1999; 152:1475-86. [PMID: 10430577 PMCID: PMC1460698 DOI: 10.1093/genetics/152.4.1475] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, small chromosomes undergo meiotic reciprocal recombination (crossing over) at rates (centimorgans per kilobases) greater than those of large chromosomes, and recombination rates respond directly to changes in the total size of a chromosomal DNA molecule. This phenomenon, termed chromosome size-dependent control of meiotic reciprocal recombination, has been suggested to be important for ensuring that homologous chromosomes cross over during meiosis. The mechanism of this regulation was investigated by analyzing recombination in identical genetic intervals present on different size chromosomes. The results indicate that chromosome size-dependent control is due to different amounts of crossover interference. Large chromosomes have high levels of interference while small chromosomes have much lower levels of interference. A model for how crossover interference directly responds to chromosome size is presented. In addition, chromosome size-dependent control was shown to lower the frequency of homologous chromosomes that failed to undergo crossovers, suggesting that this control is an integral part of the mechanism for ensuring meiotic crossing over between homologous chromosomes.
Collapse
Affiliation(s)
- D B Kaback
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry, New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | | | | | |
Collapse
|
25
|
Bowring FJ, Catcheside DE. Evidence for negative interference: clustering of crossovers close to the am locus in Neurospora crassa among am recombinants. Genetics 1999; 152:965-9. [PMID: 10388816 PMCID: PMC1460654 DOI: 10.1093/genetics/152.3.965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In response to a conflict between two mapping studies in the predicted orientation of the allele map with respect to the centromere, Fincham proposed that recombination events at the Neurospora am locus rarely have an associated crossover. Fincham considered that the elevated levels of crossing over between flanking markers in am recombinants resulted from negative interference, an increased probability of a nearby second event, and on this basis predicted a clustering of crossing over near am in these recombinants. In this article we reevaluate the data from three mapping studies of the am locus and report molecular evidence that shows crossovers to be clustered immediately proximal to am in am recombinants.
Collapse
Affiliation(s)
- F J Bowring
- School of Biological Sciences, Flinders University, Bedford Park, South Australia, 5042
| | | |
Collapse
|
26
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999. [PMID: 10357855 DOI: 10.0000/pmid10357855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
27
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1664] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
28
|
Abstract
Ordered tetrad data yield information on chromatid interference, chiasma interference, and centromere locations. In this article, we show that the assumption of no chromatid interference imposes certain constraints on multilocus ordered tetrad probabilities. Assuming no chromatid interference, these constraints can be used to order markers under general chiasma processes. We also derive multilocus tetrad probabilities under a class of chiasma interference models, the chi-square models. Finally, we compare centromere map functions under the chi-square models with map functions proposed in the literature. Results in this article can be applied to order genetic markers and map centromeres using multilocus ordered tetrad data.
Collapse
Affiliation(s)
- H Zhao
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
29
|
|
30
|
Navarro A, Betrán E, Barbadilla A, Ruiz A. Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics 1997; 146:695-709. [PMID: 9178017 PMCID: PMC1208008 DOI: 10.1093/genetics/146.2.695] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A theoretical analysis of the effects of inversions on recombination and gene flux between arrangements caused by gene conversion and crossing over was carried out. Two different mathematical models of recombination were used: the Poisson model (without interference) and the Counting model (with interference). The main results are as follows. (1) Recombination and gene flux are highly site-dependent both inside and outside the inverted regions. (2) Crossing over overwhelms gene conversion as a cause of gene flux in large inversions, while conversion becomes relatively significant in short inversions and in regions around the breakpoints. (3) Under the Counting model the recombination rate between two markers depends strongly on the position of the markers along the inverted segment. Two equally spaced markers in the central part of the inverted segment have less recombination than if they are in a more extreme position. (4) Inversions affect recombination rates in the univerted regions of the chromosome. Recombination increases in the distal segment and decreases in the proximal segment. These results provide an explanation for a number of observations reported in the literature. Because inversions are ubiquitous in the evolutionary history of many Drosophila species, the effects of inversions on recombination are expected to influence DNA variation patterns.
Collapse
Affiliation(s)
- A Navarro
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
31
|
Horecka J, Sprague GF. Identification and characterization of FAR3, a gene required for pheromone-mediated G1 arrest in Saccharomyces cerevisiae. Genetics 1996; 144:905-21. [PMID: 8913737 PMCID: PMC1207631 DOI: 10.1093/genetics/144.3.905] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In haploid Saccharomyces cerevisiae cells, mating pheromones activate a signal transduction pathway that leads to cell cycle arrest in the G1 phase and to transcription induction of genes that promote conjugation. To identify genes that link the signal transduction pathway and the cell cycle machinery, we developed a selection strategy to isolate yeast mutants specifically defective for G1 arrest. Several of these mutants identified previously known genes, including CLN3, FUS3, and FAR1. In addition, a new gene, FAR3, was identified and characterized. FAR3 encodes a novel protein of 204 amino acid residues that is dispensable for viability. Northern blot experiments indicated that FAR3 expression is constitutive with respect to cell type, pheromone treatment, and cell cycle position. As a first step toward elucidating the mechanism by which Far3 promotes pheromone-mediated G1 arrest, we performed genetic and molecular experiments to test the possibility that Far3 participates in one of the heretofore characterized mechanisms, namely Fus3/Far1-mediated inhibition of Cdc28-Cln kinase activity, G1 cyclin gene repression, and G1 cyclin protein turnover. Our data indicate that Far3 effects G1 arrest by a mechanism distinct from those previously known.
Collapse
Affiliation(s)
- J Horecka
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
32
|
Gilbertson LA, Stahl FW. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics 1996; 144:27-41. [PMID: 8878671 PMCID: PMC1207501 DOI: 10.1093/genetics/144.1.27] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We tested predictions of the double-strand break repair (DSBR) model for meiotic recombination by examining the segregation patterns of small palindromic insertions, which frequently escape mismatch repair when in heteroduplex DNA. The palindromes flanked a well characterized DSB site at the ARG4 locus. The "canonical" DSBR model, in which only 5' ends are degraded and resolution of the four-stranded intermediate is by Holliday junction resolvase, predicts that hDNA will frequently occur on both participating chromatids in a single event. Tetrads reflecting this configuration of hDNA were rare. In addition, a class of tetrads not predicted by the canonical DSBR model was identified. This class represented events that produced hDNA in a "trans" configuration, on opposite strands of the same duplex on the two sides of the DSB site. Whereas most classes of convertant tetrads had typical frequencies of associated crossovers, tetrads with trans hDNA were parental for flanking markers. Modified versions of the DSBR model, including one that uses a topoisomerase to resolve the canonical DSBR intermediate, are supported by these data.
Collapse
Affiliation(s)
- L A Gilbertson
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA.
| | | |
Collapse
|