1
|
Parker HG, VonHoldt BM, Quignon P, Margulies EH, Shao S, Mosher DS, Spady TC, Elkahloun A, Cargill M, Jones PG, Maslen CL, Acland GM, Sutter NB, Kuroki K, Bustamante CD, Wayne RK, Ostrander EA. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 2009; 325:995-8. [PMID: 19608863 PMCID: PMC2748762 DOI: 10.1126/science.1173275] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retrotransposition of processed mRNAs is a common source of novel sequence acquired during the evolution of genomes. Although the vast majority of retroposed gene copies, or retrogenes, rapidly accumulate debilitating mutations that disrupt the reading frame, a small percentage become new genes that encode functional proteins. By using a multibreed association analysis in the domestic dog, we demonstrate that expression of a recently acquired retrogene encoding fibroblast growth factor 4 (fgf4) is strongly associated with chondrodysplasia, a short-legged phenotype that defines at least 19 dog breeds including dachshund, corgi, and basset hound. These results illustrate the important role of a single evolutionary event in constraining and directing phenotypic diversity in the domestic dog.
Collapse
Affiliation(s)
- Heidi G. Parker
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bridgett M. VonHoldt
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095 USA
| | - Pascale Quignon
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Elliott H. Margulies
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Stephanie Shao
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Dana S. Mosher
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Tyrone C. Spady
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Abdel Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Michele Cargill
- Affymetrix Corporation, 3420 Central Expwy, Santa Clara, CA 95051 USA
| | - Paul G. Jones
- The WALTHAM® Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, UK, LE14 4RT
| | - Cheryl L. Maslen
- Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, OR 97239 USA
| | - Gregory M. Acland
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Nathan B. Sutter
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Keiichi Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO 65211
| | - Carlos D. Bustamante
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095 USA
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
2
|
Abstract
There is currently a broad effort to produce genome-wide high-density linkage disequilibrium (LD) maps with single nucleotide polymorphisms. The hope is that the resulting maps can be exploited to find genes that affect the onset and severity of at least some common human diseases. These maps may also be useful for identifying genes that affect drug response or the likelihood of drug toxicities. The goal of this review is to provide a broad overview of some of the key concerns motivating the design of a major international project called the International Haplotype Map Project. The process of map production requires the identification of very large numbers of polymorphic sites, implementation of facile, highly accurate and inexpensive genotyping production pipelines, and provision for public access to the genotype data. Great progress has been made recently in genotyping methods and these advances are allowing very large-scale data collection. A major goal of these efforts is to enable the selection of subsets of markers that capture useful genetic information in short genomic intervals, while optimally reducing the number of markers that must be genotyped. Standard measures of LD provide a starting point but may not fully capture the complexity of the information inherent in the data. Extremely dense genotype data in several broadly representative populations (European, Chinese, Japanese, and Yoruba) should yield important insights into the genetic structure of most genes. Further study is required to determine how broadly applicable the data will be to other population groups. Significant challenges lie ahead in determining the best methods for the selection of markers in disease/phenotype studies, large-scale genotyping, and analysis of the resulting genetic data.
Collapse
Affiliation(s)
- John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|