1
|
Liu K, Wang M, Wang L, Wang X, Feng H, Dai Q, Zhang C, Yu H. RMI1 is essential for maintaining rice genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1735-1750. [PMID: 39569466 DOI: 10.1111/tpj.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Heat is a critical environmental stress for plant survival. One of its harmful effects on the cells is the disruption of genome integrity. However, the mechanisms by which plants cope with heat-induced DNA damage remain largely unknown. RMI1, a component of the RTR (RECQ4-TOP3α-RMI1) complex, plays a pivotal role in maintaining genome stability. In this study, we identified the target gene RMI1 by characterizing a high-temperature-sensitive mutant. The growth and development of rmi1-1 seedlings carrying a non-frameshift mutation in RMI1 were hindered at 38°C. Abnormal mitotic chromosome behaviours ultimately led to the cell death of root tips. Additionally, the presence of chromosome fragments during anaphase I caused pollen abortion and sterility in rmi1-1 plants. Yeast two-hybrid assays revealed that the interactions between RMI1-1 and RECQ4 or TOP3α were weakened with increasing temperature and entirely ceased at 36°C. In contrast, the functional RMI1 maintained its interactions with RECQ4 or TOP3α under the same conditions. These results indicate that the non-frameshift mutation in RMI1 disrupts the formation of the RTR complex at high temperatures, leading to defects in DNA repair and increased sensitivity of rmi1-1 under heat stress. However, embryos of the rmi1-cr2 mutant with a frameshift mutation in RMI1 exhibited complete lethality. In addition, the overexpression of RMI1 enhanced the heat tolerance in rice. These findings provide insights into the molecular mechanisms that RMI1 responds to high temperatures by maintaining genome stability in rice.
Collapse
Affiliation(s)
- Kangwei Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mengna Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lengjing Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaofeng Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Haiyang Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qiang Dai
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
2
|
Lafuente-Barquero J, Svejstrup JQ, Luna R, Aguilera A. Expression of human RECQL5 in Saccharomyces cerevisiae causes transcription defects and transcription-associated genome instability. Mol Genet Genomics 2024; 299:59. [PMID: 38796829 PMCID: PMC11128410 DOI: 10.1007/s00438-024-02152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Jesper Q Svejstrup
- University of Copenhagen, Copenhagen, Denmark
- Francis Crick Institute, London, UK
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain.
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| |
Collapse
|
3
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
4
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
5
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
6
|
Katheeja MN, Das SP, Laha S. The budding yeast protein Chl1p is required for delaying progression through G1/S phase after DNA damage. Cell Div 2021; 16:4. [PMID: 34493312 PMCID: PMC8424871 DOI: 10.1186/s13008-021-00072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background The budding yeast protein Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This helicase is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with faster kinetics in chl1 mutants compared to wild-type cells. Also, more damage to DNA is observed in chl1 cells. The viability falls synergistically in rad24chl1 cells. The regulation of Chl1p on budding kinetics in G1 phase falls in line with Rad9p/Chk1p and shows a synergistic effect with Rad24p/Rad53p. rad9chl1 and chk1chl1 shows similar bud emergence as the single mutants chl1, rad9 and chk1. Whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24, rad53 and chl1. In presence of MMS induced damage, synergistic with Rad24p indicates Chl1p’s role as a checkpoint at G1/S acting parallel to damage checkpoint pathway. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further, we have also confirmed that the checkpoint defect functions in parallel to the damage checkpoint pathway of Rad24p. Conclusion Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint activity in presence of damage. This confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1p thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p for Rad53p activation when damaging agents perturb the DNA. Apart from checkpoint activation, it also regulates the budding kinetics as a repair gene. Supplementary Information The online version contains supplementary material available at 10.1186/s13008-021-00072-x.
Collapse
Affiliation(s)
- Muhseena N Katheeja
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Medical College, Yenepoya (Deemed To Be University), University Road, 3rd floor, Academic block, Deralakatte, Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Medical College, Yenepoya (Deemed To Be University), University Road, 3rd floor, Academic block, Deralakatte, Mangalore, 575018, India. .,Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, 700 054, Kolkata, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Medical College, Yenepoya (Deemed To Be University), University Road, 3rd floor, Academic block, Deralakatte, Mangalore, 575018, India. .,Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, 700 054, Kolkata, India.
| |
Collapse
|
7
|
Shikha K, Sriram Bharath G, Mukhopadhyay S, Chakraborty M, Ghosh S, Khatun S, De D, Gupta AN, Ganguly A. The catalytic core of Leishmania donovani RECQ helicase unwinds a wide spectrum of DNA substrates and is stimulated by replication protein A. FEBS J 2021; 289:394-416. [PMID: 34355508 DOI: 10.1111/febs.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
RecQ helicases are superfamily 2 (SF2) DNA helicases that unwind a wide spectrum of complex DNA structures in a 3' to 5' direction and are involved in maintaining genome stability. RecQ helicases from protozoan parasites have gained significant interest in recent times because of their involvement in cellular DNA repair pathways, making them important targets for drug development. In this study, we report biophysical and biochemical characterization of the catalytic core of a RecQ helicase from hemoflagellate protozoan parasite Leishmania donovani. Among the two putative RecQ helicases identified in L. donovani, we cloned, overexpressed and purified the catalytic core of LdRECQb. The catalytic core was found to be very efficient in unwinding a wide variety of DNA substrates like forked duplex, 3' tailed duplex and Holliday junction DNA. Interestingly, the helicase core also unwound blunt duplex with slightly less efficiency. The enzyme exhibited high level of DNA-stimulated ATPase activity with preferential stimulation by forked duplex, Holliday junction and 3' tailed duplex. Walker A motif lysine mutation severely affected the ATPase activity and significantly affected unwinding activity. Like many other RecQ helicases, L. donovani RECQb also possesses strand annealing activity. Unwinding of longer DNA substrates by LdRECQb catalytic core was found to be stimulated in the presence of replication protein A (LdRPA-1) from L. donovani. Detailed biochemical characterization and comparison of kinetic parameters indicate that L. donovani RECQb shares considerable functional similarity with human Bloom syndrome helicase.
Collapse
Affiliation(s)
- Kumari Shikha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | | | | | - Mayukh Chakraborty
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Susmita Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Suparna Khatun
- Department of Physics, Indian Institute of Technology Kharagpur, India
| | - Debajyoti De
- Department of Physics, Indian Institute of Technology Kharagpur, India
| | - Amar Nath Gupta
- Department of Physics, Indian Institute of Technology Kharagpur, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
8
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
9
|
Kaur E, Agrawal R, Sengupta S. Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword? Front Genet 2021; 12:634789. [PMID: 33777104 PMCID: PMC7994599 DOI: 10.3389/fgene.2021.634789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage repair response is an important biological process involved in maintaining the fidelity of the genome in eukaryotes and prokaryotes. Several proteins that play a key role in this process have been identified. Alterations in these key proteins have been linked to different diseases including cancer. BLM is a 3′−5′ ATP-dependent RecQ DNA helicase that is one of the most essential genome stabilizers involved in the regulation of DNA replication, recombination, and both homologous and non-homologous pathways of double-strand break repair. BLM structure and functions are known to be conserved across many species like yeast, Drosophila, mouse, and human. Genetic mutations in the BLM gene cause a rare, autosomal recessive disorder, Bloom syndrome (BS). BS is a monogenic disease characterized by genomic instability, premature aging, predisposition to cancer, immunodeficiency, and pulmonary diseases. Hence, these characteristics point toward BLM being a tumor suppressor. However, in addition to mutations, BLM gene undergoes various types of alterations including increase in the copy number, transcript, and protein levels in multiple types of cancers. These results, along with the fact that the lack of wild-type BLM in these cancers has been associated with increased sensitivity to chemotherapeutic drugs, indicate that BLM also has a pro-oncogenic function. While a plethora of studies have reported the effect of BLM gene mutations in various model organisms, there is a dearth in the studies undertaken to investigate the effect of its oncogenic alterations. We propose to rationalize and integrate the dual functions of BLM both as a tumor suppressor and maybe as a proto-oncogene, and enlist the plausible mechanisms of its deregulation in cancers.
Collapse
Affiliation(s)
- Ekjot Kaur
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Ritu Agrawal
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Sagar Sengupta
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| |
Collapse
|
10
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
11
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- znbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
12
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
13
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
14
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- azli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
15
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
16
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
17
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
18
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
19
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
20
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021; 9:640755. [PMID: 33718381 PMCID: PMC7947261 DOI: 10.3389/fcell.2021.640755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund-Thomson syndrome (RTS), Baller-Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
Affiliation(s)
- Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anthony J. Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3-GENES GENOMES GENETICS 2020; 10:4359-4368. [PMID: 33115720 PMCID: PMC7718751 DOI: 10.1534/g3.120.401709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Most eukaryotic genomes encode multiple RecQ family helicases, including five such enzymes in humans. For many years, the yeast Saccharomyces cerevisiae was considered unusual in that it only contained a single RecQ helicase, named Sgs1. However, it has recently been discovered that a second RecQ helicase, called Hrq1, resides in yeast. Both Hrq1 and Sgs1 are involved in genome integrity, functioning in processes such as DNA inter-strand crosslink repair, double-strand break repair, and telomere maintenance. However, it is unknown if these enzymes interact at a genetic, physical, or functional level as demonstrated for their human homologs. Thus, we performed synthetic genetic array (SGA) analyses of hrq1Δ and sgs1Δ mutants. As inactive alleles of helicases can demonstrate dominant phenotypes, we also performed SGA analyses on the hrq1-K318A and sgs1-K706A ATPase/helicase-null mutants, as well as all combinations of deletion and inactive double mutants. We crossed these eight query strains (hrq1Δ, sgs1Δ, hrq1-K318A, sgs1-K706A, hrq1Δ sgs1Δ, hrq1Δ sgs1-K706A, hrq1-K318A sgs1Δ, and hrq1-K318A sgs1-K706A) to the S. cerevisiae single gene deletion and temperature-sensitive allele collections to generate double and triple mutants and scored them for synthetic positive and negative genetic effects based on colony growth. These screens identified hundreds of synthetic interactions, supporting the known roles of Hrq1 and Sgs1 in DNA repair, as well as suggesting novel connections to rRNA processing, mitochondrial DNA maintenance, transcription, and lagging strand synthesis during DNA replication.
Collapse
|
22
|
De Magis A, Götz S, Hajikazemi M, Fekete-Szücs E, Caterino M, Juranek S, Paeschke K. Zuo1 supports G4 structure formation and directs repair toward nucleotide excision repair. Nat Commun 2020; 11:3907. [PMID: 32764578 PMCID: PMC7413387 DOI: 10.1038/s41467-020-17701-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/14/2020] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids can fold into G-quadruplex (G4) structures that can fine-tune biological processes. Proteins are required to recognize G4 structures and coordinate their function. Here we identify Zuo1 as a novel G4-binding protein in vitro and in vivo. In vivo in the absence of Zuo1 fewer G4 structures form, cell growth slows and cells become UV sensitive. Subsequent experiments reveal that these cellular changes are due to reduced levels of G4 structures. Zuo1 function at G4 structures results in the recruitment of nucleotide excision repair (NER) factors, which has a positive effect on genome stability. Cells lacking functional NER, as well as Zuo1, accumulate G4 structures, which become accessible to translesion synthesis. Our results suggest a model in which Zuo1 supports NER function and regulates the choice of the DNA repair pathway nearby G4 structures.
Collapse
Affiliation(s)
- Alessio De Magis
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvia Götz
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Mona Hajikazemi
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Enikő Fekete-Szücs
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
23
|
Zacheja T, Toth A, Harami GM, Yang Q, Schwindt E, Kovács M, Paeschke K, Burkovics P. Mgs1 protein supports genome stability via recognition of G-quadruplex DNA structures. FASEB J 2020; 34:12646-12662. [PMID: 32748509 DOI: 10.1096/fj.202000886r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
Abstract
The integrity of the genetic material is crucial for every organism. One intrinsic attack to genome stability is stalling of the replication fork which can result in DNA breakage. Several factors, such as DNA lesions or the formation of stable secondary structures (eg, G-quadruplexes) can lead to replication fork stalling. G-quadruplexes (G4s) are well-characterized stable secondary DNA structures that can form within specific single-stranded DNA sequence motifs and have been shown to block/pause the replication machinery. In most genomes several helicases have been described to regulate G4 unfolding to preserve genome integrity, however, different experiments raise the hypothesis that processing of G4s during DNA replication is more complex and requires additional, so far unknown, proteins. Here, we show that the Saccharomyces cerevisiae Mgs1 protein robustly binds to G4 structures in vitro and preferentially acts at regions with a strong potential to form G4 structures in vivo. Our results suggest that Mgs1 binds to G4-forming sites and has a role in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Theresa Zacheja
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Agnes Toth
- Biological Research Centre, Institute of Genetics, Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gabor M Harami
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Qianlu Yang
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Eike Schwindt
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Mihály Kovács
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.,Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Burkovics
- Biological Research Centre, Institute of Genetics, Szeged, Hungary
| |
Collapse
|
24
|
Sandhu R, Monge Neria F, Monge Neria J, Chen X, Hollingsworth NM, Börner GV. DNA Helicase Mph1 FANCM Ensures Meiotic Recombination between Parental Chromosomes by Dissociating Precocious Displacement Loops. Dev Cell 2020; 53:458-472.e5. [PMID: 32386601 PMCID: PMC7386354 DOI: 10.1016/j.devcel.2020.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Meiotic pairing between parental chromosomes (homologs) is required for formation of haploid gametes. Homolog pairing depends on recombination initiation via programmed double-strand breaks (DSBs). Although DSBs appear prior to pairing, the homolog, rather than the sister chromatid, is used as repair partner for crossing over. Here, we show that Mph1, the budding yeast ortholog of Fanconi anemia helicase FANCM, prevents precocious DSB strand exchange between sister chromatids before homologs have completed pairing. By dissociating precocious DNA displacement loops (D-loops) between sister chromatids, Mph1FANCM ensures high levels of crossovers and non-crossovers between homologs. Later-occurring recombination events are protected from Mph1-mediated dissociation by synapsis protein Zip1. Increased intersister repair in absence of Mph1 triggers a shift among remaining interhomolog events from non-crossovers to crossover-specific strand exchange, explaining Mph1's apparent anti-crossover function. Our findings identify temporal coordination between DSB strand exchange and homolog pairing as a critical determinant for recombination outcome.
Collapse
Affiliation(s)
- Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Francisco Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Jesús Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
27
|
Li S, Xu Z, Xu J, Zuo L, Yu C, Zheng P, Gan H, Wang X, Li L, Sharma S, Chabes A, Li D, Wang S, Zheng S, Li J, Chen X, Sun Y, Xu D, Han J, Chan K, Qi Z, Feng J, Li Q. Rtt105 functions as a chaperone for replication protein A to preserve genome stability. EMBO J 2018; 37:embj.201899154. [PMID: 30065069 DOI: 10.15252/embj.201899154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.
Collapse
Affiliation(s)
- Shuqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiyun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiawei Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Linyu Zuo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanhe Yu
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pu Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xuezheng Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Longtu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jinbao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and National Collaborative Center for Biotherapy, Chengdu, China
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhi Qi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianxun Feng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Abstract
The spatiotemporal organization of chromatin plays central roles in cellular function. The ribosomal DNA (rDNA) chromatin undergoes dynamic structural changes during mitosis and stress. Here, we developed a CRISPR-based imaging system and tracked the condensation dynamics of rDNA chromatin in live yeast cells under glucose starvation. We found that acute glucose starvation triggers rapid condensation of rDNA. Time-lapse microscopy revealed two stages for rDNA condensation: a “primary stage,” when relaxed rDNA chromatin forms higher order loops or rings, and a “secondary stage,” when the rDNA rings further condense into compact clusters. Twisting of rDNA rings accompanies the secondary stage. The condensin complex, but not the cohesin complex, is required for efficient rDNA condensation in response to glucose starvation. Furthermore, we found that the DNA helicase Sgs1 is essential for the survival of cells expressing rDNA-bound dCas9, suggesting a role for helicases in facilitating DNA replication at dCas9-binding sites. A CRISPR-based imaging system allows tracking of rDNA condensation in single cells Glucose starvation triggers rDNA condensation in two prominent stages Condensin contributes to efficient rDNA condensation caused by glucose starvation Sgs1 helicase is required for normal rDNA replication at dCas9-binding sites
Collapse
Affiliation(s)
- Yuan Xue
- Department of Molecular Cellular and Developmental Biology, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
- Corresponding author
| |
Collapse
|
29
|
Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3269-3279. [PMID: 28818866 PMCID: PMC5633378 DOI: 10.1534/g3.117.300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To ensure genomic integrity, living organisms have evolved diverse molecular processes for sensing and repairing damaged DNA. If improperly repaired, DNA damage can give rise to different types of mutations, an important class of which are genomic structural variants (SVs). In spite of their importance for phenotypic variation and genome evolution, potential contributors to SV formation in Saccharomyces cerevisiae (budding yeast), a highly tractable model organism, are not fully recognized. Here, we developed and applied a genome-wide assay to identify yeast gene knockout mutants associated with de novo deletion formation, in particular single-strand annealing (SSA)-mediated deletion formation, in a systematic manner. In addition to genes previously linked to genome instability, our approach implicates novel genes involved in chromatin remodeling and meiosis in affecting the rate of SSA-mediated deletion formation in the presence or absence of stress conditions induced by DNA-damaging agents. We closely examined two candidate genes, the chromatin remodeling gene IOC4 and the meiosis-related gene MSH4, which when knocked-out resulted in gene expression alterations affecting genes involved in cell division and chromosome organization, as well as DNA repair and recombination, respectively. Our high-throughput approach facilitates the systematic identification of processes linked to the formation of a major class of genetic variation.
Collapse
|
30
|
Hatkevich T, Sekelsky J. Bloom syndrome helicase in meiosis: Pro-crossover functions of an anti-crossover protein. Bioessays 2017; 39. [PMID: 28792069 DOI: 10.1002/bies.201700073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the Bloom syndrome helicase (BLM) and its orthologs are well characterized in mitotic DNA damage repair, but their roles within the context of meiotic recombination are less clear. In meiotic recombination, multiple repair pathways are used to repair meiotic DSBs, and current studies suggest that BLM may regulate the use of these pathways. Based on literature from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, we present a unified model for a critical meiotic role of BLM and its orthologs. In this model, BLM and its orthologs utilize helicase activity to regulate the use of various pathways in meiotic recombination by continuously disassembling recombination intermediates. This unwinding activity provides the meiotic program with a steady pool of early recombination substrates, increasing the probability for a DSB to be processed by the appropriate pathway. As a result of BLM activity, crossovers are properly placed throughout the genome, promoting proper chromosomal disjunction at the end of meiosis. This unified model can be used to further refine the complex role of BLM and its orthologs in meiotic recombination.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Budhathoki JB, Maleki P, Roy WA, Janscak P, Yodh JG, Balci H. A Comparative Study of G-Quadruplex Unfolding and DNA Reeling Activities of Human RECQ5 Helicase. Biophys J 2017; 110:2585-2596. [PMID: 27332117 DOI: 10.1016/j.bpj.2016.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022] Open
Abstract
RECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes. RECQ5 is significant in suppressing sister chromatid exchanges during homologous recombination but its GQ unfolding activity are not known. We performed single-molecule studies under different salt (50-150 mM KCl or NaCl) and ATP concentrations on different GQ constructs including human telomeric GQ (with different overhangs and polarities) and GQ formed by thrombin-binding aptamer to investigate this activity. These studies demonstrated a RECQ5-mediated GQ unfolding activity that was an order of magnitude weaker than BLM and WRN. On the other hand, BLM and RECQ5 demonstrated similar single-stranded DNA (ssDNA) reeling activities that were not coupled to GQ unfolding. These results demonstrate overlap in function between these RecQ helicases; however, the relatively weak GQ destabilization activity of RECQ5 compared to BLM and WRN suggests that RECQ5 is not primarily associated with GQ destabilization, but could substitute for the more efficient helicases under conditions where their activity is compromised. In addition, these results implicate a more general role for helicase-promoted ssDNA reeling activity such as removal of proteins at the replication fork, whereas the association of ssDNA reeling with GQ destabilization is more helicase-specific.
Collapse
Affiliation(s)
| | | | - William A Roy
- Department of Physics, Kent State University, Kent, Ohio
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jaya G Yodh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, Ohio.
| |
Collapse
|
32
|
Affiliation(s)
- Giovanni Capranico
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Jessica Marinello
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Giovanni Chillemi
- SCAI
SuperComputing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185 Rome, Italy
| |
Collapse
|
33
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
34
|
Simon MN, Churikov D, Géli V. Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow085. [PMID: 27683094 DOI: 10.1093/femsyr/fow085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/25/2022] Open
Abstract
Replicative senescence is triggered by short unprotected telomeres that arise in the absence of telomerase. In addition, telomeres are known as difficult regions to replicate due to their repetitive G-rich sequence prone to secondary structures and tightly bound non-histone proteins. Here we review accumulating evidence that telomerase inactivation in yeast immediately unmasks the problems associated with replication stress at telomeres. Early after telomerase inactivation, yeast cells undergo successive rounds of stochastic DNA damages and become dependent on recombination for viability long before the bulk of telomeres are getting critically short. The switch from telomerase to recombination to repair replication stress-induced damage at telomeres creates telomere instability, which may drive further genomic alterations and prepare the ground for telomerase-independent immortalization observed in yeast survivors and in 15% of human cancer.
Collapse
Affiliation(s)
- Marie-Noëlle Simon
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| | - Dmitri Churikov
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| | - Vincent Géli
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| |
Collapse
|
35
|
Germline RECQL mutations in high risk Chinese breast cancer patients. Breast Cancer Res Treat 2016; 157:211-215. [PMID: 27125668 DOI: 10.1007/s10549-016-3784-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
Abstract
Recently, RECQL was reported as a new breast cancer susceptibility gene. RECQL belongs to the RECQ DNA helicase family which unwinds double strand DNA and involved in the DNA replication stress response, telomere maintenance and DNA repair. RECQL deficient mice cells are prone to spontaneous chromosomal instability and aneuploidy, suggesting a tumor-suppressive role of RECQL in cancer. In this study, RECQL gene mutation screening was performed on 1110 breast cancer patients who were negative for BRCA1, BRCA2, TP53 and PTEN gene mutations and recruited from March 2007 to June 2015 in the Hong Kong Hereditary and High Risk Breast Cancer Program. Four different RECQL pathogenic mutations were identified in six of the 1110 (0.54 %) tested breast cancer patients. The identified mutations include one frame-shift deletion (c.974_977delAAGA), two splicing site mutations (c.394+1G>A, c.867+1G>T) and one nonsense mutation (c.796C>T, p.Gln266Ter). Two of the mutations (c.867+1G>T and p.Gln266Ter) were seen in more than one patients. This study provides the basis for existing of pathogenic RECQL mutations in Southern Chinese breast cancer patients. The significance of rare variants in RECQL gene in the estimation of breast cancer risk warranted further investigation in larger cohort of patients and in other ethnic groups.
Collapse
|
36
|
Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2015; 5:2187-97. [PMID: 26297725 PMCID: PMC4593000 DOI: 10.1534/g3.115.021493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations affecting the three replicative polymerases, Pol α, Pol δ, and Pol ε with genome-wide collections of null and reduced function mutations. We identify large numbers of genetic interactions that inform about the roles that specific genes play to help Pol α, Pol δ, and Pol ε function. Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not represent the majority of the genetic interactions identified. Instead our data support a model for division of labor between the different DNA polymerases during DNA replication. For example, our genetic interaction data are consistent with biochemical data showing that Pol ε is more important to the Pre-Loading complex than either Pol α or Pol δ. We also observed distinct patterns of genetic interactions between leading- and lagging-strand DNA polymerases, with particular genes being important for coupling proliferating cell nuclear antigen loading/unloading (Ctf18, Elg1) with nucleosome assembly (chromatin assembly factor 1, histone regulatory HIR complex). Overall our data reveal specialized genetic networks that affect different aspects of leading- and lagging-strand DNA replication. To help others to engage with these data we have generated two novel, interactive visualization tools, DIXY and Profilyzer.
Collapse
|
37
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
38
|
Kaur H, De Muyt A, Lichten M. Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates. Mol Cell 2015; 57:583-594. [PMID: 25699707 DOI: 10.1016/j.molcel.2015.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022]
Abstract
The topoisomerase III (Top3)-Rmi1 heterodimer, which catalyzes DNA single-strand passage, forms a conserved complex with the Bloom's helicase (BLM, Sgs1 in budding yeast). This complex has been proposed to regulate recombination by disassembling double Holliday junctions in a process called dissolution. Top3-Rmi1 has been suggested to act at the end of this process, resolving hemicatenanes produced by earlier BLM/Sgs1 activity. We show here that, to the contrary, Top3-Rmi1 acts in all meiotic recombination functions previously associated with Sgs1, most notably as an early recombination intermediate chaperone, promoting regulated crossover and noncrossover recombination and preventing aberrant recombination intermediate accumulation. In addition, we show that Top3-Rmi1 has important Sgs1-independent functions that ensure complete recombination intermediate resolution and chromosome segregation. These findings indicate that Top3-Rmi1 activity is important throughout recombination to resolve strand crossings that would otherwise impede progression through both early steps of pathway choice and late steps of intermediate resolution.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Arnaud De Muyt
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Owen N, Hejna J, Rennie S, Mitchell A, Newell AH, Ziaie N, Moses RE, Olson SB. Bloom syndrome radials are predominantly non-homologous and are suppressed by phosphorylated BLM. Cytogenet Genome Res 2015; 144:255-263. [PMID: 25766002 DOI: 10.1159/000375247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 01/01/2023] Open
Abstract
Biallelic mutations in BLM cause Bloom syndrome (BS), a genome instability disorder characterized by growth retardation, sun sensitivity and a predisposition to cancer. As evidence of decreased genome stability, BS cells demonstrate not only elevated levels of spontaneous sister chromatid exchanges (SCEs), but also exhibit chromosomal radial formation. The molecular nature and mechanism of radial formation is not known, but radials have been thought to be DNA recombination intermediates between homologs that failed to resolve. However, we find that radials in BS cells occur over 95% between non-homologous chromosomes, and occur non-randomly throughout the genome. BLM must be phosphorylated at T99 and T122 for certain cell cycle checkpoints, but it is not known whether these modifications are necessary to suppress radial formation. We find that exogenous BLM constructs preventing phosphorylation at T99 and T122 are not able to suppress radial formation in BS cells, but are able to inhibit SCE formation. These findings indicate that BLM functions in 2 distinct pathways requiring different modifications. In one pathway, for which the phosphorylation marks appear dispensable, BLM functions to suppress SCE formation. In a second pathway, T99 and T122 phosphorylations are essential for suppression of chromosomal radial formation, both those formed spontaneously and those formed following interstrand crosslink damage.
Collapse
Affiliation(s)
- Nichole Owen
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - James Hejna
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501 Japan
| | - Scott Rennie
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Asia Mitchell
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Amy Hanlon Newell
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Navid Ziaie
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, TX 77030
| | - Susan B Olson
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| |
Collapse
|
40
|
Matsushita Y, Yokoyama Y, Yoshida H, Osawa Y, Mizunuma M, Shigeto T, Futagami M, Imaizumi T, Mizunuma H. The level of RECQL1 expression is a prognostic factor for epithelial ovarian cancer. J Ovarian Res 2014; 7:107. [PMID: 25424877 PMCID: PMC4255635 DOI: 10.1186/s13048-014-0107-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/02/2014] [Indexed: 11/17/2022] Open
Abstract
Background The human RECQ DNA helicase family is involved in genomic stability. Gene mutations of RECQL2, RECQL3, and RECQL4 are associated with genetic disorders and induce early aging and carcinogenesis. Although previous studies have reported that the level of RECQL1 expression is correlated with the prognosis of some of malignancies, the function of RECQL1 is not yet clarified. The present study aimed to examine the relationship between prognosis and the level of RECQL1 expression in epithelial ovarian cancer (EOC), and to identify the role of RECQL1 in EOC cells. Methods The level of RECQL1 expression was determined immunohistochemically in 111 patients with EOC who received initial treatment at Hirosaki University hospital between 2006 and 2011. Effects of RECQL1 on cell growth or apoptosis were examined in vitro using wild-type and OVCAR-3 cells (RECQL1(+) cells) and similar cells transfected with RECQL1 siRNA transfected (RECQL1(−) cells). Results The level of RECQL1 expression was not related to histological type, clinical stage, or retroperitoneal lymph node metastasis, but the expression level was significantly higher (P = 0.002) in patients with recurrence than those without recurrence, and progression-free survival and complete response rate to chemotherapy were also improved in patients with RECQL1-low expression (n = 39) stage III/IV EOC (P = 0.02 and P <0.05 vs RECQL1-high expression patients (n = ), respectively). A cell proliferation and colony formation assays revealed significantly less growth of RECQL1(−) cells compared to RECQL1(+) cells. A flow cytometry using annexin V -FITC and propidium iodide (PI) staining revealed a significant increase in apoptotic RECQL1(−) cells. Cell cycle analysis showed a significantly greater distribution in subG1 phase indicating apoptotic cells in RECQL1(−) cells than in RECQL1(+) cells. Conclusions These results suggest that RECQL1 is a prognostic factor for EOC and that RECQL1 contributes to potential malignancy by inhibiting apoptosis.
Collapse
Affiliation(s)
- Yoko Matsushita
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Yuki Osawa
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Makito Mizunuma
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Tatsuhiko Shigeto
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Masayuki Futagami
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Tadaastu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Hideki Mizunuma
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| |
Collapse
|
41
|
Churikov D, Charifi F, Simon MN, Géli V. Rad59-facilitated acquisition of Y' elements by short telomeres delays the onset of senescence. PLoS Genet 2014; 10:e1004736. [PMID: 25375789 PMCID: PMC4222662 DOI: 10.1371/journal.pgen.1004736] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022] Open
Abstract
Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1–3-like tracts present between subtelomeric X and Y′ elements, which is followed by BIR-mediated non-reciprocal translocation of Y′ element and terminal TG1–3 repeats from the donor end onto the shortened telomere. We found that choice of the Y′ donor was not random, since both engineered telomere VII-L and native VI-R acquired Y′ elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y′ translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1–3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y′ translocation events taking place during presenescence are genetically separable from Rad51-dependent Y′ amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y′ translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation. In humans, telomerase is expressed in the germline and stem, but is repressed in somatic cells, which limits replicative lifespan of the latter. To unleash cell proliferation, telomerase is reactivated in most human cancers, but some cancer cells employ alternative lengthening of telomeres (ALT) based on homologous recombination (HR) to escape senescence. Recombination-based telomere maintenance similar to ALT was originally discovered in budding yeast deficient in telomerase activity. Two types of telomere arrangement that depend on two genetically distinct HR pathways (RAD51- and RAD59-dependent) were identified in post-senescent survivors, but the transition to telomere maintenance by HR is poorly understood. Here, we show that one of the earliest steps of short telomere rearrangement in telomerase-negative yeast is directly related to the “short telomere rescue pathway” proposed 20 years ago by Lundblad and Blackburn, which culminates in the acquisition of subtelomeric Y′ element by shortened telomere. We found that this telomere rearrangement depends on Rad52 strand annealing activity stimulated by Rad59, thus it is distinct from Rad51-dependent Y′ amplification process observed in type I survivors. We show that continuous repair of critically short telomeres in telomerase-negative cells delays the onset of senescence and prepares the ground for telomere maintenance by HR.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Ferose Charifi
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
- * E-mail:
| |
Collapse
|
42
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2014. [DOI: 10.4161/cib.13844] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Jung H, Lee JA, Choi S, Lee H, Ahn B. Characterization of the Caenorhabditis elegans HIM-6/BLM helicase: unwinding recombination intermediates. PLoS One 2014; 9:e102402. [PMID: 25036527 PMCID: PMC4103807 DOI: 10.1371/journal.pone.0102402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/12/2014] [Indexed: 02/02/2023] Open
Abstract
Mutations in three human RecQ genes are implicated in heritable human syndromes. Mutations in BLM, a RecQ gene, cause Bloom syndrome (BS), which is characterized by short stature, cancer predisposition, and sensitivity to sunlight. BLM is a RecQ DNA helicase that, with interacting proteins, is able to dissolve various DNA structures including double Holliday junctions. A BLM ortholog, him-6, has been identified in Caenorhabditis elegans, but little is known about its enzymatic activities or its in vivo roles. By purifying recombinant HIM-6 and performing biochemical assays, we determined that the HIM-6 has DNA-dependent ATPase activity HIM-6 and helicase activity that proceeds in the 3'-5' direction and needs at least five 3' overhanging nucleotides. HIM-6 is also able to unwind DNA structures including D-loops and Holliday junctions. Worms with him-6 mutations were defective in recovering the cell cycle arrest after HU treatment. These activities strongly support in vivo roles for HIM-6 in processing recombination intermediates.
Collapse
Affiliation(s)
- Hana Jung
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jin A Lee
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seoyoon Choi
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hyunwoo Lee
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
44
|
The proteasome factor Bag101 binds to Rad22 and suppresses homologous recombination. Sci Rep 2014; 3:2022. [PMID: 23779158 PMCID: PMC3685826 DOI: 10.1038/srep02022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/31/2013] [Indexed: 11/08/2022] Open
Abstract
Although RAD52 plays a critical role in the initiation of homologous recombination (HR) by facilitating the replacement of RPA with RAD51, the mechanism controlling RAD52 remains elusive. Here, we show that Bag101, a factor implicated in proteasome functioning, regulates RAD52 protein levels and subsequent HR. LC-MS/MS analysis identified Bag101 which binds to Rad22, the fission yeast homologue of RAD52. Bag101 reduced HR frequency through its overexpression and conversely, HR frequencies were enhanced when it was deleted. Consistent with this observation, Rad22 protein levels was reduced in cells where bag101 was overexpressed even when Rad22 transcription was up-regulated, suggesting the operation of proteasome-mediated Rad22 degradation. Indeed, Rad22 protein levels were stabilized in proteasome mutants. Rad22 physically interacted with the BAG domain of Bag101, and a lack of this domain enhanced HR frequency. Similarly, radiation exposure triggered the dissociation of these proteins so that Rad22 was stabilized and able to enhance HR.
Collapse
|
45
|
Rad51-dependent aberrant chromosome structures at telomeres and ribosomal DNA activate the spindle assembly checkpoint. Mol Cell Biol 2014; 34:1389-97. [PMID: 24469396 DOI: 10.1128/mcb.01704-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors defects in kinetochore-microtubule attachment or lack of tension at kinetochores and arrests cells at prometaphase. In fission yeast, the double mutant between pot1Δ and the helicase-dead point mutant of the RecQ helicase Rqh1 gene (rqh1-hd) accumulates Rad51-dependent recombination intermediates at telomeres and enters mitosis with those intermediates. Here, we found that SAC-dependent prometaphase arrest occurred more frequently in pot1Δ rqh1-hd double mutants than in rqh1-hd single mutants. SAC-dependent prometaphase arrest also occurred more frequently in rqh1-hd single mutants after cells were released from DNA replication block compared to the rqh1-hd single mutant in the absence of exogenous insult to the DNA. In both cases, Mad2 foci persisted longer than usual at kinetochores, suggesting a defect in kinetochore-microtubule attachment. In pot1Δ rqh1-hd double mutants and rqh1-hd single mutants released from DNA replication block, SAC-dependent prometaphase arrest was suppressed by the removal of the recombination or replication intermediates. Our results indicate that the accumulation of recombination or replication intermediates induces SAC-dependent prometaphase arrest, possibly by affecting kinetochore-microtubule attachment.
Collapse
|
46
|
Nielsen I, Bentsen IB, Andersen AH, Gasser SM, Bjergbaek L. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1. PLoS One 2013; 8:e81015. [PMID: 24278365 PMCID: PMC3835667 DOI: 10.1371/journal.pone.0081015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS) induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU)-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3). Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.
Collapse
Affiliation(s)
- Ida Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Iben Bach Bentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anni H. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
47
|
Chong SY, Wu MY, Lo YC. Tangeretin sensitizes SGS1-deficient cells by inducing DNA damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6376-6382. [PMID: 23750935 DOI: 10.1021/jf401831e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tangeretin, a polymethoxyflavone found in citrus peel, has been shown to have antiatherogenic, anti-inflammatory, and anticarcinogenic properties. However, the underlying target pathways are not fully characterized. We investigated the tangeretin sensitivity of yeast (Saccharomyces cerevisiae) mutants for DNA damage response or repair pathways. We found that tangeretin treatment significantly reduced (p < 0.05) survival rate, induced preferential G1 phase accumulation, and elevated the DNA double-strand break (DSB) signal γH2A in DNA repair-defective sgs1Δ cells, but had no obvious effects on wild-type cells or mutants of the DNA damage checkpoint (including tel1Δ, sml1Δ mec1Δ, sml1Δ mec1Δ tel1Δ, and rad9Δ mutants). Additionally, microarray data indicated that tangeretin treatment up-regulates genes involved in nutritional processing and down-regulates genes related to RNA processing in sgs1Δ mutants. These results suggest tangeretin may sensitize SGS1-deficient cells by increasing a marker of DNA damage and by inducing G1 arrest and possibly metabolic stress. Thus, tangeretin may be suitable for chemosensitization of cancer cells lacking DSB-repair ability.
Collapse
Affiliation(s)
- Shin Yen Chong
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | | |
Collapse
|
48
|
Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae. J Microbiol 2013; 51:105-12. [PMID: 23456718 DOI: 10.1007/s12275-013-3048-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Maintenance of genome stability in eukaryotes involves a number of conserved proteins, including RecQ helicases, which play multiple roles at various steps in homologous recombination and DNA repair pathways. Sgs1 has been described as the only RecQ helicase in lower eukaryotes. However, recent studies revealed the presence of a second RecQ helicase, Hrq1, which is most homologous to human RECQL4. Here we show that hrq1Δ mutation resulted in increased mitotic recombination and spontaneous mutation in Saccharomyces cerevisiae, and sgs1Δ mutation had additive effects on the phenotypes of hrq1Δ. We also observed that the hrq1Δ mutant was sensitive to 4-nitroquinoline 1-oxide and cisplatin, which was not complemented by overexpression of Sgs1. In addition, the hrq1Δ sgs1Δ double mutant displayed synthetic growth defect as well as a shortened chronological life span compared with the respective single mutants. Analysis of the type of age-dependent Can(r) mutations revealed that only point mutations were found in hrq1Δ, whereas significant numbers of gross deletion mutations were found in sgs1Δ. Our results suggest that Hrq1 is involved in recombination and DNA repair pathways in S. cerevisiae independent of Sgs1.
Collapse
|
49
|
Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes. Mol Cell Biol 2013; 33:1175-87. [PMID: 23297345 DOI: 10.1128/mcb.01713-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51(+). The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51(+). Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.
Collapse
|
50
|
An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks. EMBO J 2012; 31:3768-83. [PMID: 22820947 DOI: 10.1038/emboj.2012.195] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022] Open
Abstract
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.
Collapse
|