1
|
Persistent One-Way Walking in a Circular Arena in Drosophila melanogaster Canton-S Strain. Behav Genet 2017; 48:80-93. [DOI: 10.1007/s10519-017-9881-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
|
2
|
Xiao C, Qiu S, Robertson RM. The white gene controls copulation success in Drosophila melanogaster. Sci Rep 2017; 7:7712. [PMID: 28794482 PMCID: PMC5550479 DOI: 10.1038/s41598-017-08155-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
Characteristics of male courtship behavior in Drosophila melanogaster have been well-described, but the genetic basis of male-female copulation is largely unknown. Here we show that the white (w) gene, a classical gene for eye color, is associated with copulation success. 82.5% of wild-type Canton-S flies copulated within 60 minutes in circular arenas, whereas few white-eyed mutants mated successfully. The w+ allele exchanged to the X chromosome or duplicated to the Y chromosome in the white-eyed genetic background rescued the defect of copulation success. The w+-associated copulation success was independent of eye color phenotype. Addition of the mini-white (mw+) gene to the white-eyed mutant rescued the defect of copulation success in a manner that was mw+ copy number-dependent. Lastly, male-female sexual experience mimicked the effects of w+/mw+ in improving successful copulation. These data suggest that the w+ gene controls copulation success in Drosophila melanogaster.
Collapse
Affiliation(s)
- Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Shuang Qiu
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
3
|
Linger RJ, Belikoff EJ, Scott MJ. Dosage Compensation of X-Linked Muller Element F Genes but Not X-Linked Transgenes in the Australian Sheep Blowfly. PLoS One 2015; 10:e0141544. [PMID: 26506426 PMCID: PMC4624761 DOI: 10.1371/journal.pone.0141544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/10/2015] [Indexed: 11/25/2022] Open
Abstract
In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes.
Collapse
Affiliation(s)
- Rebecca J. Linger
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695–7613, United States of America
| | - Esther J. Belikoff
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695–7613, United States of America
| | - Maxwell J. Scott
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695–7613, United States of America
- * E-mail:
| |
Collapse
|
4
|
Philip P, Pettersson F, Stenberg P. Sequence signatures involved in targeting the Male-Specific Lethal complex to X-chromosomal genes in Drosophila melanogaster. BMC Genomics 2012; 13:97. [PMID: 22424303 PMCID: PMC3355045 DOI: 10.1186/1471-2164-13-97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s) and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL) complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs) and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.
Collapse
Affiliation(s)
- Philge Philip
- Deptartment of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
5
|
Steinemann S, Steinemann M. Evolution of sex chromosomes: dosage compensation of the Lcp1-4 gene cluster on the evolving neo-X chromosome in Drosophila miranda. INSECT MOLECULAR BIOLOGY 2007; 16:167-74. [PMID: 17352708 DOI: 10.1111/j.1365-2583.2006.00711.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In Drosophila miranda the small multigene family of the larval cuticle protein (Lcp1-4) genes resides on the evolving neo-X and neo-Y sex chromosome pair while in the sibling species Drosophila pseudoobscura and Drosophila persimilis the gene cluster is inherited autosomally. The neo-Y chromosomal Lcp1, Lcp2 and Lcp4 genes are, as previously shown by us, not expressed and only Lcp3 is expressed at a strongly reduced level. As a first step in understanding the evolutionary mechanism(s) transforming an autosome into a dosage compensated X we analysed the expression behaviour and promoter structure of the Lcp1-4 genes on the neo-X. The normalized relative expression levels reveal that all four neo-X chromosomal Lcp genes in D. miranda males, including Lcp3, are already dosage compensated.
Collapse
Affiliation(s)
- S Steinemann
- Institut für Molekulargenetik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany.
| | | |
Collapse
|
6
|
Deng X, Rattner BP, Souter S, Meller VH. The severity of roX1 mutations is predicted by MSL localization on the X chromosome. Mech Dev 2006; 122:1094-105. [PMID: 16125915 DOI: 10.1016/j.mod.2005.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 05/03/2005] [Accepted: 06/13/2005] [Indexed: 11/18/2022]
Abstract
Dosage compensation equalizes the expression of sex-linked genes between males and females. Most genes on the X chromosome of male Drosophila are transcribed at an increased level, contributing to compensation. The roX1 and roX2 genes produce non-coding transcripts that localize along the X-chromosome of male flies. Although lacking sequence similarity, they are necessary but redundant components of a system that up-regulates gene expression. Simultaneous mutation of both roX genes disrupts the X-limited distribution of proteins that modify chromatin to enhance gene expression. We have generated and characterized loss of function roX1 alleles that display a continuum of activity. Those that support intermediate male survival have strikingly reduced RNA accumulation, while alleles with minor contributions to male viability typically lack detectable transcript accumulation. Severely mutated roX1 alleles retain some ability to direct modifying proteins to the X chromosome. This ability predicts the level of male survival that each allele supports. This points to a peripheral or transient role for roX in the RNA and protein complex that binds to and regulates the X chromosome.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Biological Science, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
7
|
Bhadra MP, Bhadra U, Kundu J, Birchler JA. Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 2005; 169:2061-74. [PMID: 15716510 PMCID: PMC1449592 DOI: 10.1534/genetics.104.036020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 01/03/2005] [Indexed: 01/01/2023] Open
Abstract
Dosage compensation refers to the equal expression of X-linked genes despite the difference in copy number between the two sexes. The male-specific lethal (MSL) complex is concentrated on the X chromosome in males. A gene expression assay for embryos was developed to examine the function of this complex. In mutant male embryos without either the MSL complex or MOF histone acetylase, dosage compensation is retained but autosomal expression is increased. Dosage compensation is lost in the double-mutant embryos. In embryos in which the MSL complex and MOF are targeted to the X chromosomes in females, the results are consistent with previous surveys showing that in general the X expression remains unchanged, but autosomal expression is reduced. Mutations in the ISWI chromatin-remodeling component cause increases specifically of X-linked genes in males. Thus, the function of the MSL complex in conjunction with ISWI is postulated to override the effect on gene expression of high histone acetylation on the male X. The basic determinant of dosage compensation is suggested to be an inverse dosage effect produced by an imbalance of transcription factors on the X vs. the autosomes. The sequestration of the MSL complex to the male X may have evolved to counteract a similar effect on the autosomes and to prevent an overexpression of the X chromosome in males that would otherwise occur due to the high levels of histone acetylation.
Collapse
Affiliation(s)
- Manika Pal Bhadra
- Division of Biological Sciences, University of Missouri, Columbia, 65211, USA
| | | | | | | |
Collapse
|
8
|
Birchler JA, Bhadra U, Bhadra MP, Auger DL. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 2001; 234:275-88. [PMID: 11396999 DOI: 10.1006/dbio.2001.0262] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence from a variety of data suggests that regulatory mechanisms in multicellular eukaryotes have evolved in such a manner that the stoichiometric relationship of the components of regulatory complexes affects target gene expression. This type of mechanism sets the level of gene expression and, as a consequence, the phenotypic characteristics. Because many types of regulatory processes exhibit dosage-dependent behavior, they would impact quantitative traits and contribute to their multigenic control in a semidominant fashion. Many dosage-dependent effects would also account for the extensive modulation of gene expression throughout the genome that occurs when chromosomes are added to or subtracted from the karyotype (aneuploidy). Moreover, because the majority of dosage-dependent regulators act negatively, this property can account for the up-regulation of genes in monosomics and hemizygous sex chromosomes to achieve dosage compensation.
Collapse
Affiliation(s)
- J A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
9
|
Bhadra U, Pal-Bhadra M, Birchler JA. Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 2000; 155:753-63. [PMID: 10835396 PMCID: PMC1461119 DOI: 10.1093/genetics/155.2.753] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of sex determination mechanisms is often accompanied by reduction in dosage of genes on a whole chromosome. Under these circumstances, negatively acting regulatory genes would tend to double the expression of the genome, which produces compensation of the single-sex chromosome and increases autosomal gene expression. Previous work has suggested that to reduce the autosomal expression to the female level, these dosage effects are modified by a chromatin complex specific to males, which sequesters a histone acetylase to the X. The reduced autosomal histone 4 lysine 16 (H4Lys16) acetylation results in lowered autosomal expression, while the higher acetylation on the X is mitigated by the male-specific lethal complex, preventing overexpression. In this report, we examine how mutations in the principal sex determination gene, Sex lethal (Sxl), impact the H4 acetylation and gene expression on both the X and autosomes. When Sxl expression is missing in females, we find that the sequestration occurs concordantly with reductions in autosomal H4Lys16 acetylation and gene expression on the whole. When Sxl is ectopically expressed in Sxl(M) mutant males, the sequestration is disrupted, leading to an increase in autosomal H4Lys16 acetylation and overall gene expression. In both cases we find relatively little effect upon X chromosomal gene expression.
Collapse
Affiliation(s)
- U Bhadra
- Division of Biological Sciences, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
10
|
Bhadra U, Pal-Bhadra M, Birchler JA. Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics 1999; 152:249-68. [PMID: 10224258 PMCID: PMC1460601 DOI: 10.1093/genetics/152.1.249] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immunostaining of chromosomes shows that the male-specific lethal (MSL) proteins are associated with all female chromosomes at a low level but are sequestered to the X chromosome in males. Histone-4 Lys-16 acetylation follows a similar pattern in normal males and females, being higher on the X and lower on the autosomes in males than in females. However, the staining pattern of acetylation and the mof gene product, a putative histone acetylase, in msl mutant males returns to a uniform genome-wide distribution as found in females. Gene expression on the autosomes correlates with the level of histone-4 acetylation. With minor exceptions, the expression levels of X-linked genes are maintained with either an increase or decrease of acetylation, suggesting that the MSL complex renders gene activity unresponsive to H4Lys16 acetylation. Evidence was also found for the presence of nucleation sites for association of the MSL proteins with the X chromosome rather than individual gene binding sequences. We suggest that sequestration of the MSL proteins occurs in males to nullify on the autosomes and maintain on the X, an inverse effect produced by negatively acting dosage-dependent regulatory genes as a consequence of the evolution of the X/Y sex chromosomal system.
Collapse
Affiliation(s)
- U Bhadra
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | | | | |
Collapse
|
11
|
Yanowitz JL, Deshpande G, Calhoun G, Schedl PD. An N-terminal truncation uncouples the sex-transforming and dosage compensation functions of sex-lethal. Mol Cell Biol 1999; 19:3018-28. [PMID: 10082569 PMCID: PMC84096 DOI: 10.1128/mcb.19.4.3018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila melanogaster, Sex-lethal (Sxl) controls autoregulation and sexual differentiation by alternative splicing but regulates dosage compensation by translational repression. To elucidate how Sxl functions in splicing and translational regulation, we have ectopically expressed a full-length Sxl protein (Sx.FL) and a protein lacking the N-terminal 40 amino acids (Sx-N). The Sx.FL protein recapitulates the activity of Sxl gain-of-function mutations, as it is both sex transforming and lethal in males. In contrast, the Sx-N protein unlinks the sex-transforming and male-lethal effects of Sxl. The Sx-N proteins are compromised in splicing functions required for sexual differentiation, displaying only partial autoregulatory activity and almost no sex-transforming activity. On the other hand, the Sx-N protein does retain substantial dosage compensation function and kills males almost as effectively as the Sx.FL protein. In the course of our analysis of the Sx.FL and Sx-N transgenes, we have also uncovered a novel, negative autoregulatory activity, in which Sxl proteins bind to the 3' untranslated region of Sxl mRNAs and decrease Sxl protein expression. This negative autoregulatory activity may be a homeostasis mechanism.
Collapse
Affiliation(s)
- J L Yanowitz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|